1
|
Liu M, Shi L, Zheng L, Gao Q, Zhang Z, Xiang J. Electroselective and Controlled Cross-Coupling of Isoindolinones with Alcohols. J Org Chem 2025. [PMID: 39884959 DOI: 10.1021/acs.joc.4c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
A novel and efficient electrochemical method for electroselective and controlled cross-coupling of isoindolinones with equivalent alcohols has been developed without the need for metal catalysts and strong bases under mild conditions. The reaction provides a novel strategy for the controllable and effective synthesis of 3-alkoxyl and N-hydroxymethyl-substituted isoindolinones, which is adjusted by 4-OH-TEMPO and tolerates various substrates. This protocol is an efficient tool for the construction of C-O and C-N bonds with high chemoselectivity.
Collapse
Affiliation(s)
- Mian Liu
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Lingling Shi
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Lianyou Zheng
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Qiansong Gao
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Zhuoqi Zhang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Jinbao Xiang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| |
Collapse
|
2
|
Qian P, Zhu D, Wang X, Sun Q, Zhang S. Electrochemical Benzylic C(sp 3)-H Imidation Enabled by Benzoic Acid Derived Radicals. J Org Chem 2024; 89:6395-6404. [PMID: 38621116 DOI: 10.1021/acs.joc.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We developed an electrochemical approach for benzylic C(sp3)-H imidation by virtue of the in situ generated oxygen-centered radicals (OCRs). The electrochemical imidation provides a complementary approach to giving distinct imide products compared with previous acyloxylation products. This protocol exhibits good site selectivity and broad substrate generality. Moreover, the utility of the OCR-mediated protocol was extended to the electrochemical oxidation of silane, and its robustness was also highlighted by the imidation of complex substrates, which would otherwise be inaccessible for previous approaches. A plausible reaction mechanism was proposed to rationalize the experimental observations.
Collapse
Affiliation(s)
- Peng Qian
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-Derived, Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, School of Chemistry and Material Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Dan Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoli Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Qi Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
3
|
Electrochemical synthesis of 5-trifluoroethyl dihydrobenzimidazo[2,1-a] isoquinolines from pendent unactivated alkenes via radical relay. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
Ritter-type amination of C(sp 3)-H bonds enabled by electrochemistry with SO 42. Nat Commun 2022; 13:4138. [PMID: 35842447 PMCID: PMC9288499 DOI: 10.1038/s41467-022-31813-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
By merging electricity with sulfate, the Ritter-type amination of C(sp3)-H bonds is developed in an undivided cell under room temperature. This method features broad substrate generality (71 examples, up to 93% yields), high functional-group compatibility, facile scalability, excellent site-selectivity and mild conditions. Common alkanes and electron-deficient alkylbenzenes are viable substrates. It also provides a straightforward protocol for incorporating C-deuterated acetylamino group into C(sp3)-H sites. Application in the synthesis or modification of pharmaceuticals or their derivatives and gram-scale synthesis demonstrate the practicability of this method. Mechanistic experiments show that sulfate radical anion, formed by electrolysis of sulfate, served as hydrogen atom transfer agent to provide alkyl radical intermediate. This method paves a convenient and flexible pathway for realizing various synthetically useful transformations of C(sp3)-H bonds mediated by sulfate radical anion generated via electrochemistry. The amination of C(sp3)–H bonds is an appealing and challenging task in organic synthesis. Here, by using an electrogenerated sulfate radical an HAT agent, the authors report a practical Ritter-type amination of C(sp3)–H bonds.
Collapse
|
5
|
Lu L, Shi R, Lei A. Single-electron transfer oxidation-induced C–H bond functionalization via photo-/electrochemistry. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Wan H, Li D, Xia H, Yang L, Alhumade H, Yi H, Lei A. Synthesis of 1 H-indazoles by an electrochemical radical C sp2-H/N-H cyclization of arylhydrazones. Chem Commun (Camb) 2021; 58:665-668. [PMID: 34918720 DOI: 10.1039/d1cc04656j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of efficient and sustainable C-N bond-forming reactions to N-heterocyclic frameworks has been a long-standing interest in organic synthesis. In this work, we develop an electrochemical radical Csp2-H/N-H cyclization of arylhydrazones to 1H-indazoles. The electrochemical anodic oxidation approach was adopted to synthesize a variety of 1H-indazole derivatives in moderate to good yields. HFIP was not only employed as a solvent or the proton donor, but also can promote the formation of N free radicals. This synthetic methodology is operationally simple, and less expensive electrodes would be suitable for this chemistry.
