1
|
Yu W, Yang Z, Yu C, Li X, Yuan L. Hydrogen-bonded macrocycle-mediated dimerization for orthogonal supramolecular polymerization. Beilstein J Org Chem 2025; 21:179-188. [PMID: 39834893 PMCID: PMC11744735 DOI: 10.3762/bjoc.21.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Orthogonal self-assembly represents a useful methodology to construct supramolecular polymers with AA- and AB-type monomers, as commonly used for covalently linked polymers. So far, the design of such monomers has relied heavily on three-dimensional macrocycles, and the use of two-dimensional shape-persistent macrocycles for this purpose remains rather rare. Here, we demonstrate a dimerization motif based on a hydrogen-bonded macrocycle that can be effectively applied to form orthogonal supramolecular polymers. The macrocycle-mediated connectivity was confirmed by single-crystal X-ray diffraction, which revealed a unique 2:2 binding motif between host and guest, bridged by two cationic pyridinium end groups through π-stacking interactions and other cooperative intermolecular forces. Zinc ion-induced coordination with the macrocycle and a terpyridinium derivative enabled orthogonal polymerization, as revealed by 1H NMR, DLS, and TEM techniques. In addition, viscosity measurements showed a transition from oligomers to polymers at the critical polymerization concentration of 17 μM. These polymers were highly concentration-dependent. Establishing this new dimerization motif with shape-persistent H-bonded macrocycles widens the scope of noncovalent building blocks for supramolecular polymers and augurs well for the future development of functional materials.
Collapse
Affiliation(s)
- Wentao Yu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhiyao Yang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chengkan Yu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaowei Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Yu W, Kothapalli SSK, Yang Z, Guo X, Li X, Cai Y, Feng W, Yuan L. Light-Controlled Interconvertible Self-Assembly of Non-Photoresponsive Suprastructures. Molecules 2024; 29:4842. [PMID: 39459210 PMCID: PMC11509933 DOI: 10.3390/molecules29204842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Achieving light-induced manipulation of controlled self-assembly in nanosized structures is essential for developing artificially dynamic smart materials. Herein, we demonstrate an approach using a non-photoresponsive hydrogen-bonded (H-bonded) macrocycle to control the self-assembly and disassembly of nanostructures in response to light. The present system comprises a photoacid (merocyanine, 1-MEH), a pseudorotaxane formed by two H-bonded macrocycles, dipyridinyl acetylene, and zinc ions. The operation of such a system is examined according to the alternation of self-assembly through proton transfer, which is mediated by the photoacid upon exposure to visible light. The host-guest complexation between the macrocycle and bipyridium guests was investigated by NMR spectroscopy, and one of the guests with the highest affinity for the ring was selected for use as one of the components of the system, which forms the host-guest complex with the ring in a 2:1 stoichiometry. In solution, a dipyridine and the ring, having no interaction with each other, rapidly form a complex in the presence of 1-MEH when exposed to light and thermally relax back to the free ring without entrapped guests after 4 h. Furthermore, the addition of zinc ions to the solution above leads to the formation of a polypseudorotaxane with its morphology responsive to photoirradiation. This work exemplifies the light-controlled alteration of self-assembly in non-photoresponsive systems based on interactions between the guest and the H-bonded macrocycle in the presence of a photoacid.
