1
|
Manna S, Das K, Halder S. Hydrogen Bond Donor-Catalyzed One-Pot Transformations of 2,2-Disubstituted Epoxides: Synthesis of Functionalized Nitrile-Rich Derivatives. J Org Chem 2025; 90:167-182. [PMID: 39686886 DOI: 10.1021/acs.joc.4c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A practically intriguing catalytic domino methodology has been developed for the synthesis of highly functionalized pyran and ethene-1,1,2-tricarbonitrile derivatives in a single-pot operation. The gem-dicyano olefins and the corresponding epoxide were taken as the reactive partners in the presence of a hydrogen bond donor (HBD)-catalyzed condition. The reaction was found to be highly efficient in terms of the formation of sequential C-C and O-C bonds along with an exceptional CSp2-CSp coupling step through a metal-free organocatalytic pathway. This strategy has been further utilized on ester-substituted epoxides, although the results differ from those with gem-dicyano epoxides. The process remains versatile and effective across a wide range of substrates. This catalytic protocol has been proven to be very generalized with varieties of substrate scope. A low catalyst loading, ambient reaction conditions, and satisfactory yields of all of the products are the vital features of this approach. Moreover, the overall atom-economic outcome along with the synergistic reactivity pattern between the activated epoxide and the malononitrile derivatives is also very significant to address the originality of this process. Spectroscopic analysis is utilized to validate the mechanistic interpretation.
Collapse
Affiliation(s)
- Sibasish Manna
- Laboratory of Organo Catalysis and Synthesis, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Koushik Das
- Laboratory of Organo Catalysis and Synthesis, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Sandipan Halder
- Laboratory of Organo Catalysis and Synthesis, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| |
Collapse
|
2
|
Li PJ, Kuang XK, Zhu J, Tang Y, Wang L. A Facile Approach to Tetracyclic Indolines: Highly Diastereoselective [4+2] Annulation of Indoles with Bicyclic N-Substituted Cyclobutanes. J Org Chem 2025; 90:899-907. [PMID: 39791131 DOI: 10.1021/acs.joc.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A new stereoselective [4+2] annulation method for constructing tetracyclic indolines by reacting indoles with bicyclic N-substituted cyclobutanes has been developed. Using Sc(OTf)3 as a catalyst, a series of tetracyclic indolines with four continued stereogenic carbon centers have been obtained in ≤86% yields as single diastereomers. This reaction offers an accessible way for the rapid construction of the core structures of biologically active natural products like paucidirinine, deethylibophyllidine, and ibophyllidine.
Collapse
Affiliation(s)
- Peng-Juan Li
- Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiao-Kang Kuang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Jun Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Lijia Wang
- Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
3
|
Arutiunov NA, Edvall C, Aksenov AV, Aksenov DA, Kurenkov IA, Aksenova IV, Zatsepilina AM, Aksenov NA, Mallik S, Kornienko A. Syntheses of 3-(2-Nitrovinyl)-indoles, Benzo[ a]carbazoles, Naphtho[2,1- a]carbazoles, and 1-Hydroxy-β-carbolines Lead to Identification of Antiproliferative Compounds Active under Hypoxia. J Org Chem 2024; 89:13923-13936. [PMID: 39284576 DOI: 10.1021/acs.joc.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we describe a novel reaction between C-2-substituted indoles and 2-nitroacetophenones leading to a variety of indole-containing heterocyclic scaffolds. At 60 °C in AcOH with H2SO4 as catalyst, C-2 aryl indoles give 3-(2-nitrovinyl)-indoles with high Z or E geometric selectivity depending on the type of substrate utilized. These compounds undergo an electrocyclization process in a sealed vial in a microwave apparatus in DMF at 250 °C to give benzo[a]carbazoles and naphtho[2,1-a]carbazoles depending on whether the C-2 aromatic moiety is phenyl or naphthyl. Utilization of 2-methylindoles in the reaction with 2-nitroacetophenones and performing the reaction in a sealed vial in a microwave apparatus in AcOH at 200 °C leads to 1-hydroxy-β-carbolines. Selected compounds from each scaffold were tested for antiproliferative activities against MDA-MB-231 triple-negative breast cancer cells under normoxic and hypoxic conditions, and three compounds belonging to the 3-(2-nitrovinyl)-indole and 1-hydroxy-β-carboline series were identified to have single-digit micromolar IC50 values.
