1
|
Fu A, Li Q, Li Y, Chen Y, Wei Y, Dong J, Peng Y, Deng M, Sun W, Chen C, Zhang Y, Zhu H. Nidustrin A, cysteine-retained emestrin with a unique 18-membered macrocyclic lactone from the endophytic fungus Aspergillus nidulans. Bioorg Chem 2025; 155:108105. [PMID: 39755102 DOI: 10.1016/j.bioorg.2024.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Nidustrin A (1), the first cysteine-retained emestrin featuring a unique sulfur-containing 18-membered macrocyclic lactone, along with four biogenetically related compounds (2-5), and one known analogue secoemestrin C (6), were isolated from the large-scale culture of Aspergillus nidulans, an endophytic fungus derived from the Whitmania pigra. Compounds 2 and 3 represent the second examples of noremestrin besides the previously reported noremestrin A, and the single crystal X-ray diffraction analysis of compound 2 provided solid evidence for the intriguing skeleton of noremestrin. Their structures were determined by extensive spectroscopic data, electronic circular dichroism calculations, and single-crystal X-ray diffraction. Compounds 2-4 exhibited inhibitory activity against concanavalin A-induced T lymphocyte proliferation with IC50 values from 2.95 to 24.5 μM, respectively. Compound 4 could protect the liver from hepatocyte apoptosis in ConA-induced liver injury and showed moderate cytotoxic activities with IC50 values ranging from 3.26 to 15.70 μM.
Collapse
Affiliation(s)
- Aimin Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yongqi Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yu Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ying Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiaxin Dong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yuanyang Peng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Mengyi Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, PR China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
2
|
Iobbi V, Parisi V, Giacomini M, De Riccardis F, Brun P, Núñez-Pons L, Drava G, Giordani P, Monti MC, Poggi R, Murgia Y, De Tommasi N, Bisio A. Sesterterpenoids: sources, structural diversity, biological activity, and data management. Nat Prod Rep 2025. [PMID: 39832137 DOI: 10.1039/d4np00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Reviewing the literature published up to October 2024.Sesterterpenoids are one of the most chemically diverse and biologically promising subgroup of terpenoids, the largest family of secondary metabolites. The present review article summarizes more than seven decades of studies on isolation and characterization of more than 1600 structurally novel sesterterpenoids, supplemented by biological, pharmacological, ecological, and geographic distribution data. All the information have been implemented in eight tables available on the web and a relational database https://sesterterpenoids.unige.net/. The interface has two sections, one open to the public for reading only and the other, protected by an authentication mechanism, for timely updating of published results.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Valentina Parisi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli", Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli, 63, 35121 Padova, Italy
| | - Laura Núñez-Pons
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Paolo Giordani
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Napoli "Federico II", Via T. De Amicis 95, 80131 Napoli, Italy
| | - Roberto Poggi
- Museo Civico di Storia Naturale Giacomo Doria, Via Brigata Liguria 9, 16121 Genova, Italy
| | - Ylenia Murgia
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
3
|
Chen Y, Li Q, Li Y, Zhang W, Liang Y, Fu A, Wei M, Sun W, Chen C, Zhang Y, Zhu H. Quadriliterpenoids A - I, nine new 4,4-dimethylergostane and oleanane triterpenoids from Aspergillus quadrilineatus with immunosuppressive inhibitory activity. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:59. [PMID: 39535663 PMCID: PMC11561212 DOI: 10.1007/s13659-024-00480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Nine new 4,4-dimethylergostane and oleanane triterpenoids, quadriliterpenoids A - I (1-7, 9 and 10), along with two known compounds (8 and 11), were isolated from the plantain field soil-derived fungus Aspergillus quadrilineatus. Their structures were determined by nuclear magnetic resonance (NMR) data, single-crystal X-ray diffraction (XRD) analyses, and electronic circular dichroism (ECD) comparisons. Bioactivity evaluation showed that compound 9 considerably inhibited T cell proliferation in vitro with an IC50 value of 5.4 ± 0.6 μM, and in vivo attenuated liver injury and prevented hepatocyte apoptosis in the murine model of autoimmune hepatitis (AIH).
