1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Zhao X, Gao X, Zhao F, Wang L, Zhang M, Zhou N. Substituent-Controlled Copper-Catalyzed Trifluoromethylation of 1,7-Dienes: Synthesis of Mono- and Bis-trifluoromethylated Benzoxepines. Org Lett 2024; 26:7261-7266. [PMID: 39167477 DOI: 10.1021/acs.orglett.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A copper-catalyzed trifluoromethylation of benzene-linked 1,7-dienes with 1-trifluoromethyl-1,2-benziodoxole via a radical cascade cyclization process for the synthesis of mono- and bis-trifluoromethylated benzoxepines is developed. The selectivity depends on substituents on the double bond of the allyl group in 1,7-dienes. The large-scale operation and late-stage functionalization of bioactive molecules reveal the promising utility of this protocol.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiang Gao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
3
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
4
|
Cao TY, Qi L, Wang LJ. Switchable Regioselective 7- endo or 6- exo Iodocyclization of O-Homoallyl Benzimidates. J Org Chem 2023. [PMID: 36757344 DOI: 10.1021/acs.joc.2c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We present a facile switchable regioselective 7-endo or 6-exo iodocyclization of O-homoallyl benzimidates here, which affords various iodo-substituted 1,3-oxazines and tetrahydro-1,3-oxazepines in a controllable manner. The products can further undergo substitution reactions to afford a series of rich functionalized target heterocyclic molecules. The developed protocol has the advantages of mild conditions, simple operation, and excellent functional group compatibility.
Collapse
Affiliation(s)
- Tong-Yang Cao
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Lin Qi
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| |
Collapse
|
5
|
Cao TY, Qi L, Dong W, Yan ZM, Ji SC, Du JL, Zhang L, Li W, Wang LJ. NIS-Promoted Selective Amino-Diazidation and Amino-Iodoazidation of O-Homoallyl Benzimidates: Synthesis of Vicinal Diazido 1,3-Oxazines and Vicinal Iodoazido 1,3-Oxazines. J Org Chem 2022; 87:16578-16591. [PMID: 36450035 DOI: 10.1021/acs.joc.2c02252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Amines, especially those with multi-nitrogen moieties, are widespread in natural products and biologically active compounds. Thus, the development of direct and efficient methods to introduce multiple nitrogen-containing fragments into compounds in one step is highly desirable yet challenging. Herein, we report an NIS-promoted selective amino-diazidation and amino-iodoazidation of O-homoallyl benzimidates with NaN3. By using this protocol, a variety of vicinal diazido-substituted 1,3-oxazines and vicinal iodoazido-substituted 1,3-oxazines were directly synthesized in a controllable manner. Preliminary mechanistic investigations revealed that the reaction operates through a NIS-promoted four-step cascade process. The developed method has the merits of metal-free, excellent functional group compatibility, simple operation, and mild conditions.
Collapse
Affiliation(s)
- Tong-Yang Cao
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Lin Qi
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Wei Dong
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Zhi-Min Yan
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Shi-Chao Ji
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Jian-Long Du
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Linlin Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Wei Li
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| |
Collapse
|
6
|
Fernandes RA, Gangani AJ. Palladium-Catalyzed Oxidant Dependent Switchable Aza-Wacker Cyclization and Oxidative Dimerization of Benzimidates. Org Lett 2022; 24:7400-7404. [PMID: 36197317 DOI: 10.1021/acs.orglett.2c02942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An oxidant dependent switchable palladium-catalyzed synthesis of 1,3-oxazines and benzohydrazonates (azines) from O-homoallyl benzimidates has been developed. The reaction involved aza-Wacker-type intramolecular cyclization of O-homoallyl benzimidates with Cu(OAc)2 as oxidant under Pd-catalysis to deliver 4-methylene-1,3-oxazines, whereas dimerization of O-homoallyl benzimidates with K2S2O8 as oxidant resulted remarkably in benzohydrazonates (azines). The reaction is atom economic with an easily operational procedure for divergent synthesis of important scaffolds.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Ashvin J Gangani
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
7
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment II. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
8
|
Tian Y, Wu F, Jia S, Gong X, Mao H, Wang P, Qin W, Yan H. Organocatalytic Asymmetric Construction of Tetrasubstituted Carbon Stereocenters Bearing Three Heteroatoms via Intramolecular Cyclization of Vinylidene ortho-Quinone Methide with Imidates. Org Lett 2022; 24:5073-5077. [PMID: 35819168 DOI: 10.1021/acs.orglett.2c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein an organocatalytic asymmetric protocol for the construction of tetrasubstituted carbon stereocenters bearing three heteroatoms. The reaction proceeded via the enantioselective intramolecular cyclization reaction of vinylidene ortho-quinone methide (VQM) with imidates to form pentacyclic heterocycles. The formed tetrasubstituted carbon center was stable under a high temperature and the conditions for further transformations.
