1
|
Yarbrough DC, Osei-Badu BK, Wagner CJ, Storme KR, Marquez R SJ, Mohr JT. Fe-Catalyzed Structurally Divergent Îł-Polyhaloalkylation of Siloxydienes. Org Lett 2024; 26:10735-10739. [PMID: 39637357 DOI: 10.1021/acs.orglett.4c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Regioselective γ-polyhaloalkylation is achieved using tetrahalomethanes or α,α,α-trihaloalkyl compounds and siloxydienes via Fe(II) catalysis. A range of siloxydienes are functionalized in good yields with high stereoselectivity under mild reaction conditions. Structural divergence is observed as either haloalkylated or haloalkenylated products are formed on the basis of the substitution pattern of the siloxydiene. The halogenated products show utility in further synthetic transformations, selective reduction, and cross-coupling reactions.
Collapse
Affiliation(s)
- Douglas C Yarbrough
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Brian K Osei-Badu
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Cole J Wagner
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Kayla R Storme
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Sebastian J Marquez R
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Justin T Mohr
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Jiao RQ, Li M, Chen X, Zhang Z, Gong XP, Yue H, Liu XY, Liang YM. Copper-Catalyzed Selective Three-Component 1,2-Phosphonoazidation of 1,3-Dienes. Org Lett 2024; 26:1387-1392. [PMID: 38341862 DOI: 10.1021/acs.orglett.3c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
We report a copper-catalyzed selective 1,2-phosphonoazidation of conjugated dienes. This three-component reaction is achieved by using readily available P(O)-H compounds and bench-stable NaN3. Salient features of this strategy include its mild reaction conditions, broad functional group tolerance, and high chemoselectivity and regioselectivity. Moreover, the compatibility with the late-stage functionalization of drug molecules, the potential for scalable production, and the feasibility of further modifications of the products underscore the practical utility of this protocol in synthetic applications.
Collapse
Affiliation(s)
- Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Heng Yue
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Phiromphu N, Juthathan M, Suktanarak P, Sukwattanasinitt M, Tuntulani T, Leeladee P. Selective copper-catalysed atom transfer radical addition (ATRA) in water under environmentally benign conditions. Dalton Trans 2023; 52:14235-14241. [PMID: 37766676 DOI: 10.1039/d3dt02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Simple and green conditions for copper-catalysed ATRA reactions in water have been developed. Firstly, [Cu(ADPA)(H2O)(ClO4)2] (1b, ADPA = 9-[(2,2'-dipicolylamino)methyl]anthracene) was demonstrated to be capable of selectively catalysing the ATRA of CCl4 to styrene using L-ascorbic acid (AsH2) as a reducing agent in organic solvent mixtures under ambient atmosphere. Mechanistic investigation suggested that our ATRA reaction proceeded via a single-electron transfer (SET) mechanism through an inner-sphere complex, which is consistent with the widely accepted mechanism for copper-catalysed ATRA. To perform the reaction in water as a sole solvent, a biocompatible surfactant (2 wt% Tween 20 or Tween 80) was added to improve solubility and increase the local concentration of organic reagents and the copper catalyst. Without the need for a complicated oxygen-free set-up, the ATRA reaction catalysed by this simple aqueous-dispersed system can be performed at a mild temperature (60 °C) and a relatively short reaction time (6 h) using 1 mol% of the catalyst. Furthermore, this facile protocol is also applicable for other alkene substrates demonstrated in this work, resulting in satisfactory to excellent substrate conversion and product yields.
Collapse
Affiliation(s)
- Nutchanikan Phiromphu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pattira Suktanarak
- Faculty of Sport and Health Sciences, Thailand National Sports University Lampang Campus, Lampang, 52100, Thailand
| | | | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pannee Leeladee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Zhang JH, Jiang LL, Hu SJ, Li JZ, Yu XC, Liu FL, Guan YT, Lei KW, Wei WT. The polychloromethylation/acyloxylation of 1,6-enynes with chloroalkanes and diacyl peroxides through dual-role designs. Org Biomol Chem 2022; 20:7067-7070. [PMID: 35993972 DOI: 10.1039/d2ob01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel polychloromethylation/acyloxylation of 1,6-enynes with chloroalkanes and diacyl peroxides through dual-role designs has been developed to prepare 2-pyrrolidinone derivatives with polychloromethyl units with the use of an inexpensive copper salt under mild conditions. This strategy includes two dual-role designs, not only improving atomic utilization but also allowing a cleaner process. The wide substrate scope and simple reaction conditions demonstrate the practicability of this protocol.
