1
|
Wang Z, Li Y, Ding X, Sun Y, Chen C, Sun W, Hu X. DNDMH enabled C(sp 3)-H nitration of aryl alkenes. Chem Commun (Camb) 2025. [PMID: 39868957 DOI: 10.1039/d4cc06671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
C(sp3)-H bond nitration provides facile access to nitro compounds that are inaccessible through traditional nitration pathways. This work describes a C(sp3)-H bond nitration of aryl alkenes using DNDMH, a nitration reagent developed previously in our lab. Notably, this novel nitration process presents excellent regioselectivity and chemoselectivity between C(sp3)-H nitration and C(sp2)-H nitration.
Collapse
Affiliation(s)
- Zhiyuan Wang
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Yali Li
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Xuena Ding
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Yuancheng Sun
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Chongchong Chen
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Wei Sun
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| | - Xiangdong Hu
- School of Chemistry & Material Science, Northwest University, 1st Xuefu Avenue, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
2
|
Kumar S, Arora A, Singh SK, Kumar R, Shankar B, Singh BK. Phenyliodine bis(trifluoroacetate) as a sustainable reagent: exploring its significance in organic synthesis. Org Biomol Chem 2024; 22:3109-3185. [PMID: 38529599 DOI: 10.1039/d3ob01964k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Iodine-containing molecules, especially hypervalent iodine compounds, have gained significant attention in organic synthesis. They are valuable and sustainable reagents, leading to a remarkable surge in their use for chemical transformations. One such hypervalent iodine compound, phenyliodine bis(trifluoroacetate)/bis(trifluoroacetoxy)iodobenzene, commonly referred to as PIFA, has emerged as a prominent candidate due to its attributes of facile manipulation, moderate reactivity, low toxicity, and ready availability. PIFA presents an auspicious prospect as a substitute for costly organometallic catalysts and environmentally hazardous oxidants containing heavy metals. PIFA exhibits remarkable catalytic activity, facilitating an array of consequential organic reactions, including sulfenylation, alkylarylation, oxidative coupling, cascade reactions, amination, amidation, ring-rearrangement, carboxylation, and numerous others. Over the past decade, the application of PIFA in synthetic chemistry has witnessed substantial growth, necessitating an updated exploration of this field. In this discourse, we present a concise overview of PIFA's applications as a 'green' reagent in the domain of synthetic organic chemistry. A primary objective of this article is to bring to the forefront the scientific community's awareness of the merits associated with adopting PIFA as an environmentally conscientious alternative to heavy metals.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India.
| | - Rajesh Kumar
- Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur-842002, India
| | - Bhawani Shankar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
3
|
Dichiara M, Ambrosio FA, Lee SM, Ruiz-Cantero MC, Lombino J, Coricello A, Costa G, Shah D, Costanzo G, Pasquinucci L, Son KN, Cosentino G, González-Cano R, Marrazzo A, Aakalu VK, Cobos EJ, Alcaro S, Amata E. Discovery of AD258 as a Sigma Receptor Ligand with Potent Antiallodynic Activity. J Med Chem 2023; 66:11447-11463. [PMID: 37535861 PMCID: PMC10461227 DOI: 10.1021/acs.jmedchem.3c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 08/05/2023]
Abstract
The design and synthesis of a series of 2,7-diazaspiro[4.4]nonane derivatives as potent sigma receptor (SR) ligands, associated with analgesic activity, are the focus of this work. In this study, affinities at S1R and S2R were measured, and molecular modeling studies were performed to investigate the binding pose characteristics. The most promising compounds were subjected to in vitro toxicity testing and subsequently screened for in vivo analgesic properties. Compound 9d (AD258) exhibited negligible in vitro cellular toxicity and a high binding affinity to both SRs (KiS1R = 3.5 nM, KiS2R = 2.6 nM), but not for other pain-related targets, and exerted high potency in a model of capsaicin-induced allodynia, reaching the maximum antiallodynic effect at very low doses (0.6-1.25 mg/kg). Functional activity experiments showed that S1R antagonism is needed for the effects of 9d and that it did not induce motor impairment. In addition, 9d exhibited a favorable pharmacokinetic profile.
