1
|
Tharra P, Švejkar J, Jadhav AS, Nečas M, Dub PA, Halls MD, Švenda J. Enantioselective Transfer Hydrogenation of α-Methoxyimino-β-keto Esters. J Org Chem 2024; 89:12902-12911. [PMID: 39213600 PMCID: PMC11421019 DOI: 10.1021/acs.joc.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
α-Methoxyimino-β-keto esters are reported to undergo highly enantioselective catalytic transfer hydrogenation using the Noyori-Ikariya complex RuCl(p-cymene)[(S,S)-Ts-DPEN] in a mixture of formic acid-triethylamine and dimethylformamide at 25 °C. The experimental study performed on over 25 substrates combined with computational analysis revealed that a Z-configured methoxyimino group positioned alpha to a ketone carbonyl leads to higher reactivity and mostly excellent enantioselectivity within this substrate class. Density functional theory calculations of competing transition states were used in rationalizing the origins of enantioselectivity and the possible role of the methoxyimino group in the reaction outcome.
Collapse
Affiliation(s)
- Prabhakara
R. Tharra
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| | - Jiří Švejkar
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
| | - Abhijeet S. Jadhav
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
| | - Marek Nečas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
| | - Pavel A. Dub
- Schrödinger,
Inc., San Diego, California 92121, United States
| | - Mathew D. Halls
- Schrödinger,
Inc., San Diego, California 92121, United States
| | - Jakub Švenda
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| |
Collapse
|
2
|
Meng X, Lan S, Chen T, Luo H, Zhu L, Chen N, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of Acylboronates: BMIDA as the Privileged Directing Group. J Am Chem Soc 2024; 146:20357-20369. [PMID: 38869937 DOI: 10.1021/jacs.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols. The latter are used in a range of stereospecific transformations based on the boron moiety, enabling the synthesis of carbinols with two closely related α-substituents, which cannot be obtained with high enantioselectivities using direct asymmetric hydrogenation methods, such as the (R)-cloperastine intermediate. Computational studies illustrate that the BMIDA group is a privileged enantioselectivity-directing group in Noyori-Ikariya ATH compared to the conventionally used aryl and alkynyl groups due to the favorable CH-O attractive electrostatic interaction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms in BMIDA. The work expands the domain of conventional ATH and shows its huge potential in addressing challenges in symmetric synthesis.
Collapse
Affiliation(s)
- Xiangjian Meng
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350007, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lixuan Zhu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Nanchu Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
3
|
Liu W, Ren C, Zhou L, Luo H, Meng X, Luo P, Luo Y, Dong W, Lan S, Liu J, Yang S, Zhang Q, Fang X. Regio- and Stereoselective Transfer Hydrogenation of Aryloxy Group-Substituted Unsymmetrical 1,2-Diketones: Synthetic Applications and Mechanistic Studies. J Am Chem Soc 2024; 146:20092-20106. [PMID: 39007870 DOI: 10.1021/jacs.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing a general method that leads to the formation of different classes of chiral bioactive compounds and their stereoisomers is an attractive but challenging research topic in organic synthesis. Furthermore, despite the great value of asymmetric transfer hydrogenation (ATH) in both organic synthesis and the pharmaceutical industry, the monohydrogenation of unsymmetrical 1,2-diketones remains underdeveloped. Here, we report the aryloxy group-assisted highly regio-, diastereo-, and enantioselective ATH of racemic 1,2-diketones. The work produces a myriad of enantioenriched dihydroxy ketones, and further transformations furnish all eight stereoisomers of diaryl triols, polyphenol, emblirol, and glycerol-type natural products. Mechanistic studies and calculations reveal two working modes of the aryloxy group in switching the regioselectivity from a more reactive carbonyl to a less reactive one, and the potential of ATH on 1,2-diketones in solving challenging synthetic issues has been clearly demonstrated.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Caiyi Ren
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Liyuan Zhou
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiangjian Meng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Peng Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Yingkun Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
4
|
Lapa DP, Araújo LHS, Melo SR, Costa PRR, Caleffi GS. Ru(II)-Catalyzed Asymmetric Transfer Hydrogenation of α-Alkyl-β-Ketoaldehydes via Dynamic Kinetic Resolution. Molecules 2024; 29:3420. [PMID: 39064997 PMCID: PMC11279712 DOI: 10.3390/molecules29143420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The (R,R)-Teth-TsDPEN-Ru(II) complex promoted the one-pot double C=O reduction of α-alkyl-β-ketoaldehydes through asymmetric transfer hydrogenation/dynamic kinetic resolution (ATH-DKR) under mild conditions. In this process, ten anti-2-benzyl-1-phenylpropane-1,3-diols (85:15 to 92:8 dr) were obtained in good yields (41-87%) and excellent enantioselectivities (>99% ee for all compounds). Notably, the preferential reduction of the aldehyde moiety led to the in situ formation of 2-benzyl-3-hydroxy-1-phenylpropan-1-one intermediates. These intermediates played a crucial role in enhancing both reactivity and stereoselectivity through hydrogen bonding.