Collapse
Affiliation(s)
- Wentao Yu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | | | - Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Xuwen Guo
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Yimin Cai
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| |
Collapse
|
3
|
Zhang Z, Sheetz EG, Pink M, Yamamoto N, Flood AH. Cone Angles Quantify and Predict the Affinity and Reactivity of Anion Complexes between Trifluoroborates and Rigid Macrocycles. Angew Chem Int Ed Engl 2024; 63:e202409070. [PMID: 38969622 DOI: 10.1002/anie.202409070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Steric manipulation is a known concept in molecular recognition but there is currently no linear free energy relationship correlating sterics to the stability of receptor-anion complexes nor to the reactivity of the bound anion. By analogy to Tolman cone angles in cation coordination chemistry, we explore how to define and correlate cone angles of organo-trifluoroborates (R-BF3 -) to the affinities observed for cyanostar-anion binding. We extend the analogy to a rare investigation of the anion's reactivity and how it changes upon binding. The substituent on the anion is used to define the cone angle, θ. A series of 10 anions were studied including versions with ethynyl, ethylene, and ethyl substituents to tune steric bulk across the sp, sp2 and sp3 hybridized α-carbons bearing 0, 1 and 2 hydrogen atoms. A linear relationship between affinity and cone angle is observed for anions bearing substituents larger than the -BF3 - headgroup. This correlation predicted affinities of two new anions to within ±5 %. We explored how complexation affects the reactivity of fluoride exchange. The yield of fluoride transfer from R-BF3 - to Lewis acid triphenylborane is correlated with cone angle. We predict that other rigid macrocycles, like commercially available bambusuril, could follow these trends.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Edward G Sheetz
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| |
Collapse
|
4
|
Zhou Y, Liu Z, Yang Z, Zheng Y, Yang M, Feng W, Li X, Yuan L. Pillar[5]arene-segregated ion pairs for enhanced cycloaddition of epoxides with CO 2. Chem Commun (Camb) 2024; 60:300-303. [PMID: 38054763 DOI: 10.1039/d3cc03878e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A supramolecular approach using a polyviologen-pillar[5]arene complex as segregated ion pairs was shown to be highly efficient for the conversion of CO2 with epoxides into cyclic carbonates without the need for metals or solvents. The enhanced catalytic performance was achieved by cooperative ion pair segregation and CO2 fixation.
Collapse
Affiliation(s)
- Yidan Zhou
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Zejiang Liu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Yuexuan Zheng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Maoxia Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Li J, Yuan L, Yang Q, Zhang N, Sun T, Bao X. A Carbazole-1,8-Disulfonamide-Derived Cryptand Receptor for Anion Recognition. J Org Chem 2023; 88:14753-14759. [PMID: 37822159 DOI: 10.1021/acs.joc.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A novel cryptand-like anion receptor 1 was synthesized in reasonable yield by a one-step condensation reaction. The UV-vis spectroscopic titrations indicated that cryptand 1 bound AcO- in preference to other monovalent anions (including its competing F- and H2PO4-) in CH3CN, generating a 1:1 binding complex with Ka = 51,000 M-1. Moreover, the crystal structures revealed that the acetate ion was encapsulated inside the cryptand's cavity in a 1:1 manner, through multiple N-H···O hydrogen bonds (although having two different crystal forms).
Collapse
Affiliation(s)
- Junhong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Lisha Yuan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Qinrong Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ningjin Zhang
- Instrumental Analysis Center, Shanghai Jiaotong University, Shanghai 200240, China
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Guizhou Key Laboratory of High Performance Computational Chemistry, Guizhou University, Guiyang 550025, China
| | - Xiaoping Bao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Vogel J, Chen Y, Fadler RE, Flood AH, von Delius M. Steric Control over the Threading of Pyrophosphonates with One or Two Cyanostar Macrocycles during Pseudorotaxane Formation. Chemistry 2023; 29:e202300899. [PMID: 37156722 PMCID: PMC10655069 DOI: 10.1002/chem.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
The supramolecular recognition of anions is increasingly harnessed to achieve the self-assembly of supramolecular architectures, ranging from cages and polymers to (pseudo)rotaxanes. The cyanostar (CS) macrocycle has previously been shown to form 2 : 1 complexes with organophosphate anions that can be turned into [3]rotaxanes by stoppering. Here we achieved steric control over the assembly of pseudorotaxanes comprising the cyanostar macrocycle and a thread that is based, for the first time, on organo-pyrophosphonates. Subtle differences in steric bulk on the threads allowed formation of either [3]pseudorotaxanes or [2]pseudorotaxanes. We demonstrate that the threading kinetics are governed by the steric demand of the organo-pyrophosphonates and in one case, slows down to the timescale of minutes. Calculations show that the dianions are sterically offset inside the macrocycles. Our findings broaden the scope of cyanostar-anion assemblies and may have relevance for the design of molecular machines whose directionality is a result of relatively slow slipping.