Collapse
Affiliation(s)
- Hao Wan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Dongting Li
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Huadan Xia
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Liwen Yang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hong Yi
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China. .,College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Wei Z, Wang R, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Direct Thiolation of Lactams with Mercaptans: An Efficient Access to
N
‐Acylsulfenamides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoxin Wei
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Renjie Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
8
|
Lin Y, Jin J, Wang C, Wan JP, Liu Y. Electrochemical C-H Halogenations of Enaminones and Electron-Rich Arenes with Sodium Halide (NaX) as Halogen Source for the Synthesis of 3-Halochromones and Haloarenes. J Org Chem 2021; 86:12378-12385. [PMID: 34392684 DOI: 10.1021/acs.joc.1c01347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Without employing an external oxidant, the simple synthesis of 3-halochromones and various halogenated electron-rich arenes has been realized with electrode oxidation by employing the simplest sodium halide (NaX, X = Cl, Br, I) as halogen source. This electrochemical method is advantageous for the simple and mild room temperature operation, environmental friendliness as well as broad substrate scope in both C-H bond donor and halogen source components.
Collapse
Affiliation(s)
- Yan Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jun Jin
- BioDuro-Sundia, 233 North FuTe Road, Shanghai200131, People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| |
Collapse
|
9
|
Bera SK, Boruah PJ, Parida SS, Paul AK, Mal P. A Photochemical Intramolecular C-N Coupling Toward the Synthesis of Benzimidazole-Fused Phenanthridines. J Org Chem 2021; 86:9587-9602. [PMID: 34191516 DOI: 10.1021/acs.joc.1c00871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herein, we report a direct photochemical dehydrogenative C-N coupling of unactivated C(sp2)-H and N(sp2)-H bonds. The catalysts or additive-free transformation of 2-([1,1'-biphenyl]-2-yl)-1H-benzo[d]imidazole to benzo[4,5]imidazo[1,2-f]phenanthridine was achieved at ∼350 nm of irradiation via ε-hydrogen abstraction. DFT calculations helped to understand that the N-H···π interaction was essential for the reaction to proceed at a lower energy than expected.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| | - Palash J Boruah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, Meghalaya, India
| | - Shraddha Saraswati Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| | - Amit K Paul
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, Meghalaya, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| |
Collapse
|
10
|
Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
11
|
Meng Z, Feng C, Xu K. Recent Advances in the Electrochemical Formation of Carbon-Nitrogen Bonds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Yu K, Kong X, Yang J, Li G, Xu B, Chen Q. Electrochemical Oxidative Halogenation of N-Aryl Alkynamides for the Synthesis of Spiro[4.5]trienones. J Org Chem 2020; 86:917-928. [DOI: 10.1021/acs.joc.0c02429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianqiang Kong
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiajun Yang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Guodong Li
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
13
|
Liu X, Liu R, Qiu J, Cheng X, Li G. Chemical‐Reductant‐Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Liu
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
| | - Ruoyu Liu
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
| | - Jiaxing Qiu
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Zhejiang University of Technology Hangzhou 310032 China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX USA
| |
Collapse
|
14
|
Liu X, Liu R, Qiu J, Cheng X, Li G. Chemical-Reductant-Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angew Chem Int Ed Engl 2020; 59:13962-13967. [PMID: 32394494 DOI: 10.1002/anie.202005765] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 12/20/2022]
Abstract
We report a method for the electrochemical deuteration of α,β-unsaturated carbonyl compounds under catalyst- and external-reductant-free conditions, with deuteration rates as high as 99 % and yields up to 91 % in 2 h. The use of graphite felt for both the cathode and the anode was key to ensuring chemoselectivity and high deuterium incorporation under neutral conditions without the need for an external reductant. This method has a number of advantages over previously reported deuteration reactions that use stoichiometric metallic reductants. Mechanistic experiments showed that O2 evolution at the anode not only eliminates the need for an external reductant but also regulates the pH of the reaction mixture, keeping it approximately neutral.
Collapse
Affiliation(s)
- Xu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Ruoyu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Jiaxing Qiu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China.,State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
15
|
Chen JY, Wu HY, Gui QW, Han XR, Wu Y, Du K, Cao Z, Lin YW, He WM. Electrochemical Synthesis of α-Ketoamides under Catalyst-, Oxidant-, and Electrolyte-Free Conditions. Org Lett 2020; 22:2206-2209. [DOI: 10.1021/acs.orglett.0c00387] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jin-Yang Chen
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Hong-Yu Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Qing-Wen Gui
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiao-Ran Han
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Kui Du
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha 410114, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Min He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
16
|
Meng X, Zhang Y, Luo J, Wang F, Cao X, Huang S. Electrochemical Oxidative Oxydihalogenation of Alkynes for the Synthesis of α,α-Dihaloketones. Org Lett 2020; 22:1169-1174. [DOI: 10.1021/acs.orglett.0c00052] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangtai Meng
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jinyue Luo
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Rd, Hangzhou, Zhejiang 310014, P. R. China
| | - Shenlin Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
17
|
Huang B, Yang C, Zhou J, Xia W. Electrochemically generated N-iodoaminium species as key intermediates for selective methyl sulphonylimination of tertiary amines. Chem Commun (Camb) 2020; 56:5010-5013. [DOI: 10.1039/c9cc09869k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents a straightforward protocol for approaching N-sulphonylamidines via an electricity-driven, iodine-mediated cross dehydrogenative condensation (CDC) between sulphonamides and tertiary amines.