Collapse
Affiliation(s)
| | | | | | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Guilherme S. Caleffi
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
5
|
Lan S, Huang H, Liu W, Xu C, Lei X, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Asymmetric Transfer Hydrogenation of Cyclobutenediones. J Am Chem Soc 2024; 146:4942-4957. [PMID: 38326715 DOI: 10.1021/jacs.3c14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones. The reaction can selectively afford three types of four-membered products in high yields with high stereoselectivities, and the highly functionalized products enable a series of further transformations to form more diversified four-membered compounds. Asymmetric synthesis of di-, tri-, and tetrasubstituted bioactive molecules has also been achieved. Systematic mechanistic studies and theoretical calculations have revealed the origin of the regioselectivity, the key hydrogenation transition state models, and the sequence of the double and triple hydrogenation processes. The work provides a new choice for the catalytic asymmetric synthesis of cyclobutanes and related structures and demonstrates the robustness of asymmetric transfer hydrogenation in the accurate selectivity control of highly functionalized substrates.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Huangjiang Huang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiang Lei
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
6
|
Reddy GS, Corey EJ. Synthetically Useful Transformations of Olefins via Cationic 1,2-Oxazetium Intermediates. Org Lett 2023; 25:7160-7164. [PMID: 37734041 DOI: 10.1021/acs.orglett.3c02700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Nitrosyl triflate serves as a NO+ donor in reactions with many olefinic substrates to form reactive, cationic 1,2-oxazetium cycloadducts that can be converted selectively into a wide range of useful products depending on reagents and conditions.
Collapse
Affiliation(s)
- G Sudhakar Reddy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - E J Corey
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
7
|
Sterle M, Huš M, Lozinšek M, Zega A, Cotman AE. Hydrogen-Bonding Ability of Noyori-Ikariya Catalysts Enables Stereoselective Access to CF 3-Substituted syn-1,2-Diols via Dynamic Kinetic Resolution. ACS Catal 2023; 13:6242-6248. [PMID: 37180962 PMCID: PMC10167654 DOI: 10.1021/acscatal.3c00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Stereopure CF3-substituted syn-1,2-diols were prepared via the reductive dynamic kinetic resolution of the corresponding racemic α-hydroxyketones in HCO2H/Et3N. (Het)aryl, benzyl, vinyl, and alkyl ketones are tolerated, delivering products with ≥95% ee and ≥87:13 syn/anti. This methodology offers rapid access to stereopure bioactive molecules. Furthermore, DFT calculations for three types of Noyori-Ikariya ruthenium catalysts were performed to show their general ability of directing stereoselectivity via the hydrogen bond acceptor SO2 region and CH/π interactions.