Collapse
Affiliation(s)
- Maria Dichiara
- Dipartimento
di Scienze del Farmaco e della Salute, Università
degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento
di Medicina Sperimentale e Clinica, Università
degli Studi “Magna Græcia” di Catanzaro, Campus
“S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Sang Min Lee
- Department
of Ophthalmology and Visual Sciences, University
of Illinois at Chicago, 1905 W Taylor St, Chicago, Illinois 60612, United States
| | - M. Carmen Ruiz-Cantero
- Departamento
de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación
Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación, 18016 Granada, Spain
| | - Jessica Lombino
- Dipartimento
di Scienze del Farmaco e della Salute, Università
degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Adriana Coricello
- Dipartimento
di Scienze della Salute, Università
“Magna Græcia” di Catanzaro, Campus “S.
Venuta”, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento
di Scienze della Salute, Università
“Magna Græcia” di Catanzaro, Campus “S.
Venuta”, 88100 Catanzaro, Italy
- Net4Science
Academic Spin-Off, Università “Magna
Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Dhara Shah
- Department
of Ophthalmology and Visual Sciences, University
of Illinois at Chicago, 1905 W Taylor St, Chicago, Illinois 60612, United States
| | - Giuliana Costanzo
- Dipartimento
di Scienze del Farmaco e della Salute, Università
degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Dipartimento
di Scienze del Farmaco e della Salute, Università
degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Kyung No Son
- Department
of Ophthalmology and Visual Sciences, University
of Michigan, 1000 Wall
Street, Ann Arbor, Michigan 48105, United States
| | - Giuseppe Cosentino
- Dipartimento
di Scienze del Farmaco e della Salute, Università
degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Rafael González-Cano
- Departamento
de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación
Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación, 18016 Granada, Spain
| | - Agostino Marrazzo
- Dipartimento
di Scienze del Farmaco e della Salute, Università
degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Vinay Kumar Aakalu
- Department
of Ophthalmology and Visual Sciences, University
of Michigan, 1000 Wall
Street, Ann Arbor, Michigan 48105, United States
| | - Enrique J. Cobos
- Departamento
de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación
Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación, 18016 Granada, Spain
| | - Stefano Alcaro
- Dipartimento
di Scienze della Salute, Università
“Magna Græcia” di Catanzaro, Campus “S.
Venuta”, 88100 Catanzaro, Italy
- Net4Science
Academic Spin-Off, Università “Magna
Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Emanuele Amata
- Dipartimento
di Scienze del Farmaco e della Salute, Università
degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Yamada M, Hirose Y, Lin B, Fumimoto M, Nunomura K, Natchanun S, Takahashi N, Ohki Y, Sako M, Murai K, Harada K, Arai M, Suzuki S, Nakamura T, Haruta J, Arisawa M. Design, Synthesis, and Monoamine Oxidase B Selective Inhibitory Activity of N-Arylated Heliamine Analogues. ACS Med Chem Lett 2022; 13:1582-1590. [PMID: 36262392 PMCID: PMC9575162 DOI: 10.1021/acsmedchemlett.2c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Monoamine oxidase B (MAO-B) metabolizes monoamines such as dopamine regarding neural transmission and controls its level in the mammalian's brain. When MAO-B metabolizes dopamine abnormally, normal neurotransmission does not occur, and central nervous system disorders such as Parkinson's disease may develop. Although several MAO inhibitors have been developed, most of them have no selectivity between monoamine oxidase A (MAO-A) and MAO-B, or they work irreversibly against the enzyme. This report describes the first case of screening of N-arylated heliamine derivatives to develop novel MAO-B selective inhibitors that can be synthesized concisely by microwave-assisted Pd nanoparticle-catalyzed Buchwald-Hartwig amination. We discovered that the derivatives 4h, 4i, and 4j display inhibitory activity against MAO-B with IC50 values of 1.55, 13.5, and 5.08 μM, respectively.
