1
|
Wang Y, Zhao WL, Gao Z, Qu C, Li X, Jiang Y, Hu L, Wang XQ, Li M, Wang W, Chen CF, Yang HB. Switchable Topologically Chiral [2]Catenane as Multiple Resonance Thermally Activated Delayed Fluorescence Emitter for Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2024:e202417458. [PMID: 39379791 DOI: 10.1002/anie.202417458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Aiming at the fabrication of circularly polarized organic light-emitting diodes (CP-OLEDs) with high dissymmetry factors (gEL) and color purity through the employment of novel chiral source, topologically chiral [2]catenanes were first utilized as the key chiral skeleton to construct novel multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters. Impressively, the efficient chirality induction and unique switchable feature of topologically chiral [2]catenane not only lead to a high |gPL| value up to 1.6×10-2 but also facilitate in situ dynamic switching of the full-width at half-maximum (FWHM) and circularly polarized luminescence (CPL). Furthermore, the solution-processed CP-OLEDs based on the resultant topologically chiral emitters exhibit a narrow FWHM of 36 nm, maximum external quantum efficiency of 17.6 %, and CPEL with |gEL| of 2.1×10-3. This study demonstrates the successful construction of the first CP-MR-TADF emitters based on topological chirality with the highest |gPL| among the reported CP-MR-TADF emitters and excellent device performance to the best of our knowledge. Moreover, it endowed the MR-TADF emitter with distinctive switchable CPL performances, thus providing a novel design strategy as well as a promising platform for developing intelligent CP-OLEDs.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiwen Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Wang X, Wu P, Wang Y, Cui T, Jia M, He X, Wang W, Pan H, Sun Z, Yang HB, Chen J. Unraveling the Origin of Multichannel Circularly Polarized Luminescence in a Pyrene-Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2024; 63:e202407929. [PMID: 38837292 DOI: 10.1002/anie.202407929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Mechanically interlocked molecules (MIMs) are promising platforms for developing functionalized artificial molecular machines. The construction of chiral MIMs with appealing circularly polarized luminescence (CPL) properties has boosted their potential application in biomedicine and the optical industry. However, there is currently little knowledge about the CPL emission mechanism or the emission dynamics of these related MIMs. Herein, we demonstrate that time-resolved circularly polarized luminescence (TRCPL) spectroscopy combined with transient absorption (TA) spectroscopy offers a feasible approach to elucidate the origins of CPL emission in pyrene-functionalized topologically chiral [2]catenane as well as in a series of pyrene-functionalized chiral molecules. For the first time, direct evidence differentiating the chiroptical signals originating from either topological (local state emission) or Euclidean chirality (excimer state emission) in these pyrene-functionalized chiral molecules has been discovered. Our work not only establishes a novel and ideal approach to study CPL mechanism, but also provides a theoretical foundation for the rational design of novel chiral materials in the future.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes &, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Tong Cui
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes &, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes &, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
3
|
Wang Y, Zhang X, Huang CB, Hu L, Wang XQ, Wang W, Yang HB. Inducing and Switching the Handedness of Polyacetylenes with Topologically Chiral [2]Catenane Pendants. Angew Chem Int Ed Engl 2024; 63:e202408271. [PMID: 38837513 DOI: 10.1002/anie.202408271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
To explore the chirality induction and switching of topological chirality, poly[2]catenanes composed of helical poly(phenylacetylenes) (PPAs) main chain and topologically chiral [2]catenane pendants are described for the first time. These poly[2]catenanes with optically active [2]catenanes on side chains were synthesized by polymerization of enantiomerically pure topologically chiral [2]catenanes with ethynyl polymerization site and/or point chiral moiety. The chirality information of [2]catenane pendants was successfully transferred to the main chain of polyene backbones, leading to preferred-handed helical conformations, while the introduction of point chiral units has negligible effect on the overall helices. More interestingly, attributed to unique dynamic feature of the [2]catenane pendants, these polymers revealed dynamic response behaviors to solvents, temperature, and sodium ions, resulting in the fully reversible switching on/off of the chirality induction. This work provides not only new design strategy for novel chiroptical switches with topologically chiral molecules but also novel platforms for the development of smart chiral materials.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chang-Bo Huang
- Coatings Applied Research Asia Pacific, BASF Advanced Chemicals Co., Ltd., Shanghai, 200137, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
4
|
Chen Q, Zhu K. Advancements and strategic approaches in catenane synthesis. Chem Soc Rev 2024; 53:5677-5703. [PMID: 38659402 DOI: 10.1039/d3cs00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Catenanes, a distinctive category of mechanically interlocked molecules composed of intertwined macrocycles, have undergone significant advancements since their initial stages characterized by inefficient statistical synthesis methods. Through the aid of molecular recognition processes and principles of self-assembly, a diverse array of catenanes with intricate structures can now be readily accessed utilizing template-directed synthetic protocols. The rapid evolution and emergence of this field have catalyzed the design and construction of artificial molecular switches and machines, leading to the development of increasingly integrated functional systems and materials. This review endeavors to explore the pivotal advancements in catenane synthesis from its inception, offering a comprehensive discussion of the synthetic methodologies employed in recent years. By elucidating the progress made in synthetic approaches to catenanes, our aim is to provide a clearer understanding of the future challenges in further advancing catenane chemistry from a synthetic perspective.