Collapse
Affiliation(s)
- Julian Vogel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yusheng Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Rachel E Fadler
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
7
|
Wu J, Sun X, Li X, Li X, Feng W, Yuan L. Multi-Responsive Molecular Encapsulation and Release Based on Hydrogen-Bonded Azo-Macrocycle. Molecules 2023; 28:molecules28114437. [PMID: 37298912 DOI: 10.3390/molecules28114437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Research on stimuli-responsive host-guest systems is at the cutting edge of supramolecular chemistry, owing to their numerous potential applications such as catalysis, molecular machines, and drug delivery. Herein, we present a multi-responsive host-guest system comprising azo-macrocycle 1 and 4,4'-bipyridinium salt G1 for pH-, photo-, and cation- responsiveness. Previously, we reported a novel hydrogen-bonded azo-macrocycle 1. The size of this host can be controlled through light-induced E↔Z photo-isomerization of the constituent azo-benzenes. The host is found in this work to be capable of forming stable complexes with bipyridinium/pyridinium salts, and implementing guest capture and release with G1 under light in a controlled manner. The binding and release of the guest in the complexes can also be easily controlled reversibly by using acid and base. Moreover, the cation competition-induced dissociation of the complex 1a2⊃G1 is achieved. These findings are expected to be useful in regulating encapsulation for sophisticated supramolecular systems.
Collapse
Affiliation(s)
- Jinyang Wu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xuan Sun
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xianghui Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Liu Z, Zhou Y, Yuan L. Hydrogen-bonded aromatic amide macrocycles: synthesis, properties and functions. Org Biomol Chem 2022; 20:9023-9051. [PMID: 36128982 DOI: 10.1039/d2ob01263d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a classic example of nearly planar cyclic compounds, hydrogen-bonded aromatic amide (H-bonded aramide) macrocycles, consisting of consecutive intramolecular hydrogen bonds and aromatic residues, receive considerable research attention due to their rich host-guest chemistry. This review provides a detailed summary of the synthesis, properties and functions of H-bonded aramide macrocycles and their derivatives. Herein, the constitutional patterns of these macrocycles are divided into two subcategories: interior hydrogen bonding motifs and exterior hydrogen bonding motifs. Based on these two motifs, we summarize the facile synthesis, self-assembly, host-guest interaction complexation of H-bonded aramide macrocycles and the resulting applications such as molecular recognition, artificial ion channels, soft materials, supramolecular catalysis, and artificial molecular machines. The development of H-bonded aramide macrocycles is still in its infancy, although a considerable number of examples have been reported. We hope that this review will provide useful information and unlock new opportunities in this field.
Collapse
Affiliation(s)
- Zejiang Liu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
| | - Yidan Zhou
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
9
|
Macreadie LK, Gilchrist AM, McNaughton DA, Ryder WG, Fares M, Gale PA. Progress in anion receptor chemistry. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Schifferer L, Stinglhamer M, Kaur K, Macheño OG. Halides as versatile anions in asymmetric anion-binding organocatalysis. Beilstein J Org Chem 2021; 17:2270-2286. [PMID: 34621390 PMCID: PMC8450959 DOI: 10.3762/bjoc.17.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
This review intends to provide an overview on the role of halide anions in the development of the research area of asymmetric anion-binding organocatalysis. Key early elucidation studies with chloride as counter-anion confirmed this type of alternative activation, which was then exploited in several processes and contributed to the advance and consolidation of anion-binding catalysis as a field. Thus, the use of the halide in the catalyst–anion complex as both a mere counter-anion spectator or an active nucleophile has been depicted, along with the new trends toward additional noncovalent contacts within the HB-donor catalyst and supramolecular interactions to both the anion and the cationic reactive species.