Collapse
Affiliation(s)
- Makito Yamada
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yu Hirose
- Graduate
School of Pharmaceutical Sciences, Keio
University, Shibakoen 1-5-30, Minato-ku, Tokyo 105-8512, Japan
| | - Bangzhong Lin
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Megumi Fumimoto
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuto Nunomura
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | - Naoyuki Takahashi
- Tokyo
Rikakikai Co. Ltd (Brand: EYELA), TN Koishikawa Bldg, 1-15-17 Koishikawa Bunkyo-ku, Tokyo 112-0002, Japan
| | - Yuuta Ohki
- Tokyo
Rikakikai Co. Ltd (Brand: EYELA), TN Koishikawa Bldg, 1-15-17 Koishikawa Bunkyo-ku, Tokyo 112-0002, Japan
| | - Makoto Sako
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kenichi Murai
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuo Harada
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masayoshi Arai
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Sayo Suzuki
- Graduate
School of Pharmaceutical Sciences, Keio
University, Shibakoen 1-5-30, Minato-ku, Tokyo 105-8512, Japan
| | - Tomonori Nakamura
- Graduate
School of Pharmaceutical Sciences, Keio
University, Shibakoen 1-5-30, Minato-ku, Tokyo 105-8512, Japan
| | - Junichi Haruta
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Yu F, Valles DA, Chen W, Daniel SD, Ghiviriga I, Seidel D. Regioselective α-Cyanation of Unprotected Alicyclic Amines. Org Lett 2022; 24:6364-6368. [PMID: 36036764 PMCID: PMC9548390 DOI: 10.1021/acs.orglett.2c02148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary alicyclic amines are converted to α-aminonitriles via addition of TMSCN to their corresponding imines, intermediates that are produced in situ via the oxidation of amine-derived lithium amides with simple ketone oxidants. Amines with an existing α-substituent undergo regioselective α'-cyanation even if the C-H bonds at that site are less activated. Amine α-arylation can be combined with α'-cyanation to generate difunctionalized products in a single operation.
Collapse
Affiliation(s)
- Fuchao Yu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Daniel A. Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weijie Chen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Scott D. Daniel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Tang P, Wen L, Ma HJ, Yang Y, Jiang Y. Synthesis of acyloxy-2 H-azirine and sulfonyloxy-2 H-azirine derivatives via a one-pot reaction of β-enamino esters, PIDA and carboxylic acid or sulfonic acid. Org Biomol Chem 2022; 20:3061-3066. [PMID: 35344576 DOI: 10.1039/d2ob00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PIDA mediated oxidative acyloxylation/azirination and sulfonyloxylation/azirination of β-enamino esters were investigated. A series of functionalized acyloxy-2H-azirine and sulfonyloxy-2H-azirine derivatives was synthesized in moderate to good yields. This represents the first oxidative sulfonyloxylation/azirination of β-enamino esters with PIDA and sulfonic acid for access to sulfonyloxy-2H-azirine. Hypervalent iodine reagents enable cascade C-O/C-N bond formation. Furthermore, a possible reaction pathway was proposed based on the experimental results.