Collapse
Affiliation(s)
- Maša Sterle
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matej Huš
- National
Institute of Chemistry, Department of Catalysis
and Chemical Reaction Engineering, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
- Association
for Technical Culture of Slovenia, Zaloška cesta 65, SI-1000 Ljubljana, Slovenia
- Institute
for the Protection of Cultural Heritage of Slovenia, Poljanska 40, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Chen T, Liu W, Gu W, Niu S, Lan S, Zhao Z, Gong F, Liu J, Yang S, Cotman AE, Song J, Fang X. Dynamic Kinetic Resolution of β-Substituted α-Diketones via Asymmetric Transfer Hydrogenation. J Am Chem Soc 2023; 145:585-599. [PMID: 36563320 DOI: 10.1021/jacs.2c11149] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing innovative dynamic kinetic resolution (DKR) modes and achieving the highly regio- and enantioselective semihydrogenation of unsymmetrical α-diketones are two formidable challenges in the field of contemporary asymmetric (transfer) hydrogenation. In this work, we report the highly regio- and stereoselective asymmetric semi-transfer hydrogenation of unsymmetrical α-diketones through a unique DKR mode, which features the reduction of the carbonyl group distal from the labile stereocenter, while the proximal carbonyl remains untouched. Moreover, the protocol affords a variety of enantioenriched acyclic ketones with α-hydroxy-α'-C(sp2)-functional groups, which represent a new product class that has not been furnished in known arts. The utilities of the products have been demonstrated in a series of further transformations including the rapid synthesis of drug molecules. Density functional theory calculations and plenty of control experiments have also been conducted to gain more mechanistic insights into the highly selective semihydrogenation.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wei Gu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shengtong Niu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Zhifei Zhao
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Fan Gong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
9
|
Motaln K, Cotman AE, Lozinšek M. ( S)-2-[( S)-2,2,2-Tri-fluoro-1-hy-droxy-eth-yl]-1-tetra-lone. IUCRDATA 2023; 8:x221209. [PMID: 36794051 PMCID: PMC9912318 DOI: 10.1107/s2414314622012093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The crystal structure of the title compound, C12H11F3O2, was elucidated by low-temperature single-crystal X-ray diffraction. The enanti-opure compound crystallizes in the Sohncke space group P21 and features one mol-ecule in the asymmetric unit. The structure displays inter-molecular O-H⋯O hydrogen bonding, which links the mol-ecules into infinite chains propagating parallel to [010]. The absolute configuration was established from anomalous dispersion.
Collapse
Affiliation(s)
- Klemen Motaln
- Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Wang F, Zhang Z, Chen Y, Ratovelomanana-Vidal V, Yu P, Chen GQ, Zhang X. Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation. Nat Commun 2022; 13:7794. [PMID: 36528669 PMCID: PMC9759521 DOI: 10.1038/s41467-022-35124-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Chiral succinimide moieties are ubiquitous in biologically active natural products and pharmaceuticals. Until today, despite the great interest, little success has been made for stereodivergent synthesis of chiral succinimides. Here, we report a general and efficient method for accessing 3,4-disubstituted succinimides through a dynamic kinetic resolution strategy based on asymmetric transfer hydrogenation. The Rh catalyst system exhibit high activities, enantioselectivities, and diastereoselectivities (up to 2000 TON, up to >99% ee, and up to >99:1 dr). Products with syn- and anti-configuration are obtained separately by control of the reaction conditions. For the N-unprotected substrates, both the enol and the imide group can be reduced by control of reaction time and catalyst loading. In addition, the detailed reaction pathway and origin of stereoselectivity are elucidated by control experiments and theoretical calculations. This study offers a straightforward and stereodivergent approach to the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap chemical feedstocks in a single reaction step.
Collapse
Affiliation(s)
- Fangyuan Wang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Zongpeng Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Yu Chen
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Virginie Ratovelomanana-Vidal
- grid.4444.00000 0001 2112 9282PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Peiyuan Yu
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Gen-Qiang Chen
- grid.263817.90000 0004 1773 1790Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Xumu Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| |
Collapse
|
11
|
Xu Y, Luo Y, Ye J, Deng Y, Liu D, Zhang W. Correction to “Rh-Catalyzed Sequential Asymmetric Hydrogenations of 3-Amino-4-Chromones Via an Unusual Dynamic Kinetic Resolution Process”. J Am Chem Soc 2022; 144:21808. [DOI: 10.1021/jacs.2c11592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Khamis N, Clarkson GJ, Wills M. Heterocycle-containing Noyori-Ikariya catalysts for asymmetric transfer hydrogenation of ketones. Dalton Trans 2022; 51:13462-13469. [PMID: 35994090 DOI: 10.1039/d2dt02411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a range of N-(heterocyclesulfonyl)-functionalised Noyori-Ikariya catalysts is described. The complexes were prepared through a short sequence from C2-symmetric 1,2-diphenylethylene-1,2-diamine (DPEN) and were characterised by a range of methods including X-ray crystallography. The complexes were active catalysts for the asymmetric transfer hydrogenation (ATH) of a range of acetophenone derivatives, giving products of high ee in most cases, with notably good results for ortho-substituted acetophenones.
