1
|
Xu K, Wang L, He D. Research on the Action and Mechanism of Pharmacological Components of Omphalia lapidescens. Int J Mol Sci 2024; 25:11016. [PMID: 39456798 PMCID: PMC11507145 DOI: 10.3390/ijms252011016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Omphalia lapidescens is a macrofungus that is used in traditional Chinese medicine for its insecticidal and stagnation-relieving properties. The active ingredients of this fungus including proteins, polysaccharides and sterols have been demonstrated to exhibit antiparasitic, anti-inflammatory, and antitumor effects. Omphalia has been used in clinical cancer treatment. Many studies on Omphalia have concentrated on its cytotoxicity and anticancer effects. However, the investigation of its natural metabolites remains a significant area for further research. This review presents a comprehensive analysis of the research progress concerning the pharmacological components of Omphalia. The aim of this discussion is to provide a reference for further in-depth study of Omphalia, with the objective of exploring its potential value. Therefore, the focus of this review was on the classification of metabolites in Omphalia and their mechanisms of action.
Collapse
Affiliation(s)
| | | | - Dan He
- Department of Pathogenobiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (K.X.); (L.W.)
| |
Collapse
|
2
|
Zheng Y, Li Q, Gu M, Liao H, Liang Y, Liu F, Li XN, Sun W, Chen C, Zhang Y, Zhu H. Undobolins A-L, Ophiobolin-Type Sesterterpenoids from Aspergillus undulatus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1965-1974. [PMID: 39051441 DOI: 10.1021/acs.jnatprod.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Twelve previously undescribed ophiobolin-type sesterterpenoids, undobolins A-L (1-12), were isolated from Aspergillus undulatus, and their structures were elucidated by spectroscopic analysis, ECD calculations, and single-crystal X-ray diffraction experiments. Compound 1 was the second example of 20-nor-ophiobolin reported, while compounds 2-6 were notable for oxygenation of C-2, and compound 6 showed significant inhibitory activity against ConA-induced T lymphocyte proliferation with an IC50 value of 2.3 μM, which suggests a promising new direction in the quest for immunosuppressive agents.
Collapse
Affiliation(s)
- Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Minglang Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fei Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
3
|
Dembitsky VM. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines 2024; 12:1021. [PMID: 38790983 PMCID: PMC11117879 DOI: 10.3390/biomedicines12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The main focus of this review is to introduce readers to the fascinating class of lipid molecules known as norsteroids, exploring their distribution across various biotopes and their biological activities. The review provides an in-depth analysis of various modified steroids, including A, B, C, and D-norsteroids, each characterized by distinct structural alterations. These modifications, which range from the removal of specific methyl groups to changes in the steroid core, result in unique molecular architectures that significantly impact their biological activity and therapeutic potential. The discussion on A, B, C, and D-norsteroids sheds light on their unique configurations and how these structural modifications influence their pharmacological properties. The review also presents examples from natural sources that produce a diverse array of steroids with distinct structures, including the aforementioned A, B, C, and D-nor variants. These compounds are sourced from marine organisms like sponges, soft corals, and starfish, as well as terrestrial entities such as plants, fungi, and bacteria. The exploration of these steroids encompasses their biosynthesis, ecological significance, and potential medical applications, highlighting a crucial area of interest in pharmacology and natural product chemistry. The review emphasizes the importance of researching these steroids for drug development, particularly in addressing diseases where conventional medications are inadequate or for conditions lacking sufficient therapeutic options. Examples of norsteroid synthesis are provided to illustrate the practical applications of this research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
4
|
Wei M, Liao H, Li Q, Deng X, Gao C, Ding N, Sun W, Zhu H, Guo J, Chen C, Zhang Y. Ergosterols with rare peroxide, oxetane ring moiety, and a lactone ring from Aspergillus spectabilis and their immunosuppressive activities. PHYTOCHEMISTRY 2024; 222:114070. [PMID: 38574957 DOI: 10.1016/j.phytochem.2024.114070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Ten ergostane-type steroids, including seven undescribed ones named spectasteroids A-G, were obtained from Aspergillus spectabilis. Their structures and absolute configurations were determined based on HRESIMS, NMR, ECD calculations, and single-crystal X-ray diffraction analyses. Structurally, spectasteroid A was a unique example of aromatic ergostane-type steroid that featured a rare peroxide ring moiety; spectasteroid B contained a rare oxetane ring system formed between C-9 and C-14; and spectasteroid C was an unusual 3,4-seco-ergostane steroid with an extra lactone ring between C-3 and C-9. Spectasteroids F and G specifically showed inhibitory effects against concanavalin A-induced T lymphocyte proliferation and lipopolysaccharide-induced B lymphocyte proliferation, with IC50 values ranging from 2.33 to 4.22 μM. Spectasteroid F also showed excellent antimultidrug resistance activity, which remarkable enhanced the inhibitory activity of PTX on the colony formation of SW620/Ad300 cells.
Collapse
Affiliation(s)
- Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xueying Deng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chi Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nanjin Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jieru Guo
- Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Zhao S, Jing Z. New pimarane diterpenoids with antibacterial activity from fungus Arthrinium sp. ZS03. Chin J Nat Med 2024; 22:356-364. [PMID: 38658098 DOI: 10.1016/s1875-5364(24)60629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 04/26/2024]
Abstract
A comprehensive chemical study of the endophytic fungus Arthrinium sp. ZS03, associated with Acorus tatarinowii Schott, yielded eleven pimarane diterpenoids (compounds 1-11), including seven novel compounds designated arthrinoids A-G (1-7). The determination of their structures and absolute configurations was achieved through extensive spectroscopic techniques, quantum chemical calculations of electronic circular dichroism (ECD), and single-crystal X-ray diffraction analysis. Furthermore, 7 demonstrated inhibitory activity against Klebsiella pneumoniae, comparable to the reference antibiotic amikacin, with a minimum inhibitory concentration (MIC) of 8 μg·mL-1.