Collapse
Affiliation(s)
- Jun-Hao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Li-Lin Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Sen-Jie Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jiao-Zhe Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xuan-Chi Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Fa-Liang Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yu-Tao Guan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ke-Wei Lei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
5
|
Way H, Roh J, Venteicher B, Chandra S, Thomas AA. Synthesis of ribavirin 1,2,3- and 1,2,4-triazolyl analogs with changes at the amide and cytotoxicity in breast cancer cell lines. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:38-64. [PMID: 35929908 DOI: 10.1080/15257770.2022.2107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We report the synthesis and cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells of novel 1,2,3- and 1,2,4-triazolyl analogs of ribavirin. We modified ribavirin's carboxamide moiety to test the effects of lipophilic groups. 1-ÎČ-D-Ribofuranosyl-1H-1,2,3-triazoles were prepared using Click Chemistry, whereas an unprecedented application of a prior 1,2,4-triazole ring synthesis was used for 1-ÎČ-D-ribofuranosyl-1H-1,2,4-triazole analogs. Though cytotoxicity was mediocre and there was no correlation with lipophilicity, we discovered that a structurally similar concentrative nucleoside transporter 2 (CNT2) inhibitor was modestly cytotoxic (MCF-7 IC50 of 42â”M). These syntheses could be used to efficiently investigate variation in the nucleobase.
Collapse
Affiliation(s)
- Hannah Way
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Joshua Roh
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Brooklynn Venteicher
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| |
Collapse
|
6
|
Xiang J, Patureau FW. Cross Dehydrogenative Coupling of Chloroâ and Fluoroalkanes with Methylarenes. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- JiaâXiang Xiang
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
7
|
Shan Y, Yang Z, Yu JT, Pan C. Metal-free polychloromethyl radical-initiated cyclization of unactivated N-allylindoles towards pyrrolo[1,2- a]indoles. Org Biomol Chem 2022; 20:5259-5263. [PMID: 35735246 DOI: 10.1039/d2ob00471b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A metal-free polychloromethyl radical-initiated cyclization of unactivated alkenes was developed using CH2Cl2 and CHCl3 as the di- and trichloromethyl radical sources. Variously substituted N-allyl-indoles were successfully transformed into the corresponding C2-(di- and trichloromethyl) pyrrolo[1,2-a]indoles in moderate to good yields. This reaction has a broad substrate scope and good functional group tolerance. Dibromomethylated products can also be obtained using CH2Br2 under standard conditions.
Collapse
Affiliation(s)
- Yujia Shan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
8
|
Wu MC, Chen YX, Li MZ, Xiao JA, Ye ZP, Guan JP, Xiang HY, Chen K, Yang H. Photocatalyzed Defluorinative Dichloromethylation of α-CF 3 Alkenes Using CHCl 3 as the Radical Source. J Org Chem 2022; 88:6354-6363. [PMID: 35723452 DOI: 10.1021/acs.joc.2c01106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A visible-light-induced defluorinative dichloromethylation of α-CF3 alkenes was developed with cheap and readily accessible chloroform simultaneously as a dichloromethylation reagent and reaction medium, leading to the facile preparation of new polyhalogenated scaffolds. Notably, the change from CHCl3 to CDCl3 offers a straightforward pathway for accessing the deuterated analogues with excellent degrees of D incorporation. Mechanistic studies suggested the reaction underwent a radical addition of the dichloromethyl radical with alkenes, followed by sequential single-electron transfer and defluorination. This protocol features mild conditions, easy operation, facile scalability, and high efficiency, allowing convenient access to dichloronated gem-difluoroalkenes.
Collapse
Affiliation(s)
- Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, P. R. China
| | - Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ming-Zhi Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
9
|
Zhao ZW, Ran YS, Hou YJ, Chen X, Ding XL, Zhang C, Li YM. Free Radical Cascade Carbochloromethylations of Activated Alkenes. J Org Chem 2022; 87:4183-4194. [PMID: 35234480 DOI: 10.1021/acs.joc.1c03024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Free radical carbochloromethylations of ortho-cyanoarylacrylamides and N-(arylsulfonyl)acrylamides have been developed by employing simple alkyl chlorides as the chloromethyl source. The transformations are characterized by wide functional group compatibility and utilizing readily available reagents, thus providing efficient methods for constructing polychloromethyl-substituted quinoline-2,4-diones and α-aryl-ÎČ-polychloromethylated amides.