Collapse
Affiliation(s)
- Lukas Schifferer
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| | - Martin Stinglhamer
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| | - Kirandeep Kaur
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| | - Olga García Macheño
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| |
Collapse
|
11
|
Chiroptical Sensing of Amino Acid Derivatives by Host-Guest Complexation with Cyclo[6]aramide. Molecules 2021; 26:molecules26134064. [PMID: 34279403 PMCID: PMC8271771 DOI: 10.3390/molecules26134064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
A hydrogen-bonded (H-bonded) amide macrocycle was found to serve as an effective component in the host–guest assembly for a supramolecular chirality transfer process. Circular dichroism (CD) spectroscopy studies showed that the near-planar macrocycle could produce a CD response when combined with three of the twelve L-α-amino acid esters (all cryptochiral molecules) tested as possible guests. The host–guest complexation between the macrocycle and cationic guests was explored using NMR, revealing the presence of a strong affinity involving the multi-point recognition of guests. This was further corroborated by density functional theory (DFT) calculations. The present work proposes a new strategy for amplifying the CD signals of cryptochiral molecules by means of H-bonded macrocycle-based host–guest association, and is expected to be useful in designing supramolecular chiroptical sensing materials.
Collapse
|
12
|
Liu Z, Kang K, Zhou Y, Liu R, Cai Y, Feng W, Yuan L. Switchable supramolecular ensemble for anion binding with ditopic hydrogen-bonded macrocycles. Org Chem Front 2021. [DOI: 10.1039/d1qo00764e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel supramolecular strategy has been proposed by using a ditopic H-bonded amide macrocycle that is capable of controlling the binding process in response to external stimulus due to its assembly-and-disassembly-induced anion binding.
Collapse
Affiliation(s)
- Zejiang Liu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Kang Kang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Yidan Zhou
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Rui Liu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Yimin Cai
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Chen ME, Chen XW, Hu YH, Ye R, Lv JW, Li B, Zhang FM. Recent advances of Ritter reaction and its synthetic applications. Org Chem Front 2021. [DOI: 10.1039/d1qo00496d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a comprehensive survey of Ritter reactions from 2014 to 2020.
Collapse
Affiliation(s)
- Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiao-Wei Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yue-Hong Hu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Rui Ye
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jian-Wei Lv
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
14
|
Piekarski DG, Steinforth P, Gómez-Martínez M, Bamberger J, Ostler F, Schönhoff M, García Mancheño O. Insight into the Folding and Cooperative Multi-Recognition Mechanism in Supramolecular Anion-Binding Catalysis. Chemistry 2020; 26:17598-17603. [PMID: 32881167 PMCID: PMC7839480 DOI: 10.1002/chem.202003994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/11/2022]
Abstract
H-bond donor catalysts able to modulate the reactivity of ionic substrates for asymmetric reactions have gained great attention in the past years, leading to the development of cooperative multidentate H-bonding supramolecular structures. However, there is still a lack of understanding of the forces driving the ion recognition and catalytic performance of these systems. Herein, insight into the cooperativity nature, anion binding strength, and folding mechanism of a model chiral triazole catalyst is presented. Our combined experimental and computational study revealed that multi-interaction catalysts exhibiting weak binding energies (≈3-4 kcal mol-1 ) can effectively recognize ionic substrates and induce chirality, while strong dependencies on the temperature and solvent were quantified. These results are key for the future design of catalysts with optimal anion binding strength and catalytic activity in target reactions.