Collapse
Affiliation(s)
- Noha Khamis
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK. .,Department of Chemistry, Faculty of science, University of Alexandria, Alexandria, Egypt
| | - Guy J Clarkson
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
13
|
Cotman AE, Dub PA, Sterle M, Lozinšek M, Dernovšek J, Zajec Ž, Zega A, Tomašič T, Cahard D. Catalytic Stereoconvergent Synthesis of Homochiral β-CF 3, β-SCF 3, and β-OCF 3 Benzylic Alcohols. ACS ORGANIC & INORGANIC AU 2022; 2:396-404. [PMID: 36217345 PMCID: PMC9542724 DOI: 10.1021/acsorginorgau.2c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
We describe an efficient
catalytic strategy for enantio- and diastereoselective
synthesis of homochiral β-CF3, β-SCF3, and β-OCF3 benzylic alcohols. The approach is
based on dynamic kinetic resolution (DKR) with Noyori–Ikariya
asymmetric transfer hydrogenation leading to simultaneous construction
of two contiguous stereogenic centers with up to 99.9% ee, up to 99.9:0.1
dr, and up to 99% isolated yield. The origin of the stereoselectivity
and racemization mechanism of DKR is rationalized by density functional
theory calculations. Applicability of the previously inaccessible
chiral fluorinated alcohols obtained by this method in two directions
is further demonstrated: As building blocks for pharmaceuticals, illustrated
by the synthesis of heat shock protein 90 inhibitor with in vitro
anticancer activity, and in particular, needle-shaped crystals of
representative stereopure products that exhibit either elastic or
plastic flexibility, which opens the door to functional materials
based on mechanically responsive chiral molecular crystals.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maša Sterle
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
14
|
Song Y, Wang J, Deng S, Liu G, Cheng T. Quinidine-catalyzed enantioselective domino Michael addition/cyclization process: Synthesis of chiral 1,4-dihydro-pyridine containing benzosultams. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
de Gonzalo G, Lončar N, Fraaije M. Kinetic resolution of racemic benzofused alcohols catalysed by HMFO variants in presence of natural deep eutectic solvents. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2038582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain
| | | | - Marco Fraaije
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Hu ZQ, Li X, Liu LX, Yu CB, Zhou YG. Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of β-Substituted α-Oxobutyrolactones. J Org Chem 2021; 86:17453-17461. [PMID: 34730976 DOI: 10.1021/acs.joc.1c02156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A concise and effective ruthenium-catalyzed asymmetric transfer hydrogenation of β-substituted α-oxobutyrolactones has been developed, delivering a series of cis-β-substituted α-hydroxybutyrolactone derivatives with excellent yields, enantioselectivities, and diastereoselectivities. Two consecutive stereogenic centers were constructed in one step through dynamic kinetic resolution under basic conditions. The reaction could be conducted on a gram scale without loss of activity and enantioselectivity. The reductive products could be easily transformed into useful building blocks.