Collapse
Affiliation(s)
- Pan Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Long Wen
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
7
|
Patra S, Mosiagin I, Katayev D, Giri R. Organic Nitrating Reagents. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractNitro compounds are vital raw chemicals that are widely used in academic laboratories and industries for the preparation of various drugs, agrochemicals, and materials. Thus, nitrating reactions are of great importance for chemists and are even taught in schools as one of the fundamental transformations in organic synthesis. Since the discovery of the first nitrating reactions in the 19th century, progress in this field has been constant. Yet, for many years the classical electrophilic nitration approach using a mixture of strong mineral acids dominated the field. However, in recent decades, the attention of researchers has focused on new reactivity and new reagents that can provide access to nitro compounds in a practical and straightforward way under mild reaction conditions. Organic nitrating reagents have played a special role in this field since they have enhanced reactivity. They also allow nitration to be carried out in an ecofriendly and sustainable manner. This review examines the development and application of organic nitrating reagents.1 Introduction2 Organic Nitrating Reagents2.1 Alkyl Nitrites2.2 Nitroalkanes2.3 Alkyl Nitrates2.4 N-Nitroamides2.5 N-Nitropyrazole2.6 N-Nitropyridinium Salts3 Organic Nitrating Reagents Generated In Situ3.1 Acyl Nitrates3.2 Trimethylsilyl Nitrate3.3 Nitro Onium Salts4 Organic Nitronium Salts5 Organic Nitrates and Nitrites5.1 Ammonium Nitrates5.2 Heteroarylium Nitrates5.3 Other Organic Nitrates5.4 Organic Nitrites6 Conclusion and Outlook
Collapse
|
8
|
Dhorma LP, Teli MK, Nangunuri BG, Venkanna A, Ragam R, Maturi A, Mirzaei A, Vo DK, Maeng HJ, Kim MH. Positioning of an unprecedented 1,5-oxaza spiroquinone scaffold into SMYD2 inhibitors in epigenetic space. Eur J Med Chem 2022; 227:113880. [PMID: 34656041 DOI: 10.1016/j.ejmech.2021.113880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
Abstract
Lysine methyltransferases are important regulators of epigenetic signaling and are emerging as a novel drug target for drug discovery. This work demonstrates the positioning of novel 1,5-oxaza spiroquinone scaffold into selective SET and MYND domain-containing proteins 2 methyltransferases inhibitors. Selectivity of the scaffold was identified by epigenetic target screening followed by SAR study for the scaffold. The optimization was performed iteratively by two-step optimization consisting of iterative synthesis and computational studies (docking, metadynamics simulations). Computational binding studies guided the important interactions of the spiro[5.5]undeca scaffold in pocket 1 and Lysine channel and suggested extension of tail length for the improvement of potency (IC50: up to 399 nM). The effective performance of cell proliferation assay for chosen compounds (IC50: up to 11.9 nM) led to further evaluation in xenograft assay. The potent compound 24 demonstrated desirable in vivo efficacy with growth inhibition rate of 77.7% (4 fold decrease of tumor weight and 3 fold decrease of tumor volume). Moreover, mirosomal assay and pharmacokinetic profile suggested further developability of this scaffold through the identification of major metabolites (dealkylation at silyl group, reversible hydration product, the absence of toxic quinone fragments) and enough exposure of the testing compound 24 in plasma. Such spiro[5.5]undeca framework or ring system was neither been reported nor suggested as a modulator of methyltransferases. The chemo-centric target positioning and structural novelty can lead to potential pharmacological benefit.
Collapse
Affiliation(s)
- Lama Prema Dhorma
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
| | - Mahesh K Teli
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
| | - Bhargav Gupta Nangunuri
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
| | - Arramshetti Venkanna
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
| | - Rao Ragam
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
| | - Arunkranthi Maturi
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
| | - Anvar Mirzaei
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
| | - Dang-Khoa Vo
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
| | - Han-Joo Maeng
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
| | - Mi-Hyun Kim
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea.
| |
Collapse
|
9
|
Bhattacharjee S, Laru S, Hajra A. Hypervalent iodine( iii)-mediated oxidative dearomatization of 2 H-indazoles towards indazolyl indazolones. Org Biomol Chem 2022; 20:8893-8897. [DOI: 10.1039/d2ob01776h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We accomplished a [bis(trifluoroacetoxy)iodo]benzene mediated oxidative dearomatization of 2H-indazoles, obtaining a new family of N-1 indazolyl indazolone derivatives in good to excellent yields through C–N and C–O bond formations.
Collapse
Affiliation(s)
- Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|
10
|
Liu T, Wan JP, Liu Y. Metal-free enaminone C-N bond cyanation for the stereoselective synthesis of ( E)- and ( Z)-β-cyano enones. Chem Commun (Camb) 2021; 57:9112-9115. [PMID: 34498638 DOI: 10.1039/d1cc03292e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly practical method for C-CN bond formation by C-N bond cleavage on enaminones leading to the efficient synthesis of β-cyano enones is developed. The reactions take place efficiently to provide (E)-β-cyano enones with only a molecular iodine catalyst. In addition, the additional employment of oxalic acid enables the selective synthesis of (Z)-β-cyano enones.