Collapse
Affiliation(s)
- Songfeng Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ziwei Jing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Zhang Z, Qian X, Gu Y, Gui J. Controllable skeletal reorganizations in natural product synthesis. Nat Prod Rep 2024; 41:251-272. [PMID: 38291905 DOI: 10.1039/d3np00066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covering: 2016 to 2023The synthetic chemistry community is always in pursuit of efficient routes to natural products. Among the many available general strategies, skeletal reorganization, which involves the formation, cleavage, and migration of C-C and C-heteroatom bonds, stands out as a particularly useful approach for the efficient assembly of molecular skeletons. In addition, it allows for late-stage modification of natural products for quick access to other family members or unnatural derivatives. This review summarizes efficient syntheses of steroid, terpenoid, and alkaloid natural products that have been achieved by means of this strategy in the past eight years. Our goal is to illustrate the strategy's potency and reveal the spectacular human ingenuity demonstrated in its use and development.
Collapse
Affiliation(s)
- Zeliang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiao Qian
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
7
|
Deng M, Xiao Y, Wang S, Zhang M, Qiao Y, Huang S, Xie J, Zhou X. Penicimides A and B, two novel diels-alder [4 + 2] cycloaddition ergosteroids from Penicillium herquei. Bioorg Chem 2024; 143:107025. [PMID: 38103332 DOI: 10.1016/j.bioorg.2023.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Two novel naturally occurring [4 + 2] Diels-Alder cycloaddition ergosteroids (1 and 2), three undescribed oxidized ergosteroids (3-5), and eleven known analogs (6-16) were isolated from Penicillium herquei. Compounds 1 and 2 represent the first reported cycloadducts of a steroid with 1,4,6-trimethyl-1,6-dihydropyridine-2,5-dione or 4,6-dimethyl-1,6-dihydropyridine-2,5-dione to date. Compound 3 is the C-15 epimer of (22E,24R)-9α,11β-dihydroxyergosta-4,6,8(14),22-tetraen-3-one (14). The chemical structures of these compounds were elucidated through widespread spectroscopic analyses, mainly including HRESIMS and 1D and 2D NMR data, calculated 13C NMR-DP4+ analysis, and electronic circular dichroism (ECD) data analyses. Biological evaluations of Compounds 1-16 revealed that 3, 9-11, and 15 inhibited the production of NO in LPS-induced RAW264.7 cells with an IC50 value from 7.37 ± 0.69 to 38.9 ± 2.25 μM (the positive control dexamethasone IC50: 9.54 ± 0.71 μM). In addition, Compound 3 exhibited a potent inhibitory effect on the secretion of the proinflammatory cytokines TNF-α and IL-6, the transcription level of the proinflammatory macrophage markers TNF-α, and the expression of the iNOS protein.
Collapse
Affiliation(s)
- Mengyi Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu 610000, Sichuan, PR China
| | - Yan Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Shu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Min Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Yuben Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, PR China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Jiang Xie
- Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu 610000, Sichuan, PR China
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu 610000, Sichuan, PR China.
| |
Collapse
|
8
|
Peng ML, Zhang LJ, Luo Y, Xu SY, Long XM, Ao JL, Liao SG, Zhu QF, He X, Xu GB. Phomopsterone B Alleviates Liver Fibrosis through mTOR-Mediated Autophagy and Apoptosis Pathway. Molecules 2024; 29:417. [PMID: 38257331 PMCID: PMC10820960 DOI: 10.3390/molecules29020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Liver fibrosis is the initial pathological process of many chronic liver diseases. Targeting hepatic stellate cell (HSC) activation is an available strategy for the therapy of liver fibrosis. We aimed to explore the anti-liver fibrosis activity and potential mechanism of phomopsterone B (PB) in human HSCs. The results showed that PB effectively attenuated the proliferation of TGF-β1-stimulated LX-2 cells in a concentration-dependent manner at doses of 1, 2, and 4 μM. Quantitative real-time PCR and Western blot assays displayed that PB significantly reduced the expression levels of α-SMA and collagen I/III. AO/EB and Hoechst33342 staining and flow cytometry assays exhibited that PB promoted the cells' apoptosis. Meanwhile, PB diminished the number of autophagic vesicles and vacuolated structures, and the LC3B fluorescent spots indicated that PB could effectively inhibit the accretion of autophagosomes in LX-2 cells. Moreover, rapamycin and MHY1485 were utilized to further investigate the effect of mTOR in autophagy and apoptosis. The results demonstrated that PB regulated autophagy and apoptosis via the mTOR-dependent pathway in LX-2 cells. In summary, this is the first evidence that PB effectively alleviates liver fibrosis in TGF-β1-stimulated LX-2 cells, and PB may be a promising candidate for the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Mei-Lin Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| | - Li-Jie Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Yan Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Shi-Ying Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Xing-Mei Long
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Jun-Li Ao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| |
Collapse
|
9
|
Feng T, Deng WQ, Liu JK. Two highly conjugated ergosterols from the fungus Psathyrella rogueiana and their anti-inflammatory activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:52-58. [PMID: 37947812 DOI: 10.1080/10286020.2023.2279539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Two previously undescribed ergosterols containing a highly conjugated ring system, psathrosterols A and B (1 and 2), have been isolated from the fungus Psathyrella rogueiana. Their structures with absolute configurations were established by extensive spectroscopic methods, as well as single crystal X-ray diffraction. Compounds 1 and 2 showed inhibitory activity against NO production with IC50 values of 22.3 and 16.4 μM, respectively.