Collapse
Affiliation(s)
- Dariusz G Piekarski
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149, Münster, Germany.,current address: Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Pascal Steinforth
- Institute of Physical Chemistry, University of Münster, Corrensstrasse 28-30, 48149, Münster, Germany
| | - Melania Gómez-Martínez
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149, Münster, Germany
| | - Julia Bamberger
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149, Münster, Germany
| | - Florian Ostler
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149, Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstrasse 28-30, 48149, Münster, Germany
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149, Münster, Germany
| |
Collapse
|
15
|
Mohammadi Ziarani G, Soltani Hasankiadeh F, Mohajer F. Recent Applications of Ritter Reactions in Organic Syntheses. ChemistrySelect 2020. [DOI: 10.1002/slct.202003470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Fatemeh Mohajer
- Department of Chemistry Faculty of Physics and Chemistry Alzahra University, Tehran Iran
| |
Collapse
|
16
|
Pikus G, Tyszka-Gumkowska A, Jurczak J. Static Combinatorial Chemistry: A High-Pressure Approach to the Synthesis of Macrocyclic Benzoamide Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:213-221. [PMID: 32163264 PMCID: PMC7588042 DOI: 10.1021/acscombsci.0c00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Indexed: 11/29/2022]
Abstract
We investigated the yield and distribution of macrocyclic products formed in combinatorial libraries (CLs) obtained via double-amidation reactions of methyl diesters with α,ω-diamines. The application of the static combinatorial chemistry (SCC) approach allowed us to generate a large number of macrocyclic diamides and tetraamides in single experiments. We show that high-pressure conditions accelerate the macrocyclization process but also have a great impact on the distribution of macrocyclic products in the presented libraries, promoting the formation of macrocyclic compounds and eliminating the linear ones. The distribution of macrocyclic products was also found to be strongly dependent on the structural features of the substrates employed. Furthermore, in three- and four-substrate CLs we observed the formation of a new type of hybrid tetraamides consisting of three different components.
Collapse
Affiliation(s)
- Grzegorz Pikus
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agata Tyszka-Gumkowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
17
|
Ditopic binuclear copper(II) complexes for DNA cleavage. J Inorg Biochem 2020; 205:110995. [PMID: 31955057 DOI: 10.1016/j.jinorgbio.2020.110995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
Abstract
Herein we present the synthesis of two ligands containing two di(2-picolyl)amine (DPA) units linked by either a 1,1'-(pyridine-2,6-diyl)bis(3-ethylurea) (L1) or a 1,1'-(1,3-phenylene)bis(3-ethylurea) (L2) spacer. The corresponding binuclear CuII and ZnII complexes were prepared and isolated. The X-ray structures of the L1 ligand and the [Cu2L1Cl2]2+ complex evidence an unusual cis/trans conformation of one of the urea groups stabilized by an intramolecular hydrogen bond with the nitrogen atom of the pyridyl spacer. The CuII complexes form rather strong ternary complexes with phosphorylated anions. The [Cu2L1]4+ complex presents a rather high affinity for pyrophosphate (logK11 = 8.19 at pH 7, 25 °C), while [Cu2L2]4+ stands out because of its strong binding to AMP2- (logK11 = 9.3 at pH 7, 25 °C). The interaction of the CuII complexes with deoxyribonucleic acid from calf thymus (ct-DNA) was monitored using circular dichroism (CD) and luminescence spectroscopies. These studies revealed a quite strong interaction of the complexes with ct-DNA (Kb = (6.4 ± 0.7) × 103 for [Cu2L1]4+ and Kb = (6.3 ± 1.0) × 103 for [Cu2L2]4+). Competition experiments carried out in the presence of methyl green and BAPPA (N1,N3-Bis(4-amidinophenyl)propane-1,3-diamine) as major and minor groove competitors, respectively, confirm that the interaction of both complexes with DNA takes place through the minor groove, in agreement with docking studies. The [Cu2L2]4+ complex is quite efficient in promoting the cleavage of the double-stranded pUC19 plasmid DNA, by favoring the conversion of the supercoiled form to the nicked form following a hydrolytic mechanism.
Collapse
|
18
|
Kothapalli SSK, Kannekanti VK, Ye Z, Yang Z, Chen L, Cai Y, Zhu B, Feng W, Yuan L. Light-controlled switchable complexation by a non-photoresponsive hydrogen-bonded amide macrocycle. Org Chem Front 2020. [DOI: 10.1039/d0qo00116c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A light controlled switchable host–guest system based on a non-photoresponsive H-bonded macrocycle and pyridinium salts was developed using a photoacid.