Collapse
Affiliation(s)
- Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Fengdi Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shiqi Jia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiangnan Gong
- Analytical and Testing Center of Chongqing University, Chongqing University, Chongqing 401331, P. R. China
| | - Hui Mao
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
9
|
Rani N, Soni R, Sihag M, Kinger M, Aneja DK. Combined Approach of Hypervalent Iodine Reagents and Transition Metals in Organic Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neha Rani
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Rinku Soni
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Monika Sihag
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Mayank Kinger
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Deepak K. Aneja
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| |
Collapse
|
10
|
Lu D, Li Y, Wang P, Wang Z, Yang D, Gong Y. Cu-Catalyzed C (sp3)–N Coupling and Alkene Carboamination Enabled by Ligand-Promoted Selective Hydrazine Transfer to Alkyl Radicals. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Yadong Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Zijie Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Daoyi Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Mou XQ, Ren LC, Zhang M, Wang M, Jin YF, Guan QX, Cai A, Zhang SM, Ren H, Zhang Y, Chen YZ. Complementary Copper-Catalyzed and Electrochemical Aminosulfonylation of O-Homoallyl Benzimidates and N-Alkenyl Amidines with Sodium Sulfinates. Org Lett 2022; 24:1405-1411. [PMID: 35138858 DOI: 10.1021/acs.orglett.2c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A complementary copper-catalyzed and electrochemical aminosulfonylation of O-homoallyl benzimidates and N-alkenyl amidines with sodium sulfinates was developed. The terminal alkene substrate produced sulfone-containing 1,3-oxazines and tetrahydropyrimidines in the presence of Cu(OAc)2, Ag2CO3, and DPP, and under similar reaction conditions, sulfonylated tetrahydro-1,3-oxazepines were prepared from 1-aryl-substituted O-homoallyl benzimidates in moderate to good yields. For certain electron-rich 1,1-diaryl-substituted alkene substrates, the corresponding tetrahydro-1,3-oxazepines could also be obtained in similar or even higher yields via a green electrochemical technique.
Collapse
Affiliation(s)
- Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Liang-Chen Ren
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Mei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Min Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yu-Fan Jin
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Qing-Xin Guan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Ang Cai
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Shi-Min Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
12
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
13
|
Zheng L, Wang Y, Cai L, Guo W. Progress in C—CF 3/C—N Bond Formation Reactions of Alkenes Involving in Free Radicals. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Yuan WQ, Liu YT, Ni YQ, Liu YZ, Pan F. Metal-free photocatalytic intermolecular trifluoromethylation- gem-difluoroallylation of unactivated alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00764a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, transition-metal-free, photocatalytic three-component intermolecular trifluoromethylation-gem-difluoroallylation of unactivated alkenes has been achieved.
