1
|
Zhu X, Yao W, Sun N, Chen M, Xia H, Liu CC, Zhu Y, Cao H. Chemoenzymatic Synthesis of Phosphosaccharides from Haemophilus parasuis Strains ER-6P (Serovar 15) and Nagasaki (Serovar 5). Org Lett 2024. [PMID: 39450892 DOI: 10.1021/acs.orglett.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Herein, we describe a chemoenzymatic and diversity-oriented approach for the first syntheses of octasaccharide repeating units of the capsular polysaccharides of Haemophilus parasuis serovar 15 and serovar 5. The synthetic method features efficient enzymatic assembly of sialyl galactose or N-acetyl-galactosamine building blocks, highly stereoselective chemical construction of α-type H-phosphonate, and the β-stereospecific 1,3-glycosylation reaction of a rare sugar donor.
Collapse
Affiliation(s)
- Xinhao Zhu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Na Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Mei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui Xia
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Yugen Zhu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Hongzhi Cao
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Zhou W, Wu R, Li J, Zhu D, Yu B. A Ligand-Controlled Approach Enabling Gold(I)-Catalyzed Stereoinvertive Glycosylation with Primal Glycosyl ortho-Alkynylbenzoate Donors. J Am Chem Soc 2024; 146:27915-27924. [PMID: 39314057 DOI: 10.1021/jacs.4c10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A diarylurea-containing phosphine ligand-modulated stereoinvertive O-glycosylation with primal furanosyl and pyranosyl ortho-alkynylbenzoate (ABz) donors under gold(I) catalysis is disclosed. Both α- and β-configured glycosides could be obtained from the corresponding stereochemically pure β- and α-glycosyl donors with high yields and good to excellent stereoselectivities, respectively. This method accommodates a variety of glycosyl donors and alcoholic acceptors, leading to both 1,2-cis and 1,2-trans glycosidic linkages, and has been applied to the convenient preparation of a series of linear arabinan glycans. Mechanistic investigations reveal that the counteranion could bridge the diarylurea residue on the phosphine ligand with the alcoholic acceptor via hydrogen bond interactions, thereby permitting stereoinvertive displacement at the anomeric position.
Collapse
Affiliation(s)
- Weiping Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renjie Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinchan Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dapeng Zhu
- Center for Chemical Glycobiology, Zhang jiang Institute for Advanced Study, Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Elferink H, Remmerswaal WA, Houthuijs KJ, Jansen O, Hansen T, Rijs AM, Berden G, Martens J, Oomens J, Codée JDC, Boltje TJ. Competing C-4 and C-5-Acyl Stabilization of Uronic Acid Glycosyl Cations. Chemistry 2022; 28:e202201724. [PMID: 35959853 PMCID: PMC9825916 DOI: 10.1002/chem.202201724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 01/11/2023]
Abstract
Uronic acids are carbohydrates carrying a terminal carboxylic acid and have a unique reactivity in stereoselective glycosylation reactions. Herein, the competing intramolecular stabilization of uronic acid cations by the C-5 carboxylic acid or the C-4 acetyl group was studied with infrared ion spectroscopy (IRIS). IRIS reveals that a mixture of bridged ions is formed, in which the mixture is driven towards the C-1,C-5 dioxolanium ion when the C-5,C-2-relationship is cis, and towards the formation of the C-1,C-4 dioxepanium ion when this relation is trans. Isomer-population analysis and interconversion barrier computations show that the two bridged structures are not in dynamic equilibrium and that their ratio parallels the density functional theory computed stability of the structures. These studies reveal how the intrinsic interplay of the different functional groups influences the formation of the different regioisomeric products.