Collapse
Affiliation(s)
- Zhi-Wei Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yu-Song Ran
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yu-Jian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xue-Ling Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Cui Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
10
|
Liu H, Yang Z, Yu JT, Pan C. Radical Polychloromethylation/Cyclization of Unactivated Alkenes: Access to PolychloromethylâSubstituted RingâFused Quinazolinones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Han Liu
- Changzhou University - Wujin Campus CHINA
| | | | | | | |
Collapse
|
11
|
Ma N, Guo L, Shen ZJ, Qi D, Yang C, Xia W. Cascade Cyclization for the Synthesis of Indolo[2,1-α]isoquinoline Derivatives via Visible-Light-Induced Halogen-Atom-Transfer (XAT) and Hydrogen-Atom-Transfer (HAT). Org Biomol Chem 2022; 20:1731-1737. [DOI: 10.1039/d1ob02480a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition metal-free photoredox cascade cyclization is herein reported. In this protocol, sustainable visible light was used as energy source and organic light-emitting molecule Eosin Y served as efficient photocatalyst....
Collapse
|
12
|
Zhang YX, Bian KJ, Jin RX, Yang C, Wang XS. Copper-catalyzed monochloromethylazidation to access transformable terminal alkyl chlorides using stoichiometric BrCH 2Cl. Chem Commun (Camb) 2021; 57:5666-5669. [PMID: 33973583 DOI: 10.1039/d1cc01751a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient copper-catalyzed 1,2-difunctionalization of alkenes with commercially available BrCH2Cl as a chloromethylating source was carried out, in which mild conditions, high reactivity, excellent functional-group tolerance, and late-stage modification of a bioactive molecule are demonstrated. This strategy offers a solution for the diverse syntheses of nitrogen-containing terminal alkyl chlorides, a common synthetic handle that is promising for multiple derivatizations. Mechanistic studies indicate that a chloromethyl radical is involved in the catalytic cycle.
Collapse
Affiliation(s)
- Ya-Xuan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Chi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| |
Collapse
|
13
|
Tu Y, Dong H, Wang H, Ao Y, Liu Y. Divergent functionalization of α,ÎČ-enones: catalyst-free access to ÎČ-azido ketones and ÎČ-amino α-diazo ketones. Chem Commun (Camb) 2021; 57:4524-4527. [PMID: 33956012 DOI: 10.1039/d1cc00985k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical method for the azidation of ÎČ-fluoroalkyl α,ÎČ-unsaturated ketones to access a wide variety of fluorinated nitrogenous carbonyl compounds is developed. Different from existing precedents, neither a metallic nor an organic catalyst was involved in our strategy. Judicious choice of solvents allows for the modulation of the reaction outcomes, delivering ÎČ-azido ketones or ÎČ-amino α-diazo ketones. The reaction system features environmental friendliness, mild conditions, simplicity and excellent functional group tolerance.
Collapse
Affiliation(s)
- Youshao Tu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Honglin Dong
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Huamin Wang
- College of Chemistry and Chemical Engineering, University of South China, 28 N Changsheng West Road, Hengyang 421001, P. R. China.
| | - Yuhui Ao
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Yu Liu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| |
Collapse
|
14
|
Liang YY, Huang J, Ouyang XH, Qin JH, Song RJ, Li JH. Radical-mediated alkoxypolyhaloalkylation of styrenes with polyhaloalkanes and alcohols via C(sp3)âH bond cleavage. Chem Commun (Camb) 2021; 57:3684-3687. [DOI: 10.1039/d1cc00400j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A radical-mediated alkoxypolyhaloalkylation of styrenes with polychloroalkanes and alcohols for the facile synthesis of complex polyhaloalkanes with excellent functional-group compatibility and a broad substrate scope.