Collapse
Affiliation(s)
- Qing Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
5
|
Katoono R, Arisawa K. Two-ring chirality generated by the alignment of two achiral phenylacetylene macrocycles. RSC Adv 2023; 13:11712-11719. [PMID: 37063719 PMCID: PMC10102884 DOI: 10.1039/d3ra01780j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
When two achiral rings are bound mechanically, a chiral source is generated in the assembly. The chiroptical properties could be modulated according to the relative occupation of each ring in the assembly. In fact, we have found that two isomeric assemblies (1 and 2) show unique properties in each assembly with two achiral rings of phenylacetylene macrocycle (PAM). When considering the difference in the chiroptical properties of these two isomeric assemblies (6PAM × 2), no comparison was available based on no activity of the achiral component element itself (6PAM). In this work, we synthesized a two-ring chiral analog (4) by the ring-fusion of two 6PAMs to an 11PAM, and examined the chiroptical properties of 4, since the single helix was imparted as a chiral source. By comparison of the chiroptical properties (molar circular dichroism and molar optical rotation) of 1 and 2 to those of 4, we demonstrated that the disparity was related to the alignment of the two achiral rings.
Collapse
Affiliation(s)
- Ryo Katoono
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo 060-0810 Japan +81-11-706-4616
| | - Kohei Arisawa
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo 060-0810 Japan +81-11-706-4616
| |
Collapse
|
6
|
A chiral macrocycle for the stereoselective synthesis of mechanically planar chiral rotaxanes and catenanes. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Wang Y, Gong J, Wang X, Li W, Wang X, He X, Wang W, Yang H. Multistate Circularly Polarized Luminescence Switching through Stimuli‐Induced Co‐Conformation Regulations of Pyrene‐Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022; 61:e202210542. [DOI: 10.1002/anie.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Jiacheng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xianwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| |
Collapse
|
8
|
Wang Y, Gong J, Wang X, Li WJ, Wang XQ, He X, Wang W, Yang HB. Multistate Circularly Polarized Luminescence Switching through Stimuli‐induced Co‐conformation Regulations of Pyrene‐functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Jiacheng Gong
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xianwei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei-Jian Li
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xu-Qing Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xiao He
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Hai-Bo Yang
- East China Normal University Department of Chemistry 3663 N. Zhongshan Road 200062 Shanghai CHINA
| |
Collapse
|
9
|
Rodríguez-Rubio A, Savoini A, Modicom F, Butler P, Goldup SM. A Co-conformationally "Topologically" Chiral Catenane. J Am Chem Soc 2022; 144:11927-11932. [PMID: 35763555 PMCID: PMC9348828 DOI: 10.1021/jacs.2c02029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catenanes composed of two achiral rings that are oriented (Cnh symmetry) because of the sequence of atoms they contain are referred to as topologically chiral. Here, we present the synthesis of a highly enantioenriched catenane containing a related but overlooked "co-conformationally 'topologically' chiral" stereogenic unit, which arises when a bilaterally symmetric Cnv ring is desymmetrized by the position of an oriented macrocycle.