Collapse
Affiliation(s)
- Hidde Elferink
- Institute for Molecules and MaterialsSynthetic Organic ChemistryRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| | - Wouter A. Remmerswaal
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Kas J. Houthuijs
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Oscar Jansen
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Thomas Hansen
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
- Departament de Química Inorgànica i Orgànica & IQTUBUniversitat de Barcelona08028BarcelonaSpain
| | - Anouk M. Rijs
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
- Division of BioAnalytical ChemistryDepartment of Chemistry and Pharmaceutical SciencesAIMMS Amsterdam Institute of Molecular and Life SciencesVrije Univeristeit AmsterdamDe Boelelaan 10851081 HVAmsterdam (TheNetherlands
| | - Giel Berden
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Jonathan Martens
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Jos Oomens
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Thomas J. Boltje
- Institute for Molecules and MaterialsSynthetic Organic ChemistryRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| |
Collapse
|
4
|
Trinderup HH, Juul-Madsen L, Press L, Madsen M, Jensen HH. α-Selective Glucosylation Can Be Achieved with 6- O- para-Nitrobenzoyl Protection. J Org Chem 2022; 87:13763-13789. [PMID: 36206491 DOI: 10.1021/acs.joc.2c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A systematic study of the effect of various 6-O-acyl groups on anomeric selectivity in glucosylations with thioglycoside donors was conducted. All eight different esters were found to induce moderate-to-high α-selectivity in glucosylation with l-menthol with the best being 6-O-p-nitrobenzoyl. The effect appears to be general across various glucosyl acceptors, glucosyl donor types, and modes of activation. No evidence was found in favor of distal participation.
Collapse
Affiliation(s)
- Helle H Trinderup
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Line Juul-Madsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Laura Press
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Michael Madsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik H Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Shadrick M, Stine KJ, Demchenko AV. Expanding the scope of stereoselective α-galactosylation using glycosyl chlorides. Bioorg Med Chem 2022; 73:117031. [PMID: 36202065 PMCID: PMC9677435 DOI: 10.1016/j.bmc.2022.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Recently, we reported that silver(I) oxide mediated Koenigs-Knorr glycosylation reaction can be dramatically accelerated in the presence of catalytic acid additives. We have also investigated how well this reaction works in application to differentially protected galactosyl bromides. Reported herein is the stereoselective synthesis of α-galactosides with galactosyl chlorides as glycosyl donors. Chlorides are easily accessible, stable, and can be efficiently activated for glycosylation. In this application, the most favorable reactions conditions comprised cooperative Ag2SO4 and Bi(OTf)3 promoter system.
Collapse
Affiliation(s)
- Melanie Shadrick
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA; Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA; Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA.
| |
Collapse
|
6
|
Ishiwata A, Tanaka K, Ao J, Ding F, Ito Y. Recent advances in stereoselective 1,2- cis- O-glycosylations. Front Chem 2022; 10:972429. [PMID: 36059876 PMCID: PMC9437320 DOI: 10.3389/fchem.2022.972429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
For the stereoselective assembly of bioactive glycans with various functions, 1,2-cis-O-glycosylation is one of the most essential issues in synthetic carbohydrate chemistry. The cis-configured O-glycosidic linkages to the substituents at two positions of the non-reducing side residue of the glycosides such as α-glucopyranoside, α-galactopyranoside, β-mannopyranoside, β-arabinofuranoside, and other rather rare glycosides are found in natural glycans, including glycoconjugate (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides) and glycoside natural products. The way to 1,2-trans isomers is well sophisticated by using the effect of neighboring group participation from the most effective and kinetically favored C-2 substituent such as an acyl group, although high stereoselective synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less straightforward. Although the key factors that control the stereoselectivity of glycosylation are largely understood since chemical glycosylation was considered to be one of the useful methods to obtain glycosidic linkages as the alternative way of isolation from natural sources, strictly controlled formation of these 1,2-cis glycosides is generally difficult. This minireview introduces some of the recent advances in the development of 1,2-cis selective glycosylations, including the quite recent developments in glycosyl donor modification, reaction conditions, and methods for activation of intermolecular glycosylation, including the bimodal glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations, including recent applications of NAP-ether-mediated intramolecular aglycon delivery.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Remmerswaal WA, Houthuijs KJ, van de Ven R, Elferink H, Hansen T, Berden G, Overkleeft HS, van der Marel GA, Rutjes FPJT, Filippov DV, Boltje TJ, Martens J, Oomens J, Codée JDC. Stabilization of Glucosyl Dioxolenium Ions by "Dual Participation" of the 2,2-Dimethyl-2-( ortho-nitrophenyl)acetyl (DMNPA) Protection Group for 1,2- cis-Glucosylation. J Org Chem 2022; 87:9139-9147. [PMID: 35748115 PMCID: PMC9295149 DOI: 10.1021/acs.joc.2c00808] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The stereoselective
introduction of glycosidic bonds is of paramount
importance to oligosaccharide synthesis. Among the various chemical
strategies to steer stereoselectivity, participation by either neighboring
or distal acyl groups is used particularly often. Recently, the use
of the 2,2-dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA)
protection group was shown to offer enhanced stereoselective steering
compared to other acyl groups. Here, we investigate the origin of
the stereoselectivity induced by the DMNPA group through systematic
glycosylation reactions and infrared ion spectroscopy (IRIS) combined
with techniques such as isotopic labeling of the anomeric center and
isomer population analysis. Our study indicates that the origin of
the DMNPA stereoselectivity does not lie in the direct participation
of the nitro moiety but in the formation of a dioxolenium ion that
is strongly stabilized by the nitro group.