Collapse
Affiliation(s)
- Nikolai A Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Connor Edvall
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Igor A Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Inna V Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Anna M Zatsepilina
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, Texas 78666, United States
| |
Collapse
|
4
|
Baruah B, Pegu CD, Deb ML. Indole as a Versatile Building Block in Cycloaddition Reactions: Synthesis of Diverse Heterocyclic Frameworks. Top Curr Chem (Cham) 2024; 382:18. [PMID: 38758483 DOI: 10.1007/s41061-024-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
Indole, a ubiquitous and structurally versatile aromatic compound, has emerged as a key player in the synthesis of diverse heterocyclic frameworks via cycloaddition reactions. These reactions are completely atom-economical and, hence, are considered as green reactions. This review article provides a comprehensive overview of the pivotal role played by indole in the construction of complex and biologically relevant heterocyclic compounds. Here we explore the chemistry of indole-based cycloadditions, highlighting their synthetic utility in accessing a wide array of heterocyclic architectures, including cyclohepta[b]indoles, tetrahydrocarbazoles, tetrahydroindolo[3,2-c]quinoline, and indolines, among others. Additionally, we discuss the mechanistic insights that underpin these transformations, emphasizing the strategic importance of indole as a building block. The content of this article will certainly encourage the readers to explore more work in this area.
Collapse
Affiliation(s)
- Biswajita Baruah
- Department of Chemistry, Pandu College, Guwahati, Assam, 781012, India.
| | - Choitanya Dev Pegu
- Department of Chemistry, Madhabdev University, Lakhimpur, Assam, 784164, India
| | - Mohit L Deb
- Advanced Research Centre and Department of Chemistry, University of Science and Technology Meghalaya, Ri-Bhoi, Meghalaya, 793101, India.
| |
Collapse
|
5
|
Zheng J, Tao F, Shen X, Yang Z, Zhang J, Chen Y, Liu X, Qi Y, Luo H. Rapid Construction of Vinyl Indomorphans by Rhenium Catalysis. Org Lett 2023; 25:8457-8462. [PMID: 37976044 DOI: 10.1021/acs.orglett.3c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Here, an efficient route for accessing the vinylindomorphan skeleton is achieved by rhenium(I) catalysis. This transformation involves the condensation of indoles and alkyne-linked cyclohexanones, followed by intramolecular annulation to build the [3.3.1] bicyclic structure. This protocol complements the synthesis of the structurally complex heterocycles bearing a vinyl indole moiety. In addition, the selected products exhibited moderate cytotoxicity toward human A549 cells.
Collapse
Affiliation(s)
- Jia Zheng
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang 524023, China
| | - Furong Tao
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoqin Shen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhongtao Yang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang 524023, China
| | - Juanjuan Zhang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yanduo Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Xuran Liu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Qi
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
6
|
Das K, Halder S. Synthesis of Functionalized Five-Membered Heterocycles from Epoxides: A Hydrogen-Bond Donor Catalytic Approach. J Org Chem 2023; 88:12872-12883. [PMID: 36007267 DOI: 10.1021/acs.joc.2c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of highly functionalized five-membered oxa- and aza-heterocycles has been reported utilizing hydrogen-bond donor (HBD) catalysis. In this method, an epoxide was taken as a substrate and reacted with functionalized arylidene/alkylidene malononitrile derivatives in the presence of a newly designed HBD catalyst. In all the cases, the products 2,5-disubstituted tetrahydrofurans (2,5-THFs) were obtained in good to excellent yields (up to 86%) with high diastereoselectivity (dr up to 99:1) as a single regioisomer. The stereochemistry at the 2- and 5-positions of the five-membered ring has been confirmed by single-crystal X-ray analysis, and cis is found to be the major product. The same strategy has been further utilized to obtain substituted oxazolidines whenever the epoxide has been reacted with isocyanate as an electrophile. In order to induce enantioselectivity, a chiral epoxide has been reacted with both the electrophiles in the presence of the same catalyst system to afford the single stereoisomer of the final products. This synthetic methodology involves a low catalyst loading and ambient reaction condition and has been generalized with various substituents present in the starting electrophiles to produce the resultant products in acceptable yields and stereoselectivity.