Collapse
Affiliation(s)
- Tao Feng
- State Key Laboratory of Applied Microbiology Southern China; Institute of Microbiology, Guandong Academy of Scinces, Guangzhou 510070, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wang-Qiu Deng
- State Key Laboratory of Applied Microbiology Southern China; Institute of Microbiology, Guandong Academy of Scinces, Guangzhou 510070, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
10
|
Zheng M, Xiao Y, Li Q, Lai Y, Dai B, Zhang M, Kang X, Tong Q, Wang J, Chen C, Zhu H, Zhang Y. Cytotoxic Ergosteroids from a Strain of the Fungus Talaromyces adpressus. JOURNAL OF NATURAL PRODUCTS 2023; 86:2081-2090. [PMID: 37676247 DOI: 10.1021/acs.jnatprod.3c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Nine new ergosteroids (1-9) and seven known ones (10-16) were isolated from Talaromyces adpressus. Their structures and absolute configurations were determined by the interpretation of NMR spectroscopic data, HRESIMS, ECD calculations, and single-crystal X-ray diffraction analyses. Structurally, compound 1 was an ergosteroid with two epoxy and a 3α-OH group at ring A, while compounds 8 and 9 had a contracted ring A with a peroxy bridge between C-3 and C-9, which were reported for the first time. Compounds 2-6, 9, 11, and 15 displayed cytotoxic activities with IC50 values ranging from 0.4 to 32 μM, and compound 7 exhibited an immunosuppressive effect against LPS-induced B lymphocyte proliferation with an IC50 value of 8.6 μM. The structure-activity relationships of these compounds are briefly discussed.
Collapse
Affiliation(s)
- Meijia Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yixin Lai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Bingbing Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Mi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Xin Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| |
Collapse
|
11
|
Alekseychuk M, Heretsch P. Biogenetic space-guided synthesis of rearranged terpenoids. Chem Commun (Camb) 2023. [PMID: 37162324 DOI: 10.1039/d3cc01009k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Natural product chemistry is constantly challenged by newly discovered, complex molecules. Elements of complexity arise from unprecedented frameworks, with a large amount of densely packed stereogenic centres and different functional groups along with a generally high oxidation state. As a prime example, rearranged triterpenoids possess all these elements. For their total synthesis, a limit of what is considered sensible in terms of steps and yield is frequently reached. As an alternative, semisynthetic approaches have gained a great amount of attention in recent years. In this featured article, we present our and others' contributions towards the development of efficient and economic syntheses of complex terpenoid natural products and elaborate on the underlying rationale of biogenetic space-guided synthetic analysis.
Collapse
Affiliation(s)
- Mykhaylo Alekseychuk
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
| | - Philipp Heretsch
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
| |
Collapse
|
12
|
Deng M, Pu Y, Wan Z, Xu J, Huang S, Xie J, Zhou X. Nine undescribed oxidized ergosterols from the endophytic fungus Penicillium herquei and their cytotoxic activity. PHYTOCHEMISTRY 2023; 212:113716. [PMID: 37156435 DOI: 10.1016/j.phytochem.2023.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
A chemical investigation of the EtOAc extract of the endophytic fungus Penicillium herquei led to the isolation of nine undescribed oxidized ergosterols, penicisterols A-I (1-9), along with ten known analogs (10-19). Their structures and absolute configurations were elucidated by a combination of spectroscopic data analysis, quantum-chemical electronic circular dichroism (ECD) calculations and comparisons, [Rh2(OCOCF3)4]-induced ECD experiments, DFT-calculated 13C chemical shifts and DP4+ probability analysis. Compound 1 was a rare example of ergosterol in which the bond between C-8 and C-9 is cleaved to form an enol ether. Moreover, compound 2 possessed a rare (2,5-dioxo-4-imidazolidinyl)-carbamic acid ester group substituted at C-3. All undescribed oxidized ergosterols (1-9) were evaluated for their cytotoxic activity against five cancer cell lines including 4T1 (mouse breast carcinoma), A549 (human pulmonary carcinoma), HCT-116 (human colorectal carcinoma), HeLa (human cervical carcinoma) and Hepg2 (human hepatoma carcinoma) cells. Compounds 2 and 3 displayed moderate cytotoxic activity against 4T1, A549 and HeLa cells, with IC50 values ranging from 17.22 to 31.35 μM.
Collapse
Affiliation(s)
- Mengyi Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, Sichuan, PR China
| | - Yangli Pu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Zhenling Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Jinbo Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Jiang Xie
- Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, Sichuan, PR China
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, Sichuan, PR China.
| |
Collapse
|
13
|
Gao W, Li F, Lin S, Yang B, Wang J, Cao J, Hu Z, Zhang Y. Two new lanostane-type triterpenoids from the fungus Periconia sp. TJ403-rc01. Nat Prod Res 2023; 37:1154-1160. [PMID: 34726089 DOI: 10.1080/14786419.2021.1998046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The endophytic fungus Periconia sp. TJ403-rc01 (Dematiaceae) isolated from the leaves of Rosa chinensis Jacq. (Rosaceae) was cultivated on rice medium and chemically investigated, affording two new lanostane-type triterpenoids, namely pericinones A and B (1 and 2). Their structures were determined mainly by 1 D and 2 D NMR and HRESIMS data. Notably, it is the first report of lanostane-type triterpenoids from species of Periconia. Compounds 1 and 2 showed moderate anti-inflammatory activity against the NO production with IC50 values of 24.12 ± 0.73 and 11.38 ± 1.56 μM, respectively.