Collapse
Affiliation(s)
- Ting Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
11
|
Chang Z, Huang J, Wang S, Chen G, Zhao H, Wang R, Zhao D. Copper catalyzed late-stage C(sp 3)-H functionalization of nitrogen heterocycles. Nat Commun 2021; 12:4342. [PMID: 34267229 PMCID: PMC8282657 DOI: 10.1038/s41467-021-24671-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Nitrogen heterocycle represents a ubiquitous skeleton in natural products and drugs. Late-stage C(sp3)-H bond functionalization of N-heterocycles with broad substrate scope remains a challenge and of particular significance to modern chemical synthesis and pharmaceutical chemistry. Here, we demonstrate copper-catalysed late-stage C(sp3)-H functionalizaion of N-heterocycles using commercially available catalysts under mild reaction conditions. We have investigated 8 types of N-heterocycles which are usually found as medicinally important skeletons. The scope and utility of this approach are demonstrated by late-stage C(sp3)-H modification of these heterocycles including a number of pharmaceuticals with a broad range of nucleophiles, e.g. methylation, arylation, azidination, mono-deuteration and glycoconjugation etc. Preliminary mechanistic studies reveal that the reaction undergoes a C-H fluorination process which is followed by a nucleophilic substitution.
Collapse
Affiliation(s)
- Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Geshuyi Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Panigrahi A, Muniraj N, Prabhu KR. N-Triflination of pyrazolones: a new method for N-S bond formation. Org Biomol Chem 2021; 19:5534-5538. [PMID: 34105585 DOI: 10.1039/d1ob00862e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple method, which takes place quickly in 5 min, is developed for the N-triflination of pyrazolones using CF3SO2Na (Langlois reagent) and phenyliodine(iii)bis(trifluoroacetate) (PIFA). This reaction takes place at the imine nitrogen centre instead of the more reactive C4-position, forming a new N-S bond. A variety of pyrazolone derivatives were subjected to the reaction. Unlike the previous reports on sulfenylation or sulfonylation of pyrazolone, wherein the corresponding C-S bond is formed, this new method leads to the formation of the hetero-hetero atom bond (N-S bond) at room temperature.
Collapse
Affiliation(s)
- Ahwan Panigrahi
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Nachimuthu Muniraj
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| |
Collapse
|
13
|
Qian YE, Zheng L, Xiang HY, Yang H. Recent progress in the nitration of arenes and alkenes. Org Biomol Chem 2021; 19:4835-4851. [PMID: 34017966 DOI: 10.1039/d1ob00384d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nitro compounds are a predominant class of synthetic intermediates and building blocks for the preparation of a wide range of nitrogen-containing compounds in the chemical industry. As such, impressive progress has been currently made in the nitration of aromatics and olefins with excellent functional group tolerance and site-selectivity. In this mini review, we intend to highlight the regiospecific nitration of arenes and alkenes in various reaction systems. The involved mechanisms are discussed as well.
Collapse
Affiliation(s)
- Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
14
|
Shi S, Yang X, Tang M, Hu J, Loh TP. Direct Synthesis of α-Amino Nitriles from Sulfonamides via Base-Mediated C-H Cyanation. Org Lett 2021; 23:4018-4022. [PMID: 33970649 DOI: 10.1021/acs.orglett.1c01232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we disclose a transition-metal-free reaction system that enables α-cyanation of sulfonamides through C-H bond cleavage for the preparation of α-amino nitriles, including difficult-to-access all-alkyl α-tertiary scaffolds. More than 50 substrate examples prove a wide functional group tolerance. Additionally, its synthetic practicality is highlighted by gram-scalability and the late-stage modification of natural compounds. Mechanistic experiments suggest that this process involves in situ formation of an imine intermediate via base-promoted elimination of HF.
Collapse
Affiliation(s)
- Shasha Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xianyu Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Man Tang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jiefeng Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
15
|
Yang YO, Wang X, Xiao J, Li Y, Sun F, Du Y. Formation of Carbon-Nitrogen Bond Mediated by Hypervalent Iodine Reagents Under Metal-free Conditions. CURR ORG CHEM 2021. [DOI: 10.2174/1385272822999201117154919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the past several decades, hypervalent iodine chemistry has witnessed prosperous
development as hypervalent iodine reagents have been widely used in various organic transformations.