Collapse
Affiliation(s)
- Wan-Qiang Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yu-Qing Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yong-Ze Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| |
Collapse
|
15
|
Wu F, Yuan Y, Wu X. Copper‐Catalyzed 1,2‐Trifluoromethylation Carbonylation of Unactivated Alkenes: Efficient Access to β‐Trifluoromethylated Aliphatic Carboxylic Acid Derivatives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yang Yuan
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
16
|
Wu FP, Yuan Y, Wu XF. Copper-Catalyzed 1,2-Trifluoromethylation Carbonylation of Unactivated Alkenes: Efficient Access to β-Trifluoromethylated Aliphatic Carboxylic Acid Derivatives. Angew Chem Int Ed Engl 2021; 60:25787-25792. [PMID: 34622558 DOI: 10.1002/anie.202112609] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Indexed: 12/15/2022]
Abstract
A novel copper-catalyzed carbonylative trifluoromethylation of unactivated alkenes has been developed. A broad range of β-trifluoromethylated carboxylic acid derivatives were prepared in moderate to excellent yields from simple alkenes with excellent regioselectivity. It is noteworthy that ethylene gas, as the simplest olefin, can also be applied directly to obtain β-trifluoromethylated amides and ester. This transformation presents the first example on carbonylative trifluoromethylation of alkenes.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Yang Yuan
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
17
|
Chen B, He H, Xu J, Guo K, Xu N, Chen K, Zhu Y. Transition‐Metal‐Free Visible Light‐Induced Imino‐trifluoromethylation of Unsaturated Oxime Esters: A Facile Access to CF
3
‐Tethered Pyrrolines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bin Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Han He
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Jiawei Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
18
|
Zhang H, Lv X, Yu H, Bai Z, Chen G, He G. β-Lactam Synthesis via Copper-Catalyzed Directed Aminoalkylation of Unactivated Alkenes with Cyclobutanone O-Benzoyloximes. Org Lett 2021; 23:3620-3625. [DOI: 10.1021/acs.orglett.1c01007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoyan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanrui Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Giofrè S, Loro C, Molteni L, Castellano C, Contini A, Nava D, Broggini G, Beccalli EM. Copper(II)‐Catalyzed Aminohalogenation of Alkynyl Carbamates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Camilla Loro
- Dipartimento di Scienza ed Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Letizia Molteni
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Carlo Castellano
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Alessandro Contini
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Donatella Nava
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Gianluigi Broggini
- Dipartimento di Scienza ed Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Egle M. Beccalli
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| |
Collapse
|
20
|
Huang W, Xu C, Yu J, Wang M. ZnI 2-Catalyzed Aminotrifluoromethylation Cyclization of Alkenes Using PhICF 3Cl. J Org Chem 2021; 86:1987-1999. [PMID: 33378195 DOI: 10.1021/acs.joc.0c02637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report here an alternatively catalytic aminotrifluoromethylation of alkenes using PhICF3Cl as a bifunctional reagent along with ZnI2 as a dual catalyst. A combined catalytic strategy was established for the intramolecular aminotrifluoromethylation of 4-pentenamines. As a result, a set of 2-trifluoroethyl-pyrrolidines was obtained in a high selectivity. Mechanism studies revealed that the reaction included an iodine anion-catalyzed radical chlorotrifluoromethylation of alkenes and a sequential Lewis acid-promoted aminocyclization of the resulting chlorotrifluoromethylated intermediates.
Collapse
Affiliation(s)
- Wanqiao Huang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jianxin Yu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
21
|
Wang Z, Cheng J, Shi Z, Wang N, Zhan F, Jiang S, Lin J, Jiang Y, Liu X. Catalytic Asymmetric Intermolecular Radical Aminotrifluoromethylation of Alkenes with Hydrazines by Cu(I)/CPA Cooperative Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202001398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhe Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 P. R. China
| | - Jiang‐Tao Cheng
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Zhichao Shi
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 P. R. China
| | - Na Wang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Feng Zhan
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 P. R. China
| | - Sheng‐Peng Jiang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Jin‐Shun Lin
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 P. R. China
| | - Yuyang Jiang
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 P. R. China
- School of Pharmaceutical Sciences Tsinghua University Beijing 100084 P. R. China
| | - Xin‐Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 P. R. China
| |
Collapse
|
22
|
Bai Z, Zhang H, Wang H, Yu H, Chen G, He G. Enantioselective Alkylamination of Unactivated Alkenes under Copper Catalysis. J Am Chem Soc 2020; 143:1195-1202. [PMID: 33378201 DOI: 10.1021/jacs.0c12333] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enantioselective addition reaction of various alkyl groups to unactivated internal alkenes under Cu catalysis has been developed. The reaction uses amide-linked aminoquinoline as the directing group, 4-alkyl Hantzsch esters as the donor of alkyl radicals, and rarely used biaryl diphosphine oxide as a chiral ligand. β-lactams featuring two contiguous stereocenters at Cβ and the β substituent can be obtained in good yield with excellent enantioselectivity. Mechanistic studies indicate that a nucleophilic addition of the alkyl radical to CuII-coordinated alkene is the enantio-determining step.