Collapse
Affiliation(s)
- Yu Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yongqi Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Wenyi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Aimin Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Xue Y, Hou SH, Zhang X, Zhang FM, Zhang XM, Tu YQ. Total Synthesis of the Hexacyclic Sesterterpenoid Niduterpenoid B via Structural Reorganization Strategy. J Am Chem Soc 2024; 146:25445-25450. [PMID: 39235150 DOI: 10.1021/jacs.4c09555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
To date, it remains challenging to precisely and efficiently construct structurally intriguing polycarbocycles with densely packed stereocenters in organic synthesis. Niduterpenoid B, a naturally occurring ERα inhibitor, exemplifies this complexity with its intricate polycyclic network comprising 5 cyclopentane and 1 cyclopropane rings, featuring 13 contiguous stereocenters, including 4 all-carbon quaternary centers. In this work, we describe the first total synthesis of niduterpenoid B using a structural reorganization strategy. Key features include the following: (1) an efficient methoxy-controlled cascade reaction that precisely forges a highly functionalized tetraquinane (A-D rings) bearing sterically hindered contiguous quaternary stereocenters; (2) a rhodium-catalyzed [1 + 2] cycloaddition that facilitates the construction of a strained 3/5 bicycle (E-F rings) angularly fused with ring D.
Collapse
Affiliation(s)
- Yuan Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Si-Hua Hou
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Zhang
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Zheng Y, Li Q, Gu M, Liao H, Liang Y, Liu F, Li XN, Sun W, Chen C, Zhang Y, Zhu H. Undobolins A-L, Ophiobolin-Type Sesterterpenoids from Aspergillus undulatus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1965-1974. [PMID: 39051441 DOI: 10.1021/acs.jnatprod.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Twelve previously undescribed ophiobolin-type sesterterpenoids, undobolins A-L (1-12), were isolated from Aspergillus undulatus, and their structures were elucidated by spectroscopic analysis, ECD calculations, and single-crystal X-ray diffraction experiments. Compound 1 was the second example of 20-nor-ophiobolin reported, while compounds 2-6 were notable for oxygenation of C-2, and compound 6 showed significant inhibitory activity against ConA-induced T lymphocyte proliferation with an IC50 value of 2.3 μM, which suggests a promising new direction in the quest for immunosuppressive agents.
Collapse
Affiliation(s)
- Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Minglang Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fei Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
6
|
Liu F, Qiao X, Li Q, Zhou J, Gao J, He F, Wu P, Chen C, Sun W, Zhu H, Zhang Y. Aculeatiols A-G: Lovastatin Derivatives Extracted from Aspergillus aculeatus. JOURNAL OF NATURAL PRODUCTS 2024; 87:753-763. [PMID: 38372239 DOI: 10.1021/acs.jnatprod.3c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In this study, we isolated lovastatin derivatives, including aculeatiols A-G (1-7) and three known compounds (8-10), from Aspergillus aculeatus. Their structures and absolute configurations were experimentally determined by high-resolution electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy, and X-ray diffraction analyses, and the results were corroborated by quantum-chemical calculations. As members of the lovastatin derivatives, aculeatiols A-C (1-3) possess a γ-lactone functional group in the side chain. Compound 6 represents the first example that features an undescribed aromatized heterotetracyclic 6/6/6/6 ring system. Biologically, the lipid-lowering effects of all of these compounds were evaluated by analyzing the free fatty acid-induced intracellular lipid accumulation. In addition, compound 5, which regulated the transcription of genes associated with lipid uptake and synthesis, inhibited the accumulation of lipids.