Collapse
Affiliation(s)
- Yun-Yan Liang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jing Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jing-Hao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
| |
Collapse
|
15
|
Affiliation(s)
- Gao Huang
- School of Petrochemical Engineering Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology Jiangsu Province Key Laboratory of Fine Petrochemical Engineering Changzhou University Changzhou 213164 People's Republic of China
| | - JinâTao Yu
- School of Petrochemical Engineering Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology Jiangsu Province Key Laboratory of Fine Petrochemical Engineering Changzhou University Changzhou 213164 People's Republic of China
| | - Changduo Pan
- School of Chemical & Environmental Engineering Jiangsu University of Technology Changzhou 213001 People's Republic of China
| |
Collapse
|
16
|
Liang Y, Lv G, Ouyang X, Song R, Li J. Recent Developments in the Polychloroalkylation by Use of Simple Alkyl Chlorides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- YunâYan Liang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - GuiâFen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - XuanâHui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - RenâJie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - JinâHeng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
17
|
Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Asymmetric Coupling of CarbonâCentered Radicals Adjacent to Nitrogen: CopperâCatalyzed Cyanation and Etherification of Enamides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guoyu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Song Zhou
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Liang Fu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yibiao Li
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Jianping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
18
|
Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Asymmetric Coupling of CarbonâCentered Radicals Adjacent to Nitrogen: CopperâCatalyzed Cyanation and Etherification of Enamides. Angew Chem Int Ed Engl 2020; 59:20439-20444. [DOI: 10.1002/anie.202008338] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Guoyu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Song Zhou
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Liang Fu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yibiao Li
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Jianping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
19
|
Iron- or copper-catalyzed cascade chloromethylation of activated alkenes: Efficient access to chlorinated oxindoles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Yang Y, Xu CH, Xiong ZQ, Li JH. Visible light photoredox alkylazidation of alkenes with sodium azide and heteroarenium salts: entry to azido-containing 1,4-dihydropyridines. Chem Commun (Camb) 2020; 56:9549-9552. [PMID: 32691800 DOI: 10.1039/d0cc03235b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A three-component alkene alkylazidation using sodium azide as the azido resource and heteroarenium salts as functionalized alkyl reagents for producing highly valuable 2-azido-1-(1,4-dihydropyridin-4-yl)-ethanes is described. This reaction allows the incorporation of both an azido group and a 1,4-dihydropyridin-4-yl group across C[double bond, length as m-dash]C bonds to construct two new bonds in a single reaction step, and represents a practical and mechanistically distinct alternative that harnesses an electrophilic heteroarenium ion to accomplish the alkene difunctionalization reaction.
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China
| | - Chong-Hui Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
21
|
Wei R, Xiong H, Ye C, Li Y, Bao H. Iron-Catalyzed Alkylazidation of 1,1-Disubstituted Alkenes with Diacylperoxides and TMSN 3. Org Lett 2020; 22:3195-3199. [PMID: 32227900 DOI: 10.1021/acs.orglett.0c00969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An iron-catalyzed radical alkylazidation of electron-deficient alkenes is reported. Alkyl diacyl peroxides work as the alkyl source, and trimethylsilyl azide acts as the azido reservoir. This method features mild reaction conditions, wide substrate scope, and good functional group tolerance, providing a range of α-azido esters, an α-azido ketone, and an α-azido cyanide in high yields. These azides can be easily transferred into many kinds of amino acid derivatives.
Collapse
Affiliation(s)
- Rongbiao Wei
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.,College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, Fujian 350108, P. R. of China
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| |
Collapse
|
22
|
Lu B, Song C, Liu J, Trabelsi T, Francisco JS, Wang L, Zeng X. Dihalogenated Methylperoxy Radicals: Spectroscopic Characterization and Photodecomposition by Release of HO .. Chemistry 2020; 26:2817-2820. [PMID: 31899574 DOI: 10.1002/chem.201905858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 11/08/2022]
Abstract
Two atmospherically relevant dihalogenated methylperoxy radicals CHX2 OO. (X=F and Cl) have been generated through O2 -oxidation of the corresponding alkyl radicals CHX2 . in the gas phase. The IR spectroscopic characterization of both radicals in cryogenic Ar- and N2 -matrices (15â
K) is supported by 18 O-labeling and ab initio calculations at the UCCSD(T)/aug-cc-pVTZ level. Upon 266â
nm laser irradiation, both radicals decompose mainly by releasing hydroxyl radicals (âHO. +X2 CO) via the intermediacy of intriguing α-hydroperoxyalkyl radicals (. CX2 OOH), implying that the photooxidation of dihalogenated hydrocarbons might serve as important sources of HO. radicals in the atmosphere.
Collapse
Affiliation(s)
- Bo Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Chao Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Tarek Trabelsi
- Department of Earth and Environmental Science and Department of, Chemistry, University of Pennsylvania, Pennsylvania, 19104, USA
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of, Chemistry, University of Pennsylvania, Pennsylvania, 19104, USA
| | - Lina Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
23
|
Pan C, Wu C, Yuan C, Yu JT. Cascade arylchloromethylation of unactivated alkenes for the construction of chloromethyl substituted dihydroisoquinolinones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Kim Y, Kim DY. Copperâpromoted Synthesis of ÎČâSelenylated Cyclopentanones via Selenylation and 1,2âAlkyl Migration Sequences of Alkenyl Cyclobutanols. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yubin Kim
- Department of ChemistrySoonchunhyang University, SoonchunhyangâRo 22, Asan Chungnam 31538 South Korea
| | - Dae Young Kim
- Department of ChemistrySoonchunhyang University, SoonchunhyangâRo 22, Asan Chungnam 31538 South Korea
| |
Collapse
|
25
|
Jung HI, Kim Y, Kim DY. Electrochemical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols: synthesis of ÎČ-CF 3-substituted ketones. Org Biomol Chem 2019; 17:3319-3323. [PMID: 30869722 DOI: 10.1039/c9ob00373h] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical oxidative radical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols were developed in this study. This approach is environmentally benign and uses the shelf-stable Langlois reagent as a trifluoromethyl radical precursor and electrons as the oxidizing reagents. The present protocol offers a facile route to prepare ÎČ-trifluoromethylated ketone derivatives.