Collapse
Affiliation(s)
- Weixi Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jie Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Li BX, Shu Y, Zhang SQ, Yang RD, Yao LL, Liu JQ, Liu SX, Wang JP, Cai L. Macrostines A and B: Tetracyclic fisicoccane from the fungus Periconia macrospinosa WTG-10. Fitoterapia 2023; 165:105429. [PMID: 36649761 DOI: 10.1016/j.fitote.2023.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Two previous unreported fusicoccane diterpenoids macrostines A and B, together with seven known compounds were isolated from an extract of the fungus Periconia macrospinosa WTG-10. Their structures were elucidated by detailed analysis of spectroscopic data, NMR calculations with DP4+, and their absolute configurations were further determined by quantum chemical calculations of ECD spectra or X-crystallography. Macrostines A and B showed no cytotoxicity, antimicrobial activity and inhibitory effect on nitric oxide production in LPS-activated RAW264.7 macrophages. Compound 9 showed moderate activity against Bacillus subtilis.
Collapse
Affiliation(s)
- Bing-Xian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yan Shu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Sheng-Qi Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Rui-Dang Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Lin-Lin Yao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jia-Qi Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Shuai-Xing Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jia-Peng Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, Yunnan, People's Republic of China.
| | - Le Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
15
|
Munawar S, Zahoor AF, Ali S, Javed S, Irfan M, Irfan A, Kotwica-Mojzych K, Mojzych M. Mitsunobu Reaction: A Powerful Tool for the Synthesis of Natural Products: A Review. Molecules 2022; 27:6953. [PMID: 36296545 PMCID: PMC9609662 DOI: 10.3390/molecules27206953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 08/13/2023] Open
Abstract
The Mitsunobu reaction plays a vital part in organic chemistry due to its wide synthetic applications. It is considered as a significant reaction for the interconversion of one functional group (alcohol) to another (ester) in the presence of oxidizing agents (azodicarboxylates) and reducing agents (phosphines). It is a renowned stereoselective reaction which inverts the stereochemical configuration of end products. One of the most important applications of the Mitsunobu reaction is its role in the synthesis of natural products. This review article will focus on the contribution of the Mitsunobu reaction towards the total synthesis of natural products, highlighting their biological potential during recent years.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- College of Agriculture and Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
16
|
Lipid-rich endo-metabolites from a vertically transmitted fungal endophyte Penicillium sp. PM031 attenuate virulence factors of phytopathogenic Ralstonia solanacearum. Microbiol Res 2022; 261:127058. [DOI: 10.1016/j.micres.2022.127058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
17
|
Wu YM, Yang XQ, Li SY, Chen JX, Wang T, Sun J, Yang YB, Ding ZT. Chlorinated Cyclopentene Derivatives and Antifungal Activities from Periconia sp. Induced by the One Strain Many Compounds Strategy and Host Plant Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8653-8661. [PMID: 35791917 DOI: 10.1021/acs.jafc.2c02480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Eleven new chlorinated cyclopentene derivatives, periconsins A-K, and a new diketopiperazine, periconzin, were found from Periconia sp. cultured in three different media by the one strain many compounds strategy. Additionally, the C-1 methyl hydroxylation of chlorinated cyclopentene was found for the first time in the host plant culture. The structures were identified by extensive spectroscopic analyses, electronic circular dichroism (ECD) and 13C NMR calculations, and single-crystal X-ray diffraction. Compounds 3, 5, 7-11, 15, and 17 showed significant antifungal activities against the plant pathogens Periconia sp., Altemaria sp., and Nigrospora oryzae with MICs ≤2 μg/mL. Other compounds had antifungal activities with MICs ≤8 μg/mL. The antifungal structure-activity relationship of these metabolites indicated that the chlorine at C-5 can increase the activity, but the hydroxy group at C-1 lowered the activity.
Collapse
Affiliation(s)
- Ya-Mei Wu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Shi-Yu Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Jing-Xin Chen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Ting Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Jing Sun
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
- College of Pharmacy, Dali University, Dali 671003, People's Republic of China
| |
Collapse
|
18
|
Antioxidant and antibacterial potential of crude extract of soil fungus Periconia sp. (SSS-8). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06061-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Yang BY, Sun WG, Liu JJ, Wang JP, Hu ZX, Zhang YH. A new pair of cytotoxic enantiomeric isoprenylated chromone derivatives from Pestalotiopsis sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:528-534. [PMID: 34236260 DOI: 10.1080/10286020.2021.1946042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
A new pair of enantiomeric isoprenylated chromone derivatives, (±)-pestaloficiol X [(±)-1], along with a known compound pestaloficiol J (2), were isolated from the plant endophytic fungus Pestalotiopsis sp. The racemic mixture 1 was separated through chiral HPLC. The structures of new compounds (±)-1 were elucidated on the basis of extensive spectroscopic data and their absolute configurations were further configured through computational analysis of their electronic circular dichroism (ECD) spectra. Compound (+)-1 showed significant inhibitory potency against HL-60 and HEP-3B cell lines, with IC50 values of 1.35 ± 0.15 and 3.70 ± 0.33 μM, respectively, while compound (-)-1 showed significant inhibitory potency against HL-60 and HEP-3B cell lines, with IC50 values of 2.39 ± 0.26 and 2.99 ± 0.35 μM, respectively.