Specifically, hypervalent iodine reagents have been vastly used in various bondforming
reactions. Among these oxidative coupling reactions, the reactions involving the
formation of C-N bond have been extensively explored to construct various heterocyclic
skeletons and synthesize various useful building blocks. This review article is to summarize
all the transformations in which carbon-nitrogen bond formation occurred by using hypervalent
iodine reagents under metal-free conditions.
Collapse
Affiliation(s)
- Yaxin O. Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiaxi Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology; Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Xiang S, Li Y, Fan W, Jin J, Zhang W, Huang D. Copper(II)-Dioxygen Facilitated Activation of Nitromethane: Nitrogen Donors for the Synthesis of Substituted 2-Hydroxyimino-2-phenylacetonitriles and Phthalimides. Front Chem 2021; 8:622867. [PMID: 33585402 PMCID: PMC7878530 DOI: 10.3389/fchem.2020.622867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
A simple and efficient method is explored for the synthesis of 2-hydroxyimino-2-phenylacetonitriles (2) and phthalimides (4), by using nitromethane as nitrogen donors. Both reactions are promoted by Cu(II) system with the participation of dioxygen as an oxidant. The scope of the method has been successfully demonstrated with a total of 51 examples. The flexible and diversified characteristics of reactions are introduced in terms of electronic effect, steric effect, position of substituted groups, and intramolecular charge transfer. Experimental studies suggest that the methyl nitrite could be a precursor in the path to the final products. A possible reaction mechanism is proposed, including the Cu(II)/O2-facilitated transformation of nitromethane to methyl nitrite, the base-induced formation of 2-hydroxyimino-2-phenylacetonitriles, and the base-dioxygen-promoted formation of phthalimides.
Collapse
Affiliation(s)
- Shiqun Xiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
17
|
Positioning of an unprecedented spiro[5.5]undeca ring system into kinase inhibitor space. Sci Rep 2020; 10:21265. [PMID: 33277542 PMCID: PMC7719162 DOI: 10.1038/s41598-020-78158-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
In-house 1,5-oxaza spiroquinone 1, with spiro[5.5]undeca ring system, was announced as an unprecedented anti-inflammatory scaffold through chemistry-oriented synthesis (ChOS), a chemocentric approach. Herein, we studied how to best position the spiro[5.5]undeca ring system in kinase inhibitor space. Notably, late-stage modification of the scaffold 1 into compounds 2a-r enhanced kinase-likeness of the scaffold 1. The improvement could be depicted with (1) selectivity with target shift (from JNK-1 into GSK-3) and (2) potency (> 20-fold). In addition, ATP independent IC50 of compound 2j suggested a unique binding mode of this scaffold between ATP site and substrate site, which was explained by docking based optimal site selection and molecular dynamic simulations of the optimal binding site. Despite the shift of kinase profiling, the anti-inflammatory activity of compounds 2a-r could be retained in hyperactivated microglial cells.