Collapse
Affiliation(s)
- Sudarshana Santhosh Kumar Kothapalli
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Vijaya Kumar Kannekanti
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Zecong Ye
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Zhiyao Yang
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Lixi Chen
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Yimin Cai
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Beichen Zhu
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Wen Feng
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Lihua Yuan
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| |
Collapse
|
19
|
Tyszka-Gumkowska A, Jurczak J. A General Method for High-Pressure-Promoted Postfunctionalization of Unclosed Cryptands: Potential Phase-Transfer Catalysts. J Org Chem 2019; 85:1308-1314. [PMID: 31825217 DOI: 10.1021/acs.joc.9b02985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a high-pressure approach to facile late-stage functionalization of unclosed cryptands (UCs) (11 examples, yield up to 99%). Direct comparison of classic and high-pressure conditions of the quaternization reaction in a sterically crowded intraannular position is investigated, and differences in the reactivity of tertiary amine substrates are discussed. Finally, we demonstrated the application of UCs as catalysts for synthetically important alkylation reactions under phase-transfer conditions.
Collapse
Affiliation(s)
- Agata Tyszka-Gumkowska
- Institute of Organic Chemistry Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Janusz Jurczak
- Institute of Organic Chemistry Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| |
Collapse
|
20
|
Sarkar P, Sarkar S, Ghosh P. A heteroditopic macrocycle as organocatalytic nanoreactor for pyrroloacridinone synthesis in water. Beilstein J Org Chem 2019; 15:1505-1514. [PMID: 31354868 PMCID: PMC6632221 DOI: 10.3762/bjoc.15.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
A heteroditopic macrocycle is reported as an efficient organocatalytic nanoreactor for the synthesis of diversely functionalized pyrroloacridinones in aqueous medium. A library of compounds was synthesized in a one-step pathway utilizing 10 mol % of the nanoreactor following a sustainable methodology in water with high yields.
Collapse
Affiliation(s)
- Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata-700032, India
| | - Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata-700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata-700032, India
| |
Collapse
|
21
|
Dai Y, Lv R, Fan J, Zhang X, Tao Q. Adsorption of cesium using supermolecular impregnated XAD-7 composite: isotherms, kinetics and thermodynamics. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06625-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Peng Z, Guo X, Xu W, Li J, Deng P, Xiao X, Feng W, Yuan L. Strong positive allosteric cooperativity in ternary complexes based on hydrogen-bonded aromatic amide macrocycles. Chem Commun (Camb) 2019; 55:4869-4872. [PMID: 30951049 DOI: 10.1039/c9cc00925f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three new hydrogen-bonded aromatic amide macrocycles with eight residues were synthesized. The first single crystal structure of this class of larger macrocycles was obtained, which reveals a saddle-like conformation. Interestingly, in sharp contrast to previous negative cooperativity in binding paraquat with cyclo[6]aramide, strong positive allosteric cooperativity in ternary complexes was observed. This may open an avenue for the construction of mechanically interlocked molecules with these larger H-bonded macrocycles.
Collapse
Affiliation(s)
- Zhiyong Peng
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Guo X, Yang Y, Peng Z, Cai Y, Feng W, Yuan L. Highly efficient synthesis of hydrogen-bonded aromatic tetramers as macrocyclic receptors for selective recognition of lithium ions. Org Chem Front 2019. [DOI: 10.1039/c9qo00612e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lithium ion receptor based on novel hydrogen-bonded aromatic tetramer biphenyl-cyclo[4]aramide has been developed.
Collapse
Affiliation(s)
- Xuwen Guo
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Sichuan University
- Chengdu 610064
- China
| | - Yizhou Yang
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Sichuan University
- Chengdu 610064
- China
| | - Zhiyong Peng
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Sichuan University
- Chengdu 610064
- China
| | - Yimin Cai
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Sichuan University
- Chengdu 610064
- China
| | - Wen Feng
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Sichuan University
- Chengdu 610064
- China
| | - Lihua Yuan
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|