Collapse
Affiliation(s)
- Arnau Rodríguez-Rubio
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Andrea Savoini
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Florian Modicom
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Patrick Butler
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Stephen M. Goldup
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| |
Collapse
|
10
|
Au-Yeung HY, Deng Y. Distinctive features and challenges in catenane chemistry. Chem Sci 2022; 13:3315-3334. [PMID: 35432874 PMCID: PMC8943846 DOI: 10.1039/d1sc05391d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
11
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
12
|
Ishizu Y, Takeyoshi A, Hasegawa E, Iwamoto H. Synthesis and Resolution of Optically Active Topologically Chiral Catenane. CHEM LETT 2020. [DOI: 10.1246/cl.200555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yuki Ishizu
- Department of Chemistry, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Ayaka Takeyoshi
- Department of Chemistry, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Eietsu Hasegawa
- Department of Chemistry, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
13
|
|
14
|
Koenis MAJ, Chibueze CS, Jinks MA, Nicu VP, Visscher L, Goldup SM, Buma WJ. Vibrational circular dichroism spectroscopy for probing the expression of chirality in mechanically planar chiral rotaxanes. Chem Sci 2020; 11:8469-8475. [PMID: 34123106 PMCID: PMC8163398 DOI: 10.1039/d0sc02485f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
Mechanically interlocked molecules can exhibit molecular chirality that arises due to the mechanical bond rather than covalent stereogenic units. Developing applications of such systems is made challenging by the absence of techniques for assigning the absolute configuration of products and methods to probe how the mechanical stereogenic unit influences the spatial arrangements of the functional groups in solution. Here we demonstrate for the first time that Vibrational Circular Dichroism (VCD) can be used to not only discriminate between mechanical stereoisomers but also provide detailed information on their (co)conformations. The latter is particularly important as these molecules are now under investigation in catalysis and sensing, both of which rely on the solution phase shape of the interlocked structure. Detailed analysis of the VCD spectra shows that, although many of the signals arise from coupled oscillators isolated in the covalent sub-components, intercomponent coupling between the macrocycle and axle gives rise to several VCD bands.
Collapse
Affiliation(s)
- Mark A J Koenis
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - C S Chibueze
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M A Jinks
- Department of Chemistry, University of Southampton University Road, Highfield Southampton SO17 1BJ UK
| | - Valentin P Nicu
- Department of Environmental Science, Physics, Physical Education and Sport, Lucian Blaga University of Sibiu loan Ratiu Street, Nr. 7-9 550012 Sibiu Romania
| | - Lucas Visscher
- Amsterdam Center for Multiscale Modeling, Section Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - S M Goldup
- Department of Chemistry, University of Southampton University Road, Highfield Southampton SO17 1BJ UK
| | - Wybren J Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| |
Collapse
|
15
|
Gaedke M, Witte F, Anhäuser J, Hupatz H, Schröder HV, Valkonen A, Rissanen K, Lützen A, Paulus B, Schalley CA. Chiroptical inversion of a planar chiral redox-switchable rotaxane. Chem Sci 2019; 10:10003-10009. [PMID: 32055357 PMCID: PMC7003955 DOI: 10.1039/c9sc03694f] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
A tetrathiafulvalene (TTF)-containing crown ether macrocycle with C s symmetry was designed to implement planar chirality into a redox-active [2]rotaxane. The directionality of the macrocycle atom sequence together with the non-symmetric axle renders the corresponding [2]rotaxane mechanically planar chiral. Enantiomeric separation of the [2]rotaxane was achieved by chiral HPLC. The electrochemical properties - caused by the reversible oxidation of the TTF - are similar to a non-chiral control. Reversible inversion of the main band in the ECD spectra for the individual enantiomers was observed after oxidation. Experimental evidence, conformational analysis and DFT calculations of the neutral and doubly oxidised species indicate that mainly electronic effects of the oxidation are responsible for the chiroptical switching. This is the first electrochemically switchable rotaxane with a reversible inversion of the main ECD band.
Collapse
Affiliation(s)
- Marius Gaedke
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Felix Witte
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Jana Anhäuser
- Kekulé-Institut für Organische Chemie und Biochemie , Universität Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| | - Henrik Hupatz
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Hendrik V Schröder
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Arto Valkonen
- University of Jyvaskyla , Department of Chemistry , P.O. Box 35 , 40014 Jyväskylä , Finland
| | - Kari Rissanen
- University of Jyvaskyla , Department of Chemistry , P.O. Box 35 , 40014 Jyväskylä , Finland
| | - Arne Lützen
- Kekulé-Institut für Organische Chemie und Biochemie , Universität Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| |
Collapse
|