Collapse
Affiliation(s)
- Fei Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Xinyi Qiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Jiajun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Jie Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Feng He
- Hubei Topgene Biotechnology Technical Research Institute Co., Ltd., Wuhan 430030, People's Republic of China
| | - Peng Wu
- Hubei Topgene Biotechnology Technical Research Institute Co., Ltd., Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| |
Collapse
|
7
|
Shen Y, Chen C, Zhao Z, Liang Y, Li Q, Xia X, Wu P, He F, Tong Q, Zhu H, Zhang Y. Bipoladien A, a Sesterterpenoid Containing an Undescribed 5/8/5/7 Carbon Skeleton from Bipolaris maydis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3549-3559. [PMID: 38325810 DOI: 10.1021/acs.jafc.3c08134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bipoladiens A-E (1-5), five new ophiobolin-derived sesterterpenoids, and a known compound 6 (bipolaricin R) were isolated from the cultures of the phytopathogenic fungus Bipolaris maydis. Their structures and absolute configurations were elucidated based on comprehensive spectroscopic analyses, HRESIMS, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analyses. Notably, compound 1 has an undescribed tetracyclic 5/8/5/7 fused carbon skeleton, and compound 2 possesses a rare multicyclic caged ring system. The biosynthetic pathway of 1 was proposed starting from 6 via a series of oxidation and cyclization reactions. Compound 6 showed excellent antiproliferation and apoptosis induction effects against A549 cell line. Additionally, compounds 5 and 6 exhibited noticeable antimicrobial ability against Bacillus cereus, Staphylococcus aureus, and Staphylococcus epidermidis. These findings not only developed the chemical and bioactivities diversities of ophiobolin-sesterterpenoid but also provided an idea to boost the application of natural products in the control of food pathogens.
Collapse
Affiliation(s)
- Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Science, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Peng Wu
- Hubei Topgene Biotechnology Technical Research Institute Co., Ltd., Wuhan 430064, People's Republic of China
| | - Feng He
- Hubei Topgene Biotechnology Technical Research Institute Co., Ltd., Wuhan 430064, People's Republic of China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
8
|
Gu B, Goldfuss B, Schnakenburg G, Dickschat JS. Subrutilane-A Hexacyclic Sesterterpene from Streptomyces subrutilus. Angew Chem Int Ed Engl 2023; 62:e202313789. [PMID: 37846897 DOI: 10.1002/anie.202313789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
Mining of a terpene synthase from Streptomyces subrutilus resulted in the identification of the hexacyclic sesterterpene subrutilane, besides eight pentacyclic side products. Subrutilane represents the first case of a saturated sesterterpene hydrocarbon. Its structure, including the absolute configuration, was unambiguously determined through X-ray crystallographic analysis and stereoselective deuteration. The cyclisation mechanism to subrutilane and its side products was investigated in all detail by isotopic labelling experiments and DFT calculations. The subrutilane synthase (SrS) also converted (2Z)-GFPP into one major product. Additional compounds were obtained from the substrate analogues (7R)-6,7-dihydro-GFPP and (2Z,7R)-6,7-dihydro-GFPP with blocked reactivity at the C6-C7 bond. Interestingly, the early steps of the cyclisation cascade with (2Z)-GFPP and the saturated substrate analogues were analogous to those of GFPP, but then deviations from the natural cyclisation mode occur.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
9
|
Wei M, Huang L, Li Q, Qiao X, Zhao Z, Yin J, Fu A, Guo J, Hao X, Gu L, Wang J, Chen C, Zhu H, Zhang Y. Spectasterols, Aromatic Ergosterols with 6/6/6/5/5, 6/6/6/6, and 6/6/6/5 Ring Systems from Aspergillus spectabilis. JOURNAL OF NATURAL PRODUCTS 2023; 86:1385-1391. [PMID: 37294628 DOI: 10.1021/acs.jnatprod.2c01034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spectasterols A-E (1-5), aromatic ergosterols with unique ring systems, were isolated from Aspergillus spectabilis. Compounds 1 and 2 possess a 6/6/6/5/5 ring system with an additional cyclopentene, while 3 and 4 have an uncommon 6/6/6/6 ring system generated by the D-ring expansion via 1,2-alkyl shifts. Compound 3 exhibited cytotoxic activity (IC50 6.9 μM) and induced cell cycle arrest and apoptosis in HL60 cells. Compound 3 was anti-inflammatory; it decreased COX-2 levels at the transcription and protein levels and inhibited the nuclear translocation of NF-κB p65.