Collapse
Affiliation(s)
- Bei-Ye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Guang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Jun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian-Ping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zheng-Xi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong-Hui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
20
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
21
|
Lin S, Huang J, Zeng H, Tong Q, Zhang X, Yang B, Ye Y, Wang J, Hu Z, Zhang Y. Distachydrimanes A–F, phenylspirodrimane dimers and hybrids with cytotoxic activity from the coral-derived fungus Stachybotrys chartarum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Qiao Y, Xu Q, Huang Z, Chen X, Ren X, Yuan W, Guan Z, Li P, Li F, Xiong C, Zhu H, Chen C, Gu LH, Zhou Y, Qi C, Hu Z, Liu J, Ye Y, Zhang Y. Genome Mining Reveals a New Cyclopentane-forming Sesterterpene Synthase with Unprecedented Stereo-control. Org Chem Front 2022. [DOI: 10.1039/d2qo00983h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fungal bifunctional terpene synthases (BFTSs) catalyze formation of diverse ring systems in diterpene/sesterterpene structures. Through genome mining of fungal BFTSs, we discovered a novel sesterterpenoids gene cluster pst, consisting of...
Collapse
|
23
|
Qiao Y, Tan X, Xu Q, Zhang Z, Xu Q, Tao L, Liu J, Zhu H, Chen C, Ye Y, Lu Y, Chen G, Qi C, Zhang Y. Asperosin A, a [4 + 2] Diels–Alder cycloaddition polyketide dimer from Aspergillus rugulosa with immunosuppressive activity. Org Chem Front 2022. [DOI: 10.1039/d1qo01767e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel homologous polyketide dimer, asperosin A (1), constructed with a unique hetero-bicycle 6/5 core skeleton featuring four continuous quaternary carbons, was isolated from a solid culture of the fungus Aspergillus rugulosa.
Collapse
Affiliation(s)
- Yuben Qiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaosheng Tan
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Qianqian Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zijun Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qiaoxin Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Li Tao
- Ezhou Central Hospital, Ezhou 436000, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuanyuan Lu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, People's Republic of China
| | - Gang Chen
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
24
|
Deng S, Xu H, Jiang H, Ma Z. Formal total synthesis of dankasterone B. Org Chem Front 2022. [DOI: 10.1039/d2qo00299j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A formal total synthesis of dankasterone B was achieved in 15 steps.
Collapse
Affiliation(s)
- Shengzhen Deng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| |
Collapse
|
25
|
Liang J, Liang W, Chen X, Wang Q. Antibacterial sesquiterpenoids from Solanum lyratum. Nat Prod Res 2021; 36:5863-5867. [PMID: 34963382 DOI: 10.1080/14786419.2021.2019734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Investigation into the chemical diversity of Solanum lyratum led to the discovery of one new sesquiterpenoid, solyraterpenoid A (1), and two known compounds (2 and 3). The structure incorporating absolute configuration of 1 was determined via spectroscopic data, mainly including HRESIMS and NMR, and single-crystal X-ray diffraction analysis. Compound 1 showed significant antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae with MIC values of 8, 8, and 4 μg/mL, respectively.
Collapse
Affiliation(s)
- Jun Liang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Wenbin Liang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Xintao Chen
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qibin Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
26
|
Abstract
Periconia is filamentous fungi belonging to the Periconiaceae family, and over the last 50 years, the genus has shown interest in natural product exploration for pharmacological purposes. Therefore, this study aims to analyze the different species of Periconia containing natural products such as terpenoids, polyketides, cytochalasan, macrosphelides, cyclopentenes, aromatic compounds, and carbohydrates carbasugar derivates. The isolated compound of this kind, which was reported in 1969, consisted of polyketide derivatives and their structures and was determined by chemical reaction and spectroscopic methods. After some years, 77 compounds isolated from endophytic fungus Periconia were associated with eight plant species, 28 compounds from sea hare Aplysia kurodai, and ten from endolichenic fungi Parmelia sp. The potent pharmacological agents from this genus are periconicin A, which acts as an antimicrobial, pericochlorosin B as an anti-human immunodeficiency virus (HIV), peribysin D, and pericosine A as cytotoxic agents, and periconianone A as an anti-inflammatory agent. Furthermore, information about taxol and piperine from Periconia producing species was also provided. Therefore, this study supports discovering new drugs produced by the Periconia species and compares them for future drug development.
Collapse
|
27
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021; 60:5512-5518. [PMID: 33206427 DOI: 10.1002/anie.202013881] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/11/2022]
Abstract
We describe herein the assembly of the cis-decalin framework through radical cyclization initiated by metal-catalyzed hydrogen atom transfer (MHAT), further applied it in the asymmetric synthesis of dankasterones A and B and periconiastone A. Position-selective C-H oxygenation allowed for installation of the necessary functionality. A radical rearrangement was adopted to create 13(14→8)abeo-8-ergostane skeleton. Interconversion of dankasterone B and periconiastone A was realized through biomimetic intramolecular aldol and retro-aldol reactions. The MHAT-based approach, serves as a new dissection means, is complementary to the conventional ways to establish cis-decalin framework.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| |
Collapse
|
28
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Kai Chen
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| |
Collapse
|
29
|
Yang B, Huang J, Lin S, Tong Q, Yao Z, Li F, Ye Y, Hu Z, Zhang Y. Hyperbeanone A, a 5,6- seco-spirocyclic polycyclic polyprenylated acylphloroglucinol derivative with an unprecedented skeleton from Hypericum beanii. Org Chem Front 2021. [DOI: 10.1039/d1qo01302e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hyperbeanone A (1), a novel 5,6-seco-polycyclic PPAP derivative characterized by an undescribed benz[f]indene-1,9(4H)-dione ring system fused to a tricyclic γ-lactone unit via a ketone carbonyl, was isolated from the aerial parts of Hypericum beanii.