Collapse
Affiliation(s)
- Zi-Qi Hu
- Zhang Dayu School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | | | | | | | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
17
|
Zheng Y, Martinez‐Acosta JA, Khimji M, Barbosa LCA, Clarkson GJ, Wills M. Asymmetric Transfer Hydrogenation of Aryl Heteroaryl Ketones using Noyori‐Ikariya Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202101027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ye Zheng
- Department of Chemistry The University of Warwick Coventry CV4 7AL UK
| | - Jaime A. Martinez‐Acosta
- Universidade Federal de Minas Gerais Dept Chem-ICEx Av Presidente Antonio Carlos 6627 Campus Pampulha BR-31270901 Belo Horizonte MG Brazil
| | - Mohammed Khimji
- Department of Chemistry The University of Warwick Coventry CV4 7AL UK
| | - Luiz C. A. Barbosa
- Universidade Federal de Minas Gerais Dept Chem-ICEx Av Presidente Antonio Carlos 6627 Campus Pampulha BR-31270901 Belo Horizonte MG Brazil
| | - Guy J. Clarkson
- Department of Chemistry The University of Warwick Coventry CV4 7AL UK
| | - Martin Wills
- Department of Chemistry The University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
18
|
Gaspar FV, Caleffi GS, Costa‐Júnior PCT, Costa PRR. Enantioselective Synthesis of Isoflavanones and Pterocarpans through a Ru
II
‐Catalyzed ATH‐DKR of Isoflavones. ChemCatChem 2021. [DOI: 10.1002/cctc.202101252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Francisco V. Gaspar
- Laboratório de Química Bioorgânica (LQB) Instituto de Pesquisas de Produtos Naturais Universidade Federal do Rio de Janeiro Av. Carlos Chagas Filho 373, Bloco H Cidade Universitária 21941-902 Rio de Janeiro RJ Brasil
| | - Guilherme S. Caleffi
- Laboratório de Química Bioorgânica (LQB) Instituto de Pesquisas de Produtos Naturais Universidade Federal do Rio de Janeiro Av. Carlos Chagas Filho 373, Bloco H Cidade Universitária 21941-902 Rio de Janeiro RJ Brasil
| | - Paulo C. T. Costa‐Júnior
- Laboratório de Química Bioorgânica (LQB) Instituto de Pesquisas de Produtos Naturais Universidade Federal do Rio de Janeiro Av. Carlos Chagas Filho 373, Bloco H Cidade Universitária 21941-902 Rio de Janeiro RJ Brasil
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica (LQB) Instituto de Pesquisas de Produtos Naturais Universidade Federal do Rio de Janeiro Av. Carlos Chagas Filho 373, Bloco H Cidade Universitária 21941-902 Rio de Janeiro RJ Brasil
| |
Collapse
|
19
|
Gediya SK, Vyas VK, Clarkson GJ, Wills M. Asymmetric Transfer Hydrogenation of α-Keto Amides; Highly Enantioselective Formation of Malic Acid Diamides and α-Hydroxyamides. Org Lett 2021; 23:7803-7807. [PMID: 34586818 DOI: 10.1021/acs.orglett.1c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric transfer hydrogenation (ATH) of α-keto-1,4-diamides using a tethered Ru/TsDPEN catalyst was achieved in high ee. Studies on derivatives identified the structural elements which lead to the highest enantioselectivities in the products. The α-keto-amide reduction products have been converted to a range of synthetically valuable derivatives.
Collapse
Affiliation(s)
- Shweta K Gediya
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Vijyesh K Vyas
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Guy J Clarkson
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
20
|
Touge T, Nara H, Kida M, Matsumura K, Kayaki Y. Convincing Catalytic Performance of Oxo-Tethered Ruthenium Complexes for Asymmetric Transfer Hydrogenation of Cyclic α-Halogenated Ketones through Dynamic Kinetic Resolution. Org Lett 2021; 23:3070-3075. [PMID: 33780258 DOI: 10.1021/acs.orglett.1c00739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient dynamic kinetic resolution of cyclic halohydrins was achieved by the asymmetric transfer hydrogenation of racemic α-haloketones. Bifunctional oxo-tethered Ru(II) catalysts could promote the reduction without deterioration of halogens. By structural tuning of the catalyst, chiral alcohols having halogen, ester, carboxamide, and sulfone functions were obtained variably with excellent diastereo- and enantioselectivities (up to >99:1 d.r. and >99.9 ee), which provided a concise synthetic approach to a dopamine D3 receptor ligand, (+)-PHNO.