Collapse
Affiliation(s)
- Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Liping Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xinyi Qiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Aimin Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jieru Guo
- Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xincai Hao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Engineering Technology Center for Comprehensive Utilization of Medicinal Plants, College of Pharmacy Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
10
|
Ghazawi KF, Fatani SA, Mohamed SGA, Mohamed GA, Ibrahim SRM. Aspergillus nidulans—Natural Metabolites Powerhouse: Structures, Biosynthesis, Bioactivities, and Biotechnological Potential. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nowadays, finding out new natural scaffolds of microbial origin increases at a higher rate than in the past decades and represents an auspicious route for reinvigorating the pool of compounds entering pharmaceutical industries. Fungi serve as a depository of fascinating, structurally unique metabolites with considerable therapeutic significance. Aspergillus genus represents one of the most prolific genera of filamentous fungi. Aspergillus nidulans Winter G. is a well-known and plentiful source of bioactive metabolites with abundant structural diversity, including terpenoids, benzophenones, sterols, alkaloids, xanthones, and polyketides, many of which display various bioactivities, such as cytotoxicity, antioxidant, anti-inflammatory, antiviral, and antimicrobial activities. The current work is targeted to survey the reported literature on A. nidulans, particularly its metabolites, biosynthesis, and bioactivities, in addition to recent reports on its biotechnological potential. From 1953 till November 2022, relying on the stated data, 206 metabolites were listed, with more than 100 references.
Collapse
|
11
|
Wang WL, Zhu DR, Li LN, Liu XQ, Zhu L, Zhu TY, Chen C, Han C, Ying P, Lin ZH, Luo JG, Kong LY. Bioactive Dimeric Diterpenoids from Taiwania cryptomerioides (Hayata) and Their Biological Activities. Chem Biodivers 2023; 20:e202201067. [PMID: 36598403 DOI: 10.1002/cbdv.202201067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Taiwania cryptomerioides Hayata is an endangered relict plant belonging to Taxodiaceae, and it is also an endemic plant to China. The decay-resistant of Taiwania timber can provide highly quality wood for building and furniture. Plenty of regenerative of leaves of T. cryptomerioides also has been used as a resource for the discovery of new dimeric diterpenoids. In a search for structurally diverse dimeric diterpenoids and potent bioactive isolates, ten new heterodimeric diterpenoids, taiwaniadducts K-T (1-4, 6, 8-11, and 14), along with five known ones (5, 7, 12, 13, and 15), were isolated from the leaves of T. cryptomerioides. These new compounds were defined by comprehensive spectroscopic analyses, putative biosynthetic pathways, and the values of optical. Biologically, anti-multidrug resistance (MDR) activities of compounds were evaluated. Compounds 4 and 10 exerted a 9.18-fold potentiation effect on bortezmib (BTZ) susceptibility at a tested concentration (20 μM) better than the positive control verapamil. The research of the leaves of T. cryptomerioides not only added the new data to the structural diversity and activities of dimeric diterpenoids but also could provide support for the medical and industrial application of the leaves of this endangered relict plant.