Collapse
Affiliation(s)
- Binbin Huang
- State Key Lab of Urban Water Resource and Environment
- School of Science, Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment
- School of Science, Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
| | - Jia Zhou
- State Key Lab of Urban Water Resource and Environment
- School of Science, Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment
- School of Science, Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
| |
Collapse
|
18
|
Xiong M, Liang X, Gao Z, Lei A, Pan Y. Synthesis of Isoxazolines and Oxazines by Electrochemical Intermolecular [2 + 1 + n] Annulation: Diazo Compounds Act as Radical Acceptors. Org Lett 2019; 21:9300-9305. [PMID: 31713430 DOI: 10.1021/acs.orglett.9b03306] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein is an unprecedented synthesis of isoxazolines and oxazines through electrochemical intermolecular annulation of alkenes with tert-butyl nitrite, in which diazo compounds serve as radical acceptors. Notably, [2 + 1 + 2] and [2 + 1 + 3] annulations occur when styrenes and allylbenzenes are used as substrates, respectively. The latter reaction undergoes group migration to form more stable radical, manifesting radical route instead of conventional 1,3-dipolar cycloaddition occurs. Moreover, scale-up experiments suggest the potential application value of these transformations in industry.
Collapse
Affiliation(s)
- Mingteng Xiong
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Xiao Liang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Zhan Gao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Yuanjiang Pan
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| |
Collapse
|
19
|
Huang M, Dai J, Cheng X, Ding M. Electrochemical Approach for Direct C-H Phosphonylation of Unprotected Secondary Amine. Org Lett 2019; 21:7759-7762. [PMID: 31525939 DOI: 10.1021/acs.orglett.9b02707] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Direct α-phosphonylation of an unprotected secondary amine in a single step is of practical importance to amino phophophates. However, this protocol is limited due to the high redox barrier of unprotected amine. In this paper, we report C-H phosphonylation of an unprotected secondary amine via an electrochemical approach in the presence of catalytic carboxylate salt. This metal-free and exogenous oxidant-free method furnishes diverse target molecules with satisfactory yield under mild reaction conditions. Successful application of the protocol in a gram-scale experiment demonstrates the potential utility for further functionalization.
Collapse
|
20
|
Xiong M, Liang X, Liang X, Pan Y, Lei A. Hexafluoro‐2‐Propanol‐Promoted Electro‐Oxidative [3+2] Annulation of 1,3‐Dicarbonyl Compounds and Alkenes. ChemElectroChem 2019. [DOI: 10.1002/celc.201900753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingteng Xiong
- Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang P. R. China
| | - Xingan Liang
- College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Xiao Liang
- Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang P. R. China
| | - Yuanjiang Pan
- Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
21
|
Shao X, Tian L, Wang Y. C-N Coupling of Azoles or Imides with Carbocations Generated by Electrochemical Oxidation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaoqing Shao
- Institute of Advanced Synthesis (IAS); School of Chemistry and Molecular Engineering (SCME); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing China
| | - Lifang Tian
- Institute of Advanced Synthesis (IAS); School of Chemistry and Molecular Engineering (SCME); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing China
| | - Yahui Wang
- Institute of Advanced Synthesis (IAS); School of Chemistry and Molecular Engineering (SCME); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing China
| |
Collapse
|
22
|
Liu S, Li J, Wang D, Liu F, Liu X, Gao Y, Jie D, Cheng X. An Electrochemical Cinnamyl C—H Amination Reaction Using Carbonyl Sulfamate. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shuai Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Jin Li
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Dalin Wang
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Feng Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Xu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Yongyuan Gao
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Dai Jie
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
23
|
Electrochemical Oxidative Csp
3
—H/S—H Cross‐Coupling with Hydrogen Evolution for Synthesis of Tetrasubstituted Olefins. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Xu Z, Zheng Y, Wang Z, Shao X, Tian L, Wang Y. Triphenylphosphine-assisted dehydroxylative Csp3–N bond formation via electrochemical oxidation. Chem Commun (Camb) 2019; 55:15089-15092. [DOI: 10.1039/c9cc08622f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A dehydroxylative Csp3–N coupling by electrochemical oxidation with readily available alcohols as substrates and a wide variety of azoles and amides as N-nucleophiles.
Collapse
Affiliation(s)
- Zhimin Xu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yue Zheng
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhihui Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xiaoqing Shao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Lifang Tian
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yahui Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|