Collapse
Affiliation(s)
- Hye Im Jung
- Department of Chemistry, Soonchunhyang University, Asan 31538, Chungnam, Republic of Korea.
| | | | | |
Collapse
|
26
|
Iodine(III) reagent (ABXâN3)-induced intermolecular anti-Markovnikov hydroazidation of unactivated alkenes. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9628-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Neff RK, Su YL, Liu S, Rosado M, Zhang X, Doyle MP. Generation of Halomethyl Radicals by Halogen Atom Abstraction and Their Addition Reactions with Alkenes. J Am Chem Soc 2019; 141:16643-16650. [DOI: 10.1021/jacs.9b05921] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robynne K. Neff
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Melina Rosado
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
28
|
Wu D, Cui SS, Lin Y, Li L, Yu W. Visible Light-Driven Azidation/Difunctionalization of Vinyl Arenes with Azidobenziodoxole under Copper Catalysis. J Org Chem 2019; 84:10978-10989. [DOI: 10.1021/acs.joc.9b01569] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Danhua Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Shuang-Shuang Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yajun Lin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Lin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
29
|
Synthesis of ÎČ-selenylated ketones via iodine-mediated selenylation/1,2-carbon migration sequences of alkenyl alcohols. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Kim DY. Catalyst-free selenylation/semipinacol rearrangement cascades of alkenyl cyclobutanols: synthesis of ÎČ-selenylated cyclopentanones. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1616762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dae Young Kim
- Department of Chemistry, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
31
|
Kim Y, Kim DY. Synthesis of FluoromethylâSubstituted Cyclopentanones via Radical Fluorination and 1,2âAlkyl Migration Cascade of Alkenyl Cyclobutanols. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yubin Kim
- Department of ChemistrySoonchunhyang University Asan Chungnam 31538 Republic of Korea
| | - Dae Young Kim
- Department of ChemistrySoonchunhyang University Asan Chungnam 31538 Republic of Korea
| |
Collapse
|
32
|
Wang J, Yu W. AntiâMarkovnikov Hydroazidation of Alkenes by VisibleâLight Photoredox Catalysis. Chemistry 2019; 25:3510-3514. [DOI: 10.1002/chem.201806371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Indexed: 01/22/2023]
Affiliation(s)
- JuanâJuan Wang
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
33
|
Yang W, Feng J, Wu L, Zhang Y. Aliphatic Aldehydes: Novel Radical Alkylating Reagents. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801355] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- WenâChao Yang
- Institute of Pesticide, School of Horticulture and Plant ProtectionYangzhou University Yangzhou 225009 People's Republic of China
| | - JianâGuo Feng
- Institute of Pesticide, School of Horticulture and Plant ProtectionYangzhou University Yangzhou 225009 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - YongâQiang Zhang
- College of Plant ProtectionSouthwest University Chongqing 400716 People's Republic of China
| |
Collapse
|
34
|
Kim YJ, Kim DY. Electrochemical Radical Selenylation/1,2-Carbon Migration and DowdâBeckwith-Type Ring-Expansion Sequences of Alkenylcyclobutanols. Org Lett 2019; 21:1021-1025. [DOI: 10.1021/acs.orglett.8b04041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yeon Joo Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Dae Young Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| |
Collapse
|
35
|
Chen C, Li Y, Pan Y, Duan L, Liu W. Oxidative radical additionâchlorination of alkenes to access 1,1-dichloroalkanes from simple reagents. Org Chem Front 2019. [DOI: 10.1039/c9qo00400a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This protocol provides a facile regioselective method for the synthesis of 1,1-dichloroalkanes from terminal alkenes using simple chloro reagents.
Collapse
Affiliation(s)
- Cui Chen
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Yupeng Pan
- Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- P. R. China
| | - Linhai Duan
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Weibing Liu
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| |
Collapse
|