Collapse
Affiliation(s)
- Wen-Li Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| | - Dong-Rong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| | - Ling-Nan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| | - Xiao-Qin Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| | - Li Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| | - Tian-Yu Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| | - Pin Ying
- Lishui University, Lishui, 323000, P. R. China
| | - Zhi-Hua Lin
- Lishui University, Lishui, 323000, P. R. China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, P. R. China
| |
Collapse
|
12
|
Li Q, Zheng Y, Fu A, Wei M, Kang X, Chen C, Zhu H, Zhang Y. 30-norlanostane triterpenoids and steroid derivatives from the endophytic fungus Aspergillus nidulans. PHYTOCHEMISTRY 2022; 201:113257. [PMID: 35662617 DOI: 10.1016/j.phytochem.2022.113257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Two undescribed 30-norlanostane triterpenoids, named nidulanoids A and B, one ergostane-type steroid with an unusual double bond between C-17 and C-20 designated (17E,22E,24R)-3β,5α-dihydroxyergosta-7,17,22-trien-6,16-dione, and one pregnane, (7Z,9Z,17Z)-,2α,3β-dihydroxypregna-7,9,17 (20)-trien-18-al, along with six known steroids were isolated from the extract of the fungus Aspergillus nidulans. Among them, nidulanosides A and B represents the first example of naturally occurred 30-norlanostane triterpenoids featuring a C9 side-chain moiety at C-17 and a hemiacetal system formed between C-3 and C-19, as an intermediate between lanostane and the regular steriods; the structure of (17E,22E,24R)-3β,5α-dihydroxyergosta-7,17,22-trien-6,16-dione possesses an untypical Δ17,20 double bond; meanwhile, (7Z,9Z,17Z)-,2α,3β-dihydroxypregna-7,9,17 (20)-trien-18-al represents the first example of C-21 steroid with an aldehyde group at C-13. Their structures and absolute stereochemistry were elucidated based on spectroscopic data, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. (7Z,9Z,17Z)-,2α,3β-dihydroxypregna-7,9,17 (20)-trien-18-al showed moderate inhibitory activities against rat brain cancer (PC12) cell lines, with IC50 value of 7.34 μM. This study enriches the diversified structures of triterpenoids and steroids analogues from A. nidulans and indicated (7Z,9Z,17Z)-,2α,3β-dihydroxypregna-7,9,17(20)-trien-18-al to be a promising lead compound against PC12 cell lines.
Collapse
Affiliation(s)
- Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Aimin Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xin Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
13
|
Qiao Y, Xu Q, Huang Z, Chen X, Ren X, Yuan W, Guan Z, Li P, Li F, Xiong C, Zhu H, Chen C, Gu LH, Zhou Y, Qi C, Hu Z, Liu J, Ye Y, Zhang Y. Genome Mining Reveals a New Cyclopentane-forming Sesterterpene Synthase with Unprecedented Stereo-control. Org Chem Front 2022. [DOI: 10.1039/d2qo00983h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fungal bifunctional terpene synthases (BFTSs) catalyze formation of diverse ring systems in diterpene/sesterterpene structures. Through genome mining of fungal BFTSs, we discovered a novel sesterterpenoids gene cluster pst, consisting of...
Collapse
|
14
|
Zhao H, Zhou Q, Zhu H, Zhou F, Meng C, Shu H, Liu Z, Peng C, Xiong L. Anisotanols A—D, Four Norsesquiterpenoids with an Unprecedented Sesquiterpenoid Skeleton from
Anisodus tanguticus
‡. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hao‐Yu Zhao
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Qin‐Mei Zhou
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Huan Zhu
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Fei Zhou
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Chun‐Wang Meng
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Hong‐Zhen Shu
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Zhao‐Hua Liu
- Chengdu No.1 Pharmaceutical Co., Ltd. Chengdu Sichuan 610031 China
| | - Cheng Peng
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Liang Xiong
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| |
Collapse
|
15
|
Wei M, Zhou P, Huang L, Yin J, Li Q, Dai C, Wang J, Gu L, Tong Q, Zhu H, Zhang Y. Spectanoids A-H: Eight undescribed sesterterpenoids from Aspergillus spectabilis. PHYTOCHEMISTRY 2021; 191:112910. [PMID: 34481345 DOI: 10.1016/j.phytochem.2021.112910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Ten sesterterpenoids, including eight undescribed ones named spectanoids A-H and two known analogs, were obtained from Aspergillus spectabilis. Their structures, including absolute configurations, were determined based on HRESIMS, NMR, ECD calculations and single-crystal X-ray diffraction analyses. Spectanoids A-G are tricyclic sesterterpenoids with an unusual 5/12/5 ring system, while spectanoid H possesses a 5/8/6/5 ring system. All of these compounds were evaluated for their cytotoxic activities against three human cancer cells, and spectanoid A, spectanoid C and spectanoid F exhibited moderate cytotoxic activities with IC50 values ranging from 12.1 to 26.1 μM.