Collapse
Affiliation(s)
- Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, P. R. China
| | - Jianzheng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, P. R. China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, P. R. China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, P. R. China
| | - Zeyu Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, P. R. China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, P. R. China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, P. R. China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, P. R. China
| |
Collapse
|
30
|
Li H, Guo J, Zhang R, Wang J, Hu Z, Zhang Y. Two new nucleoside derivatives isolated from the marine-derived Aspergillus versicolor and their intramolecular transesterification. Nat Prod Res 2020; 36:3346-3352. [PMID: 33319589 DOI: 10.1080/14786419.2020.1858409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two new nucleoside derivatives, kipukasins M (1a) and N (1b), along with one known analogue, kipukasin J (2), were obtained from the marine-derived fungus Aspergillus versicolor, which was isolated from the mud collected in the South China Sea. The structures of compounds 1a and 1b were elucidated by extensive spectroscopic analysis, mainly including 1D & 2D NMR and HRESIMS data, and the absolute configuration of 1a was further confirmed by single-crystal X-ray diffraction analysis. Interestingly, intramolecular transesterification occurs in compounds 1a and 1b, which exist as a pair of inseparable regioisomers. All isolated compounds were tested for the cytotoxic and antimicrobial activities.
Collapse
Affiliation(s)
- Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jieru Guo
- Tongji Hospital, affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Runge Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
31
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2019. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1101-1120. [PMID: 33207951 DOI: 10.1080/10286020.2020.1844675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The new natural products reported in 2019 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2019 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
32
|
Zhang S, He Y, Li F, Lin S, Yang B, Mo S, Li H, Wang J, Qi C, Hu Z, Zhang Y. Bioassay-Directed Isolation of Antibacterial Metabolites from an Arthropod-Derived Penicillium chrysogenum. JOURNAL OF NATURAL PRODUCTS 2020; 83:3397-3403. [PMID: 33089690 DOI: 10.1021/acs.jnatprod.0c00873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioassay-directed isolation of secondary metabolites from an extract of Penicillium chrysogenum TJ403-CA4 isolated from the medicinally valuable arthropod Cryptotympana atrata afforded five new and 10 known compounds (1-15). All the compounds (except 14) belong to a minor class of highly rigid 6-5-5-5-fused tetracyclic cyclopiane-type diterpenes known to be exclusively produced by members of the Penicillium genus. The structures and absolute configurations of the new compounds (1-5) were elucidated by extensive spectroscopic analyses, including HRESIMS and 1D and 2D NMR, single-crystal X-ray diffraction, and comparison of the experimental electronic circular dichroism data. Compounds 1 and 2 represent the first examples of cyclopianes bearing a C-20 carboxyl group; compound 3 represents the first example of a cyclopiane with a gem-hydroxymethyl group; compound 4 represents the second example of a cyclopiane bearing a hydroxy group at C-7; compound 5 represents the first example of a cyclopiane bearing a hydroxy group at C-8. Compounds 2 and 3 exhibited activity against MRSA, with MIC values of 4.0 and 2.0 μg/mL, respectively. In addition, the structure-antibacterial activity relationship (SAR) of compounds 1-15 is discussed.
Collapse
Affiliation(s)
- Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Tongji Hospital, affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yan He
- Tongji Hospital, affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
33
|
Liu M, Zhang X, Shen L, Sun W, Lin S, Liu J, Cao F, Qi C, Wang J, Hu Z, Zhang Y. Bioactive Polyketide-Terpenoid Hybrids from a Soil-Derived Fungus Bipolaris zeicola. J Org Chem 2020; 86:10962-10974. [DOI: 10.1021/acs.joc.0c02237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Xueke Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, Hebei Province, People’s Republic of China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| |
Collapse
|
34
|
Meng XH, Chai T, Shi YP, Yang JL. Bungsteroid A: One Unusual C 34 Pentacyclic Steroid Analogue from Zanthoxylum bungeanum Maxim. J Org Chem 2020; 85:10806-10812. [PMID: 32702985 DOI: 10.1021/acs.joc.0c01312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bungsteroid A (1), possessing an unreported carbon skeleton, was isolated from the pericarps of Zanthoxylum bungeanum Maxim. It represents the first carbon skeleton of a C34 steroid analogue featuring a unique 6/6/6/6/5-fused pentacyclic skeleton, which has been determined by spectroscopic methods, quantum-chemical 13C NMR, ECD calculations, and calculations of optical rotations. Bungsteroid A showed the antiproliferative effects against HepG2, MCF-7, and HeLa cell lines with the IC50 values of 56.3 ± 1.1, 64.2 ± 0.9, and 74.2 ± 1.3 μM, respectively.
Collapse
Affiliation(s)
- Xian-Hua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Tian Chai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| |
Collapse
|
35
|
Duecker FL, Heinze RC, Steinhauer S, Heretsch P. Discoveries and Challenges en Route to Swinhoeisterol A. Chemistry 2020; 26:9971-9981. [PMID: 32315103 PMCID: PMC7497115 DOI: 10.1002/chem.202001405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Indexed: 01/29/2023]
Abstract
In this work, a full account of the authors' synthetic studies is reported that culminated in the first synthesis of 13(14→8),14(8→7)diabeo-steroid swinhoeisterol A as well as the related dankasterones A and B, 13(14→8)abeo-steroids, and periconiastone A, a 13(14→8)abeo-4,14-cyclo-steroid. Experiments are described in detail that provided further insight into the mechanism of the switchable radical framework reconstruction approach. By discussing failed strategies and tactics towards swinhoeisterol A, the successful route that also allowed an access to structurally closely related analogues, such as Δ22 -24-epi-swinhoeisterol A, is eventually presented.