Collapse
|
18
|
Thapa P, Hazoor S, Chouhan B, Vuong TT, Foss FW. Flavin Nitroalkane Oxidase Mimics Compatibility with NOx/TEMPO Catalysis: Aerobic Oxidization of Alcohols, Diols, and Ethers. J Org Chem 2020; 85:9096-9105. [PMID: 32569467 DOI: 10.1021/acs.joc.0c01013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biomimetic flavin organocatalysts oxidize nitromethane to formaldehyde and NOx-providing a relatively nontoxic, noncaustic, and inexpensive source for catalytic NO2 for aerobic TEMPO oxidations of alcohols, diols, and ethers. Alcohols were oxidized to aldehydes or ketones, cyclic ethers to esters, and terminal diols to lactones. In situ trapping of NOx and formaldehyde suggest an oxidative Nef process reminiscent of flavoprotein nitroalkane oxidase reactivity, which is achieved by relatively stable 1,10-bridged flavins. The metal-free flavin/NOx/TEMPO catalytic cycles are uniquely compatible, especially compared to other Nef and NOx-generating processes, and reveal selectivity over flavin-catalyzed sulfoxide formation. Aliphatic ethers were oxidized by this method, as demonstrated by the conversion of (-)-ambroxide to (+)-sclareolide.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Bikash Chouhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Thanh Thuy Vuong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
19
|
Mudithanapelli C, Kim MH. Metal-free late-stage C(sp 2)-H functionalization of N-aryl amines with various sodium salts. Org Biomol Chem 2020; 18:450-464. [PMID: 31799581 DOI: 10.1039/c9ob02217a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metal-free consecutive C(sp2)-X (X = Cl, Br, S, N) bond formations of N-aryl amines (cyclic, fused, carbamate, and aminium radicals) were achieved under mild conditions using [bis(trifluoroacetoxy)iodo]benzene (PIFA) and simple nonharmful sodium salts. This direct and selective C(sp2)-H functionalization showed excellent functional group compatibility, cost effectiveness, and late-stage applicability for the synthesis of biologically active natural products. Two mechanisms were proposed to explain the ortho- or para-preference, as well as the accelerating effect of CH3NO2.
Collapse
Affiliation(s)
- Chandrashekar Mudithanapelli
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| | | |
Collapse
|
20
|
Kang QQ, Liu Y, Huang XJ, Li Q, Wei WT. Selective Cyanoalkylation and [2+2+2] Annulation of 1,6-Enynes with Azobis(alkylcarbonitriles) under Mild Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Qing-Qing Kang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science; State Key Laboratory for Quality and Safety of Agro-products; School of Materials Science and Chemical Engineering; Ningbo University; 315211 Ningbo P. R. China
| | - Yi Liu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science; State Key Laboratory for Quality and Safety of Agro-products; School of Materials Science and Chemical Engineering; Ningbo University; 315211 Ningbo P. R. China
| | - Xun-Jie Huang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science; State Key Laboratory for Quality and Safety of Agro-products; School of Materials Science and Chemical Engineering; Ningbo University; 315211 Ningbo P. R. China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials; School of Chemistry and Chemical Engineering; Liaocheng University; 252059 Liaocheng P. R. China
| | - Wen-Ting Wei
- State Key Laboratory Base of Novel Functional Materials and Preparation Science; State Key Laboratory for Quality and Safety of Agro-products; School of Materials Science and Chemical Engineering; Ningbo University; 315211 Ningbo P. R. China
| |
Collapse
|
21
|
Abstract
Background:
α-Aryl substituted nitroalkanes are important synthetic intermediates
for the preparation of pharmaceutical molecules, natural products, and functional
materials. Due to their scare existence in Nature, synthesis of these compounds has attracted
the attention of synthetic and medicinal chemists, rendering α-arylation of nitroalkanes
of an important research topic. This article summarizes the important advances of α-
arylation of nitroalkanes since 1963.
Results:
After a brief introduction of the synthetic application and the reactions of nitroalkanes,
this article reviewed the synthetic methods for the α-arylated aliphatic nitro compound.
The amount of research on α-arylation of nitroalkanes using various arylation reagents
and the discovery of elegant synthetic approaches towards such skeleton have been
discussed. This review described these advances in two sections. One is the arylation of non-activated nitroalkanes,
with an emphasis on the application of diverse arylation reagents; the other focuses on the arylation of
activated nitroalkanes, including dinitroalkanes, trinitroalkanes, α-nitrosulfones, α-nitroesters, α-nitrotoluenes,
and α-nitroketones. The synthetic application of these methods has also been presented in some cases.
Conclusion:
In this review, we described the progress of α-arylation of nitroalkanes. Although the immense
amount of research on α-arylation of aliphatic nitro compounds has been achieved, many potential issues still
need to be addressed, especially the asymmetric transformation and its wide application in organic synthesis.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zuo-Yi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Zhou-Bao Shi
- Affiliate Hospital of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Gu L, Fang X, Weng Z, Lin J, He M, Ma W. PIDA‐Promoted Selective C
5
C−H Selenylations of Indolines
via
Weak Interactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Zhengyun Weng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Meicui He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| |
Collapse
|