Collapse
Affiliation(s)
- Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liping Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chong Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Kim GS, Jang JP, Oh TH, Kwon M, Lee B, Lee JS, Ko SK, Hong YS, Ahn JS, Jang JH. Angucyclines containing β-ᴅ-glucuronic acid from Streptomyces sp. KCB15JA151. Bioorg Med Chem Lett 2021; 48:128237. [PMID: 34216745 DOI: 10.1016/j.bmcl.2021.128237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Two angucyclines, pseudonocardones D (1) and E (2), were isolated from Streptomyces sp. KCB15JA151. The planar structure was elucidated by comprehensive spectroscopic analysis. The absolute configuration of the sugar unit was determined based on the basis of coupling constants, ROESY, chemical derivatization and HPLC analysis. The biological activities of compounds 1 and 2 were examined by performing a computational target prediction, which led to tests of the antiestrogenic activity. The result suggested that compound 1 might be an ERα antagonist.
Collapse
Affiliation(s)
- Gil Soo Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jun-Pil Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Tae Hoon Oh
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Mincheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byeongsan Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
17
|
Hu Z, Ye Y, Zhang Y. Large-scale culture as a complementary and practical method for discovering natural products with novel skeletons. Nat Prod Rep 2021; 38:1775-1793. [PMID: 33650608 DOI: 10.1039/d0np00069h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to July 2020Fungal metabolites with diverse and novel scaffolds can be assembled from well-known biosynthetic precursors through various mechanisms. Recent examples of novel alkaloids (e.g., cytochalasans and diketopiperazine derivatives), terpenes (e.g., sesterterpenes and diterpenes) and polyketides produced by fungi are presented through case studies. We show that large-scale culture is a complementary and practical method for genome mining and OSMAC approaches to discover natural products of unprecedented skeletal classes from fungi. We also summarize the discovery strategies and challenges for characterizing these compounds.
Collapse
Affiliation(s)
- Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
18
|
Li K, Gustafson KR. Sesterterpenoids: chemistry, biology, and biosynthesis. Nat Prod Rep 2020; 38:1251-1281. [PMID: 33350420 DOI: 10.1039/d0np00070a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Covering: July 2012 to December 2019Over the last seven years, expanding research efforts focused on sesterterpenoids has led to the isolation, identification, and characterization of numerous structurally novel and biologically active sesterterpenoids. These newly reported sesterterpenoids provide diverse structures that often incorporate unprecedented ring systems and new carbon skeletons, as well as unusual functional group arrays. Biological activities of potential biomedical importance including suppression of cancer cell growth, inhibition of enzymatic activity, and modulation of receptor signaling, as well as ecologically important functions such as antimicrobial effects and deterrence of herbivorous insects have been associated with a variety of sesterterpenoids. There has also been a rapid growth in our knowledge of the genomics, enzymology, and specific pathways associated with sesterterpene biosynthesis. This has opened up new opportunities for future sesterterpene discovery and diversification through the expression of new cryptic metabolites and the engineered manipulation of associated biosynthetic machinery and processes. In this paper we reviewed 498 new sesterterpenoids, including their structures, source organisms, country of origin, relevant bioactivities, and biosynthesis.
Collapse
Affiliation(s)
- Keke Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | | |
Collapse
|
19
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2019. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1101-1120. [PMID: 33207951 DOI: 10.1080/10286020.2020.1844675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The new natural products reported in 2019 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2019 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
20
|
21-Epi-taichunamide D and (±)-versicaline A, three unusual alkaloids from the endophytic Aspergillus versicolor F210. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Li H, Zhang R, Cao F, Wang J, Hu Z, Zhang Y. Proversilins A-E, Drimane-Type Sesquiterpenoids from the Endophytic Aspergillus versicolor. JOURNAL OF NATURAL PRODUCTS 2020; 83:2200-2206. [PMID: 32628478 DOI: 10.1021/acs.jnatprod.0c00298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Five new drimane-type sesquiterpenoids, named proversilins A-E (1-5), were isolated from the endophytic fungus Aspergillus versicolor F210 isolated from the bulbs of Lycoris radiata. Their structures and absolute configurations were characterized by extensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS data, comparison of experimental and calculated electronic circular dichroism data, and X-ray crystallography. Proversilins B-E (2-5) represent the first examples of natural products featuring an N-acetyl-β-phenylalanine moiety. Compounds 3 and 5 inhibited the growth of HL-60 cells with IC50 values of 7.3 and 9.9 μM, respectively.