Collapse
Affiliation(s)
- Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Heng Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanrui Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Ouyang Y, Tong CL, Xu XH, Qing FL. Copper and Zinc Copromoted Bromo(chloro)trifluoromethylation of Alkenes and Alkynes with Trifluoromethanesulfonic Anhydride. Org Lett 2020; 23:346-350. [DOI: 10.1021/acs.orglett.0c03855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao-Lai Tong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
24
|
Wang P, Zhu S, Lu D, Gong Y. Intermolecular Trifluoromethyl-Hydrazination of Alkenes Enabled by Organic Photoredox Catalysis. Org Lett 2020; 22:1924-1928. [DOI: 10.1021/acs.orglett.0c00287] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Songsong Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
25
|
Chen AD, Herbort JH, Wappes EA, Nakafuku KM, Mustafa DN, Nagib DA. Radical cascade synthesis of azoles via tandem hydrogen atom transfer. Chem Sci 2020; 11:2479-2486. [PMID: 34084413 PMCID: PMC8157396 DOI: 10.1039/c9sc06239d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
A radical cascade strategy for the modular synthesis of five-membered heteroarenes (e.g. oxazoles, imidazoles) from feedstock reagents (e.g. alcohols, amines, nitriles) has been developed. This double C-H oxidation is enabled by in situ generated imidate and acyloxy radicals, which afford regio- and chemo-selective β C-H bis-functionalization. The broad synthetic utility of this tandem hydrogen atom transfer (HAT) approach to access azoles is included, along with experiments and computations that provide insight into the selectivity and mechanism of both HAT events.
Collapse
Affiliation(s)
- Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - James H Herbort
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Ethan A Wappes
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Kohki M Nakafuku
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Darsheed N Mustafa
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
26
|
Li ZL, Fang GC, Gu QS, Liu XY. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem Soc Rev 2020; 49:32-48. [DOI: 10.1039/c9cs00681h] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This tutorial review highlights the recent progress in copper-catalysed radical asymmetric 1,2-difunctionalization of alkenes.
Collapse
Affiliation(s)
- Zhong-Liang Li
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
- Academy for Advanced Interdisciplinary Studies
| | - Gui-Chun Fang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Qiang-Shuai Gu
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
- Academy for Advanced Interdisciplinary Studies
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
| |
Collapse
|
27
|
Chen J, Wang PZ, Lu B, Liang D, Yu XY, Xiao WJ, Chen JR. Enantioselective Radical Ring-Opening Cyanation of Oxime Esters by Dual Photoredox and Copper Catalysis. Org Lett 2019; 21:9763-9768. [DOI: 10.1021/acs.orglett.9b03970] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Peng-Zi Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Bin Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dong Liang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
28
|
Wang Z, Bai X, Li B. Metal‐Catalyzed Substrate‐Directed Enantioselective Functionalization of Unactivated Alkenes. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900308] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS), Department of ChemistryTsinghua University Beijing 100084 China
| | - Xiao‐Yan Bai
- Center of Basic Molecular Science (CBMS), Department of ChemistryTsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS), Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
29
|
Xiao H, Shen H, Zhu L, Li C. Copper-Catalyzed Radical Aminotrifluoromethylation of Alkenes. J Am Chem Soc 2019; 141:11440-11445. [DOI: 10.1021/jacs.9b06141] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haiwen Xiao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Haigen Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Lin Zhu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Chaozhong Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, P. R. China
| |
Collapse
|
30
|
Thakur R, Jaiswal Y, Kumar A. Imidates: an emerging synthon for N-heterocycles. Org Biomol Chem 2019; 17:9829-9843. [DOI: 10.1039/c9ob01899a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent application of imidates as building blocks for the synthesis of saturated and un-saturated N-heterocycles via C–N annulation reactions under acid/base/metal-catalyzed/radical-mediated reaction conditions.
Collapse
Affiliation(s)
- Rima Thakur
- Department of Chemistry
- National Institute of Technology
- Patna
- India
| | - Yogesh Jaiswal
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta
- India
| | - Amit Kumar
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta
- India
| |
Collapse
|