Collapse
Affiliation(s)
- Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| |
Collapse
|
7
|
Tao J, Li C, Zhou K, Huan Y, Yuan Y, Liu A, Zhang F, Qi C, Shen Z. An Efficient Strategy for Synthesis of New Functionalized Furo[3,2‐
c
]pyridin‐4(
5
H
)‐one Derivatives under Mild Conditions. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiahao Tao
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Kaini Zhou
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Yongcan Huan
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Yongjie Yuan
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Ali Liu
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Furen Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Chenze Qi
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Zhenlu Shen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| |
Collapse
|
8
|
Highly exo selective, photochemically promoted cyclization of iodoallene derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Lv M, Li X. Ni(II)-Catalyzed Asymmetric Nitration of Oxindoles: Construction of Cipargamin Analogues. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingjun Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
10
|
Liu SJ, Tu MS, Liu KY, Chen JY, Ni SF, Zhang YC, Shi F. Organocatalytic Asymmetric [2 + 4] Cycloadditions of 3-Vinylindoles with ortho-Quinone Methides. Molecules 2021; 26:6751. [PMID: 34771158 PMCID: PMC8587149 DOI: 10.3390/molecules26216751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Catalytic asymmetric [2 + 4] cycloadditions of 3-vinylindoles with ortho-quinone methides and their precursors were carried out in the presence of chiral phosphoric acid to afford a series of indole-containing chroman derivatives with structural diversity in overall high yields (up to 98%), good diastereoselectivities (up to 93:7 dr) and moderate to excellent enantioselectivities (up to 98% ee). This approach not only enriches the chemistry of catalytic asymmetric cycloadditions involving 3-vinylindoles but is also useful for synthesizing chiral chroman derivatives.
Collapse
Affiliation(s)
- Si-Jia Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Man-Su Tu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Kai-Yue Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jia-Yi Chen
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
11
|
Abstract
Organocatalysts are abundantly used for various transformations, particularly to obtain highly enantio- and diastereomeric pure products by controlling the stereochemistry. These applications of organocatalysts have been the topic of several reviews. Organocatalysts have emerged as one of the very essential areas of research due to their mild reaction conditions, cost-effective nature, non-toxicity, and environmentally benign approach that obviates the need for transition metal catalysts and other toxic reagents. Various types of organocatalysts including amine catalysts, Brønsted acids, and Lewis bases such as N-heterocyclic carbene (NHC) catalysts, cinchona alkaloids, 4-dimethylaminopyridine (DMAP), and hydrogen bond-donating catalysts, have gained renewed interest because of their regioselectivity. In this review, we present recent advances in regiodivergent reactions that are governed by organocatalysts. Additionally, we briefly discuss the reaction pathways of achieving regiodivergent products by changes in conditions such as solvents, additives, or the temperature.
Collapse
|
12
|
Chen KW, Wang DD, Liu SJ, Wang X, Zhang YC, Tian YM, Wu Q, Shi F. Application of 3-Alkyl-2-vinylindoles in Catalytic Asymmetric Dearomative (2+3) Cycloadditions. J Org Chem 2021; 86:10427-10439. [PMID: 34313431 DOI: 10.1021/acs.joc.1c01105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first application of 3-alkyl-2-vinylindoles in catalytic asymmetric dearomative cycloadditions was established by chiral phosphoric acid (CPA)-catalyzed (2+3) cycloaddition with azoalkenes, leading to the generation of chiral pyrroloindolines bearing two tetrasubstituted stereogenic centers in good yields (61-96%) and excellent stereoselectivities (all >95:5 dr, 86-99% ee). This reaction has realized the first enantioselective dearomative cycloaddition of 3-alkyl-2-vinylindoles, which brings a new reactivity to this class of vinylindoles and will enrich the chemistry of 3-alkyl-2-vinylindoles. In addition, this approach has provided a useful strategy for the construction of enantioenriched pyrroloindoline skeletons bearing two tetrasubstituted stereogenic centers. More importantly, the bioassay of these chiral pyrroloindolines has revealed that some compounds exhibit strong anti-cancer activity against Hela and MCF-7 cell lines, which will be helpful for discovering anti-cancer drug candidates.
Collapse
Affiliation(s)
- Ke-Wei Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Dan-Dan Wang
- Department of Cardiovascular Medicine, Department of Geriatric, Xuzhou First People's Hospital, Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, 221116, China
| | - Si-Jia Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xue Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yi-Ming Tian
- Department of Cardiovascular Medicine, Department of Geriatric, Xuzhou First People's Hospital, Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, 221116, China
| | - Qiong Wu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
13
|
Abualnaja MM, Cowell J, Jolliffe JD, Wills C, Waddell PG, Clegg W, Hall MJ. Diastereoselective rearomative etherifications and aminations of 2,3,9,9a-tetrahydro-1H-carbazoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Tu MS, Chen KW, Wu P, Zhang YC, Liu XQ, Shi F. Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. Org Chem Front 2021. [DOI: 10.1039/d0qo01643h] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes advances in vinylindole-based organocatalytic asymmetric reactions since 2008 and includes the applications of some methodologies in the total synthesis of natural products, points out remaining challenges in this research area.