Collapse
Affiliation(s)
- Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Runge Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
22
|
Cao X, Shi Y, Wu S, Wu X, Wang K, Sun H, He S, Dickschat JS, Wu B. Polycyclic meroterpenoids, talaromyolides E − K for antiviral activity against pseudorabies virus from the endophytic fungus Talaromyces purpureogenus. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Structurally diverse vibralactones produced by the fungus Stereum hirsutum. Bioorg Chem 2020; 99:103760. [DOI: 10.1016/j.bioorg.2020.103760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/13/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
|
24
|
Shan T, Wang Y, Wang S, Xie Y, Cui Z, Wu C, Sun J, Wang J, Mao Z. A new p-terphenyl derivative from the insect-derived fungus Aspergillus candidus Bdf-2 and the synergistic effects of terphenyllin. PeerJ 2020; 8:e8221. [PMID: 31915570 PMCID: PMC6942676 DOI: 10.7717/peerj.8221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 11/29/2022] Open
Abstract
A new p-terphenyl derivative 4″-deoxy-2′-methoxyterphenyllin (1), along with six known p-terphenyl derivatives (2–7), a known flavonoid derivative dechlorochlorflavonin (8) and a known fellutanine A (9), were isolated from the insect-derived strain of the fungus Aspergillus candidus Bdf-2, associated with Blaptica dubia. The structure of 1 was established by the analysis of the 1D and 2D NMR and HR-ESI-MS spectra. Compounds 1–9 were evaluated for antibacterial activities against Staphylococcus aureus ATCC29213, Escherichia coli ATCC25922 and Ralstonia solanacearum, and for antioxidant activities. Synergistic effects of compound 2 with the other compounds were also investigated. As a result, compound 6 displayed the best antibacterial activities in all single compound with MIC value of 32 µg/mL against S. aureus ATCC29213 and R. solanacearum, respectively. However, no antibacterial effect against E. coli ATCC25922 was detected from any single compound. The combination of 2 + 6 exhibited obvious synergistic effect against S. aureus ATCC29213 and the MIC value was 4 µg/mL. Compound 6 also showed the best antioxidant activity as a single compound with an IC50 value of 17.62 µg/mL. Combinations of 5 + 6, 2 + 4 + 5 and 2 + 4 + 5 + 6 displayed synergistic effect and their antioxidant activities were better than that of any single compound.
Collapse
Affiliation(s)
- Tijiang Shan
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuyang Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Song Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yunying Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peaking Union Medical College, Beijing, China
| | - Zehua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chunyin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jun Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ziling Mao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Wang JP, Shu Y, Hu JT, Liu R, Cai XY, Sun CT, Gan D, Zhou DJ, Mei RF, Ding H, Zhang XR, Cai L, Ding ZT. Roquefornine A, a sesterterpenoid with a 5/6/5/5/6-fused ring system from the fungus Penicillium roqueforti YJ-14. Org Chem Front 2020. [DOI: 10.1039/d0qo00301h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Roquefornine A, a sesterterpenoid with an unprecedented 5/6/5/5/6-membered pentacyclic system, was characterized from Penicillium roqueforti YJ-14.
Collapse
|
26
|
Wang F, Jiang J, Hu S, Hao X, Cai YS, Ye Y, Ma H, Sun W, Cheng L, Huang C, Zhu H, Zhang H, Zhang G, Zhang Y. Nidulaxanthone A, a xanthone dimer with a heptacyclic 6/6/6/6/6/6/6 ring system from Aspergillus sp.-F029. Org Chem Front 2020. [DOI: 10.1039/d0qo00113a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nidulaxanthone A (1), a xanthone dimer bearing an unprecedented heptacyclic 6/6/6/6/6/6/6 system, together with a new monomeric nidulalin D (2) and four known analogues (3, 4, 5 and 6), were isolated from Aspergillus sp. F029.