Collapse
Affiliation(s)
- Fenja L. Duecker
- Institut für Chemie und BiochemieOrganische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Robert C. Heinze
- Institut für Chemie und BiochemieOrganische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Simon Steinhauer
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Philipp Heretsch
- Institut für Chemie und BiochemieOrganische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
36
|
Li H, Zhang R, Cao F, Wang J, Hu Z, Zhang Y. Proversilins A-E, Drimane-Type Sesquiterpenoids from the Endophytic Aspergillus versicolor. JOURNAL OF NATURAL PRODUCTS 2020; 83:2200-2206. [PMID: 32628478 DOI: 10.1021/acs.jnatprod.0c00298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Five new drimane-type sesquiterpenoids, named proversilins A-E (1-5), were isolated from the endophytic fungus Aspergillus versicolor F210 isolated from the bulbs of Lycoris radiata. Their structures and absolute configurations were characterized by extensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS data, comparison of experimental and calculated electronic circular dichroism data, and X-ray crystallography. Proversilins B-E (2-5) represent the first examples of natural products featuring an N-acetyl-β-phenylalanine moiety. Compounds 3 and 5 inhibited the growth of HL-60 cells with IC50 values of 7.3 and 9.9 μM, respectively.
Collapse
Affiliation(s)
- Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Runge Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
37
|
Lin S, Zhang X, Shen L, Mo S, Liu J, Wang J, Hu Z, Zhang Y. A new abietane-type diterpenoid and a new long-chain alkenone from fungus Daldinia sp. TJ403-LS1. Nat Prod Res 2020; 36:531-538. [PMID: 32643425 DOI: 10.1080/14786419.2020.1789638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new abietane-type diterpenoid, dalterpenoid A (1), a new long-chain alkenone derivative, (3E,5E,10E)-8-hydroxytrideca-3,5,10,12-tetraen-2-one (2), together with six known compounds (3-8), namely epi-guaidiol A (3), xylaranol A (4), daldinone C (5), trans-3,4-dihydroxy-3,4-dihydro-anofinic acid (6), (R)-6-hydroxymellein (7), helicascolide A (8), were obtained from fungus Daldinia sp. TJ403-LS1, which was originally isolated from roots of the medicinally valuable plant Anoectochilus roxburghii. The structures of compounds 1 and 2 were established based on widespread spectroscopic methods, mainly including 1D & 2D NMR and HRESIMS analyses, and the absolute configuration of 1 was further confirmed by electronic circular dichroism (ECD) calculation. All new compounds were tested for the in vitro cytotoxicity against five human cancer cell lines.
Collapse
Affiliation(s)
- Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xueke Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
38
|
Lin S, He Y, Li F, Yang B, Liu M, Zhang S, Liu J, Li H, Qi C, Wang J, Hu Z, Zhang Y. Structurally diverse and bioactive alkaloids from an insect-derived fungus Neosartorya fischeri. PHYTOCHEMISTRY 2020; 175:112374. [PMID: 32315839 DOI: 10.1016/j.phytochem.2020.112374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Seven undescribed alkaloids, namely fischeramides A and B, 5,6-dimethoxycircumdatin C, 6-hydroxyacetylaszonalenin, 3-methoxyglyantrypine, 9-methoxyfumitremorgin C, and spirotryprostatin M, one undescribed natural product, namely 11-deacetyl pyripyropene A, together with nine known congeners, were isolated from the solid cultures of fungus Neosartorya fischeri, which was separated from a medicinal insect Cryptotympana atrata. Their structures were elucidated by extensive spectroscopic data, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analyses. Structurally, fischeramides A and B represented a pair of rare geometric isomers of the benzodiazepinedione derivatives with a highly conjugated feature. Fischeramide A showed potential immunosuppressive activity in LPS and anti-CD3/anti-CD28 mAbs activated murine splenocytes proliferation with IC50 values of 7.08 and 6.31 μM, respectively, and also showed anti-inflammatory activity against the lipopolysaccharide-induced nitric oxide production with an IC50 value of 25 ± 1 μM. In addition, 5,6-dimethoxycircumdatin C showed remarkable antibacterial activity against ESBL-producing E. coli with an MIC value of 2.0 μg/mL.
Collapse
Affiliation(s)
- Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan He
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
39
|
Shen L, Liu M, He Y, Al Anbari WH, Li H, Lin S, Chai C, Wang J, Hu Z, Zhang Y. Novel Antimicrobial Compounds as Ophiobolin-Type Sesterterpenes and Pimarane-Type Diterpene From Bipolaris Species TJ403-B1. Front Microbiol 2020; 11:856. [PMID: 32547498 PMCID: PMC7273749 DOI: 10.3389/fmicb.2020.00856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/09/2020] [Indexed: 01/30/2023] Open
Abstract
Six previously undescribed ophiobolin-type sesterterpenes, namely, bipolatoxins A–F (1–6); and one previously undescribed pimarane-type diterpene, namely, 1β-hydroxy momilactone A (7); together with three known compounds, namely, 25-hydroxyophiobolin I (8), ophiobolin I (9), and ophiobolin A lactone (10); were isolated and identified from the endophytic fungus Bipolaris species TJ403-B1. Their structures with absolute configurations were elucidated on the basis of extensive spectroscopic analyses (including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy data), single-crystal X-ray diffraction analyses, and comparison of experimental circular dichroism data. All compounds (except for 5) were evaluated for antimicrobial potential, which indicated that bipolatoxin D (4) showed significant inhibitory activity against Enterococcus faecalis with a minimum inhibitory concentration (MIC) value of 8 μg/mL, and ophiobolin A lactone (10) showed significant inhibitory activity against Acinetobacter baumannii and E. faecalis with MIC values of 8 and 8 μg/mL, respectively.