Collapse
Affiliation(s)
- Man-Su Tu
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Ke-Wei Chen
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Ping Wu
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Xiao-Qin Liu
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
15
|
Catalytic Asymmetric Formal [3+2] Cycloaddition of Azoalkenes with 3-Vinylindoles: Synthesis of 2,3-Dihydropyrroles. iScience 2020; 23:100873. [PMID: 32062452 PMCID: PMC7021545 DOI: 10.1016/j.isci.2020.100873] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Chiral phosphoric acid-catalyzed highly enantioselective formal [3 + 2] cycloaddition reaction of azoalkenes with 3-vinylindoles has been established. Under mild conditions, the projected cycloaddition proceeded smoothly, affording a variety of 2,3-dihydropyrroles in high yields and excellent enantioselectivities, and also in a diastereospecific manner. As opposed to the common 4-atom synthons in the previous literature reports, azoalkenes served as 3-atom synthons. Besides, the observed selectivity was supported by primary theoretical calculation. The unique chemistry of azoalkenes disclosed herein will empower asymmetric synthesis of nitrogen-containing ring structural motifs in a broader context. Chiral phosphoric acid catalyzed formal [3 + 2] cycloaddition reaction 2,3-Dihydropyrroles were enantioselectively synthesized Azoalkenes served as 3-atom synthons
Collapse
|
16
|
Smajlagic I, Guest M, Durán R, Herrera B, Dudding T. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis. J Org Chem 2020; 85:585-593. [PMID: 31790584 DOI: 10.1021/acs.joc.9b02682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranylation and glycosylation are pivotal for accessing a myriad of natural products, pharmaceuticals, and drug candidates. Catalytic approaches for enabling these transformations are of utmost importance and integral to advancing this area of synthesis. In exploring this chemical space, a combined experimental and computational mechanistic study of pyranylation and 2-deoxygalactosylation catalyzed by a cationic thiourea organocatalyst is reported. To this end, a thiourea-cyclopropenium organocatalyst was employed as a model system in combination with an arsenal of mechanistic techniques, including 13C kinetic isotope effect experiments, deuterated labeling studies, variable-temperature 1H NMR spectroscopy, and density functional theory calculations. From these studies, two distinct reaction pathways were identified for this transformation corresponding to either dual hydrogen bond (H-bond) activation or Brønsted acid catalysis. The former involving thiourea orchestrated bifurcated hydrogen bonding proceeded in an asynchronous concerted fashion. In contrast, the latter stepwise mechanism involving Brønsted acid catalysis hinged upon the formation of an oxocarbenium intermediate accompanied by subsequent alcohol addition.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Matt Guest
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Rocío Durán
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Barbara Herrera
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Travis Dudding
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| |
Collapse
|
17
|
Wu SF, Tu MS, Hang QQ, Zhang S, Ding H, Zhang YC, Shi F. Construction of chiral chroman scaffolds via catalytic asymmetric (4 + 2) cyclizations of para-quinone methide derivatives with 3-vinylindoles. Org Biomol Chem 2020; 18:5388-5399. [DOI: 10.1039/d0ob01049a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The title reaction has been established in the presence of chiral phosphoric acid, affording chiral chroman derivatives bearing an indole moiety in high yields and with moderate to good stereoselectivities.
Collapse
Affiliation(s)
- Shu-Fang Wu
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Man-Su Tu
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Qing-Qing Hang
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Shu Zhang
- Department of Geriatrics
- the First Affiliated Hospital of Nanjing Medical University
- Nanjing
- 210029
- China
| | - Haixia Ding
- Department of Geriatrics
- the First Affiliated Hospital of Nanjing Medical University
- Nanjing
- 210029
- China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
18
|
Wang C, Zhang J, Wang Z, Hui XP. Efficiently diastereoselective synthesis of functionalized hydro-carbazoles by base-mediated tandem annulation of 1-(2-amino-aryl)prop-2-en-1-ones and sulfur ylide. Org Chem Front 2020. [DOI: 10.1039/d0qo00423e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The base-promoted [3 + 3]/[1 + 4] tandem reaction of tosyl-protected o-amino α,β-unsaturated ketones and crotonate-derived sulfur ylide is developed for efficiently diastereoselective synthesis of functionalized hydrocarbazoles.
Collapse
Affiliation(s)
- Chengyuan Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jiong Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Zheyuan Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
19
|
Sheng FT, Wang JY, Tan W, Zhang YC, Shi F. Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Org Chem Front 2020. [DOI: 10.1039/d0qo01124j] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives and their applications in total synthesis of natural products, and gives some insights into challenging issues in this research field.
Collapse
Affiliation(s)
- Feng-Tao Sheng
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Jing-Yi Wang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Wei Tan
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|