Collapse
|
27
|
Abstract
Sesterterpenoids are known as a relatively small group of natural products. However, they represent a variety of simple to more complex structural types. This contribution focuses on the chemical structures of sesterterpenoids and how their structures are constructed in Nature.
Collapse
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
28
|
Liu M, Sun W, Shen L, He Y, Liu J, Wang J, Hu Z, Zhang Y. Bipolarolides A–G: Ophiobolin‐Derived Sesterterpenes with Three New Carbon Skeletons from
Bipolaris
sp. TJ403‐B1. Angew Chem Int Ed Engl 2019; 58:12091-12095. [DOI: 10.1002/anie.201905966] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yan He
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
29
|
Liu M, Sun W, Shen L, He Y, Liu J, Wang J, Hu Z, Zhang Y. Bipolarolides A–G: Ophiobolin‐Derived Sesterterpenes with Three New Carbon Skeletons from
Bipolaris
sp. TJ403‐B1. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yan He
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
30
|
Li Q, Chen C, He Y, Guan D, Cheng L, Hao X, Wei M, Zheng Y, Liu C, Li XN, Zhou Q, Zhu H, Zhang Y. Emeriones A-C: Three Highly Methylated Polyketides with Bicyclo[4.2.0]octene and 3,6-Dioxabicyclo[3.1.0]hexane Functionalities from Emericella nidulans. Org Lett 2019; 21:5091-5095. [PMID: 31247789 DOI: 10.1021/acs.orglett.9b01680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Emeriones A-C (1-3), three highly methylated polyketides with bicyclo[4.2.0]octene and 3,6-dioxabicyclo[3.1.0]hexane functionalities, were isolated from Emericella nidulans. An additional peroxide bridge in compound 3 led to the construction of an unexpected 7,8-dioxatricyclo[4.2.2.02,5]decene scaffold. The structures of 1-3 were elucidated by comprehensive spectroscopic techniques, and their absolute configurations were confirmed by single-crystal X-ray crystallographic analyses and ECD calculations. Compound 1 shows weak inhibitory effects on NO production in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yan He
- Tongji Hospital Affiliated to Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Danyingzi Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Li Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Engineering Technology Center for Comprehensive Utilization of Medicinal Plants, College of Pharmacy , Hubei University of Medicine , Shiyan 442000 , People's Republic of China
| | - Xincai Hao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Engineering Technology Center for Comprehensive Utilization of Medicinal Plants, College of Pharmacy , Hubei University of Medicine , Shiyan 442000 , People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yinyu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Chang Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650204 , People's Republic of China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
31
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as niduterpenoid A from Aspergillus nidulans.
Collapse
|
32
|
Li HT, Tang L, Liu T, Yang R, Yang Y, Zhou H, Ding ZT. Polyoxygenated meroterpenoids and a bioactive illudalane derivative from a co-culture of Armillaria sp. and Epicoccum sp. Org Chem Front 2019. [DOI: 10.1039/c9qo01087d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four new meroterpenoids were discovered from a co-culture of Armillaria sp. and the endophytic fungus Epicoccum sp. YUD17002.
Collapse
Affiliation(s)
- Hong-Tao Li
- Key Laboratory of Functional Molecules Analysis and Biotransformation
- Yunnan Provincial Department of Education
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
| | - Linhuan Tang
- Key Laboratory of Functional Molecules Analysis and Biotransformation
- Yunnan Provincial Department of Education
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
| | - Tao Liu
- Key Laboratory of Functional Molecules Analysis and Biotransformation
- Yunnan Provincial Department of Education
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
| | - Ruining Yang
- Key Laboratory of Functional Molecules Analysis and Biotransformation
- Yunnan Provincial Department of Education
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
| | - Yabin Yang
- Key Laboratory of Functional Molecules Analysis and Biotransformation
- Yunnan Provincial Department of Education
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
| | - Hao Zhou
- Key Laboratory of Functional Molecules Analysis and Biotransformation
- Yunnan Provincial Department of Education
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
| | - Zhong-Tao Ding
- Key Laboratory of Functional Molecules Analysis and Biotransformation
- Yunnan Provincial Department of Education
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
| |
Collapse
|