Collapse
Affiliation(s)
- Taichiro Touge
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Hideki Nara
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Michio Kida
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Kazuhiko Matsumura
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
21
|
Wang F, Yang T, Wu T, Zheng LS, Yin C, Shi Y, Ye XY, Chen GQ, Zhang X. Asymmetric Transfer Hydrogenation of α-Substituted-β-Keto Carbonitriles via Dynamic Kinetic Resolution. J Am Chem Soc 2021; 143:2477-2483. [PMID: 33529522 DOI: 10.1021/jacs.0c13273] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A catalytic protocol for the enantio- and diastereoselective reduction of α-substituted-β-keto carbonitriles is described. The reaction involves a DKR-ATH process with the simultaneous construction of β-hydroxy carbonitrile scaffolds with two contiguous stereogenic centers. A wide range of α-substituted-β-keto carbonitriles were obtained in high yields (94%-98%) and excellent enantio- and diastereoselectivities (up to >99% ee, up to >99:1 dr). The origin of the diastereoselectivity was also rationalized by DFT calculations. Furthermore, this methodology offers rapid access to the pharmaceutical intermediates of Ipenoxazone and Tapentadol.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Tilong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Ting Wu
- College of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Long-Sheng Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Congcong Yin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yongjie Shi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Xiang-Yu Ye
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | | | | |
Collapse
|
22
|
Park S, Lee HK. Efficient kinetic resolution in the asymmetric transfer hydrogenation of 3-aryl-indanones: applications to a short synthesis of (+)-indatraline and a formal synthesis of ( R)-tolterodine. RSC Adv 2021; 11:23161-23183. [PMID: 35480442 PMCID: PMC9036567 DOI: 10.1039/d1ra04538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
Efficient kinetic resolution occurs in ATH of racemic 3-arylindanones using (R,R)-or (S,S)-Ts-DENEB catalyst and HCO2H/Et3N mixture providing near equal yields of cis-3-arylindanols and unreacted 3-arylindanones with excellent stereoselectivities.
Collapse
Affiliation(s)
- Songsoon Park
- Korea Chemical Bank
- Korea Research Institute of Chemical Technology
- Daejeon 305-600
- Korea
- Department of Medicinal Chemistry and Pharmacology
| | - Hyeon-Kyu Lee
- Korea Chemical Bank
- Korea Research Institute of Chemical Technology
- Daejeon 305-600
- Korea
- Department of Medicinal Chemistry and Pharmacology
| |
Collapse
|
23
|
Cotman AE. Escaping from Flatland: Stereoconvergent Synthesis of Three-Dimensional Scaffolds via Ruthenium(II)-Catalyzed Noyori-Ikariya Transfer Hydrogenation. Chemistry 2020; 27:39-53. [PMID: 32691439 DOI: 10.1002/chem.202002779] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Indexed: 01/12/2023]
Abstract
Noyori-Ikariya-type ruthenium(II)-catalysts for asymmetric transfer hydrogenation (ATH) have been known for 25 years and have proved as a well-behaved and user-friendly platform for the synthesis of chiral secondary alcohols. A progress has been made in the past five years in understanding the asymmetric reduction of complex ketones, where up to four stereocenters can be controlled in a single chemical transformation. Intriguing multi-chiral molecular architectures are therefore available in few well understood and robust synthetic steps from commercially available building blocks and possess handles for additional functionalization. The aim of this Review is to showcase the availability of three-dimensional scaffolds and homochiral lead-like compounds via ATH and inspire their direct use in drug discovery endeavors. Basic mechanistic insights are provided to demystify the stereo-chemical outcomes, as well as examples of diastereoselective transformations of enantiopure alcohols to give a feeling of how these rigid non-planar molecules can be further elaborated.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
24
|
Phansavath P, Ratovelomanana-Vidal V, Molina Betancourt R, Echeverria PG, Ayad T. Recent Progress and Applications of Transition-Metal-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705918] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractBased on the ever-increasing demand for enantiomerically pure compounds, the development of efficient, atom-economical, and sustainable methods to produce chiral alcohols and amines is a major concern. Homogeneous asymmetric catalysis with transition-metal complexes including asymmetric hydrogenation (AH) and transfer hydrogenation (ATH) of ketones and imines through dynamic kinetic resolution (DKR) allowing the construction of up to three stereogenic centers is the main focus of the present short review, emphasizing the development of new catalytic systems combined to new classes of substrates and their applications as well.1 Introduction2 Asymmetric Hydrogenation via Dynamic Kinetic Resolution2.1 α-Substituted Ketones2.2 α-Substituted β-Keto Esters and Amides2.3 α-Substituted Esters2.4 Imine Derivatives3 Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution3.1 α-Substituted Ketones3.2 α-Substituted β-Keto Esters, Amides, and Sulfonamides3.3 α,β-Disubstituted Cyclic Ketones3.4 β-Substituted Ketones3.5 Imine Derivatives4. Conclusion