Collapse
Affiliation(s)
- Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan He
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weaam Hasan Al Anbari
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenwei Chai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Deng M, Liu Y, Huang Y, Yin X, Zhou Y, Duan Y, Xie S, Guo Y, Qiao Y, Shi Z, Tao L, Cao Y, Qi C, Zhang Y. New bioactive secondary metabolites from the Anoectochilus roxburghii endophytic fungus Aspergillus versicolor. Fitoterapia 2020; 143:104532. [DOI: 10.1016/j.fitote.2020.104532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022]
|
41
|
Dai J, Han R, Xu Y, Li N, Wang J, Dan W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg Chem 2020; 101:103922. [PMID: 32559577 DOI: 10.1016/j.bioorg.2020.103922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
The discovery of novel antibacterial molecules plays a key role in solving the current antibiotic crisis issue. Natural products have long been an important source of drug discovery. Herein, we reviewed 256 natural products from 11 structural classes in the period of 2016-01/2020, which were selected by SciFinder with new compounds or new structures and MICs lower than 10 μg/mL or 10 μM as criterions. This review will provide some effective antibacterial lead compounds for medicinal chemists, which will promote the antibiotics research based on natural products to the next level.
Collapse
Affiliation(s)
- Jiangkun Dai
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, China(1); State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China(1); School of Life Science and Technology, Weifang Medical University, Shandong, China(1).
| | - Rui Han
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1)
| | - Yujie Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1)
| | - Na Li
- College of Food Science and Technology, Northwest University, Xi'an, China(1).
| | - Junru Wang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, China(1); College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1).
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China(1); College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1).
| |
Collapse
|
42
|
Li F, Pan L, Lin S, Zhang S, Li H, Yang B, Liu J, Wang J, Hu Z, Zhang Y. Fusicoccane-derived diterpenoids with bridgehead double-bond-containing tricyclo[9.2.1.0 3,7]tetradecane ring systems from Alternaria brassicicola. Bioorg Chem 2020; 100:103887. [PMID: 32371250 DOI: 10.1016/j.bioorg.2020.103887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
Fusicoccane-derived diterpenoids bearing a unique bridgehead double-bond-containing tricyclo[9.2.1.03,7]tetradecane (5-9-5 ring system) core skeleton represent a rarely reported class of rearranged terpenoids, which traced back to fusicoccanes with a classical dicyclopenta[a,d]cyclooctane (5-8-5 ring system) core skeleton via a crucial Wagner-Meerwein rearrangement reaction. In this research, alterbrassicenes B-D (1-3), three new rearranged fusicoccane diterpenoids bearing a rare bridgehead double-bond-containing tricyclo[9.2.1.03,7]tetradecane core skeleton, together with two known congeners, brassicicenes O and K (4 and 5), were isolated from the modified cultures of fungus Alternaria brassicicola. Their structures were elucidated by comprehensive analyses of the NMR and HRESIMS data, and the absolute configurations of 1 and 4 were further confirmed via a combination of 13C NMR and ECD calculations and single-crystal X-ray diffraction analysis (Cu Kα). Interestingly, alterbrassicene B (1) represented the second case of bridgehead C-10-C-11 double-bond-containing natural products with a bicyclo[6.2.1]undecane core skeleton, and also featured an undescribed oxygen bridge between C-6 and C-14 to construct an unprecedentedly caged tetracyclic system. Alterbrassicenes B-D showed moderate cytotoxic activity against certain human tumor cell lines with IC50 values in the range of 15.87-36.85 μM.
Collapse
Affiliation(s)
- Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lifen Pan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
43
|
Phosteoid A, a highly oxygenated norsteroid from the deep-sea-derived fungus Phomopsis tersa FS441. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Lin S, Yu H, Yang B, Li F, Chen X, Li H, Zhang S, Wang J, Hu Y, Hu Z, Zhang Y. Reisolation and Configurational Reinvestigation of Cottoquinazolines E-G from an Arthropod-Derived Strain of the Fungus Neosartorya fischeri. JOURNAL OF NATURAL PRODUCTS 2020; 83:169-173. [PMID: 31920082 DOI: 10.1021/acs.jnatprod.9b01000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reported fumiquinazoline-related alkaloids cottoquinazolines E-G (1-3) were reisolated from solid cultures of the fungus Neosartorya fischeri, which was isolated from the medicinal arthropod Cryptotympana atrata. The unresolved issues regarding the absolute configurations (for cottoquinazolines E and F) prompted a reinvestigation of the configurations for all three compounds, as enabled by extensive spectroscopic methods, comparisons of experimental electronic circular dichroism data, and X-ray crystallography. In addition, cottoquinazoline F (2) showed significant antibacterial activity against ESBL-producing Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus faecalis with MIC values of 8, 32, 32, and 16 μg/mL, respectively.
Collapse
Affiliation(s)
- Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Huimin Yu
- Department of Periodontics , Stomatological Hospital of Southern Medical University, Guangdong Provincial Stomatological Hospital , Guangzhou 510280 , People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
45
|
Duecker FL, Heinze RC, Heretsch P. Synthesis of Swinhoeisterol A, Dankasterone A and B, and Periconiastone A by Radical Framework Reconstruction. J Am Chem Soc 2019; 142:104-108. [DOI: 10.1021/jacs.9b12899] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fenja L. Duecker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Robert C. Heinze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Philipp Heretsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
46
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2019. [DOI: 10.1039/c9np90045d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as burlemarxione A from Clusia burle-marxii.
Collapse
|