Collapse
Affiliation(s)
- Phannarath Phansavath
- CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University
| | | | - Ricardo Molina Betancourt
- CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University
| | | | - Tahar Ayad
- CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University
| |
Collapse
|
25
|
Gediya SK, Clarkson GJ, Wills M. Asymmetric Transfer Hydrogenation: Dynamic Kinetic Resolution of α-Amino Ketones. J Org Chem 2020; 85:11309-11330. [DOI: 10.1021/acs.joc.0c01438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shweta K. Gediya
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Guy J. Clarkson
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
26
|
Positive Impact of Natural Deep Eutectic Solvents on the Biocatalytic Performance of 5-Hydroxymethyl-Furfural Oxidase. Catalysts 2020. [DOI: 10.3390/catal10040447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deep eutectic solvents (DESs) have been applied as cosolvents in various biocatalytic processes during recent years. However, their use in combination with redox enzymes has been limited. In this study, we have explored the beneficial effects of several DES as cosolvents on the performance of 5-hydroxymethylfurfural oxidase (HMFO), a valuable oxidative enzyme for the preparation of furan-2,5-dicarboxylic acid (FDCA), and other compounds, such as carbonyl compounds and carboxylic acids. The use of natural DESs, based on glucose and fructose, was found to have a positive effect. Higher conversions are obtained for the synthesis of several oxidized compounds, including FDCA. Depending on the type of DES, the stability of HMFO could be significantly improved. As the use of DES increases the solubility of many substrates while they only mildly affect dioxygen solubility, this study demonstrates that biocatalysis based on HMFO and other redox biocatalysts can benefit from a carefully selected DES.
Collapse
|
27
|
Wang H, Zhao Y, Ding Y, Yu C, Zhou Y. Synthesis of
cis
β‐Hydroxy Ketones by Desymmetrization of 1,3‐Cyclopentanediones through Ruthenium‐Catalyzed Hydrogen Transfer. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Han Wang
- Zhang Dayu School of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Yang Zhao
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yi‐Xuan Ding
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Chang‐Bin Yu
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yong‐Gui Zhou
- Zhang Dayu School of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
28
|
Reversal of diastereoselectivity in palladium-arene interaction directed hydrogenative desymmetrization of 1,3-diketones. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9601-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Shi L, Bao RLY, Zheng L, Zhao R. B(C6
F5
)3
-Catalyzed Reduction of Cyclic N
-Sulfonyl Ketimines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Shi
- School of Science; Harbin Institute of Technology; 518055 Shenzhen China
| | - Robert Li-Yuan Bao
- School of Science; Harbin Institute of Technology; 518055 Shenzhen China
| | - Limin Zheng
- School of Science; Harbin Institute of Technology; 518055 Shenzhen China
| | - Rong Zhao
- School of Science; Harbin Institute of Technology; 518055 Shenzhen China
| |
Collapse
|
30
|
Touge T, Sakaguchi K, Tamaki N, Nara H, Yokozawa T, Matsumura K, Kayaki Y. Multiple Absolute Stereocontrol in Cascade Lactone Formation via Dynamic Kinetic Resolution Driven by the Asymmetric Transfer Hydrogenation of Keto Acids with Oxo-Tethered Ruthenium Catalysts. J Am Chem Soc 2019; 141:16354-16361. [DOI: 10.1021/jacs.9b07297] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Taichiro Touge
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11 Nishi-yawata, Hiratsuka City, Kanagawa 254-0073, Japan
| | - Kazuhiko Sakaguchi
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11 Nishi-yawata, Hiratsuka City, Kanagawa 254-0073, Japan
| | - Nao Tamaki
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11 Nishi-yawata, Hiratsuka City, Kanagawa 254-0073, Japan
| | - Hideki Nara
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11 Nishi-yawata, Hiratsuka City, Kanagawa 254-0073, Japan
| | - Tohru Yokozawa
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11 Nishi-yawata, Hiratsuka City, Kanagawa 254-0073, Japan
| | - Kazuhiko Matsumura
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11 Nishi-yawata, Hiratsuka City, Kanagawa 254-0073, Japan
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|