Collapse
Affiliation(s)
- Wouter A Remmerswaal
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Kas J Houthuijs
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Roel van de Ven
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Hidde Elferink
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas Hansen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.,Departament de Química Inorgànica i Orgànica & IQTUB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
8
|
Liu X, Song Y, Liu A, Zhou Y, Zhu Q, Lin Y, Sun H, Zhu K, Liu W, Ding N, Xie W, Sun H, Yu B, Xu P, Li W. More than a Leaving Group: N-Phenyltrifluoroacetimidate as a Remote Directing Group for Highly α-Selective 1,2-cis Glycosylation. Angew Chem Int Ed Engl 2022; 61:e202201510. [PMID: 35266604 DOI: 10.1002/anie.202201510] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/31/2022]
Abstract
The anomeric configuration can greatly affect the biological functions and activities of carbohydrates. Herein, we report that N-phenyltrifluoroacetimidoyl (PTFAI), a well-known leaving group for catalytic glycosylation, can act as a stereodirecting group for the challenging 1,2-cis α-glycosylation. Utilizing rapidly accessible 1,6-di-OPTFAI glycosyl donors, TMSOTf-catalyzed glycosylation occurred with excellent α-selectivity and broad substrate scope, and the remaining 6-OPTFAI group can be cleaved chemoselectively. The remote participation of 6-OPTFAI is supported by the first characterization of the crucial 1,6-bridged bicyclic oxazepinium ion intermediates by low-temperature NMR spectroscopy. These cations were found to be relatively stable and mainly responsible for the present stereoselectivities. Further application is highlighted in glycosylation reactions toward trisaccharide heparins as well as the convergent synthesis of chacotriose derivatives using a bulky 2,4-di-O-glycosylated donor.
Collapse
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yingying Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Ao Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Qian Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Kaidi Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 200032, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
9
|
Qiu X, Garden AL, Fairbanks AJ. Protecting group free glycosylation: one-pot stereocontrolled access to 1,2- trans glycosides and (1→6)-linked disaccharides of 2-acetamido sugars. Chem Sci 2022; 13:4122-4130. [PMID: 35440979 PMCID: PMC8985506 DOI: 10.1039/d2sc00222a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
Unprotected 2-acetamido sugars may be directly converted into their oxazolines using 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and a suitable base, in aqueous solution. Freeze drying and acid catalysed reaction with an alcohol as solvent produces the corresponding 1,2-trans-glycosides in good yield. Alternatively, dissolution in an aprotic solvent system and acidic activation in the presence of an excess of an unprotected glycoside as a glycosyl acceptor, results in the stereoselective formation of the corresponding 1,2-trans linked disaccharides without any protecting group manipulations. Reactions using aryl glycosides as acceptors are completely regioselective, producing only the (1→6)-linked disaccharides.
Collapse
Affiliation(s)
- Xin Qiu
- School of Physical and Chemical Sciences, University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Anna L Garden
- Department of Chemistry, University of Otago Dunedin 9054 New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington Wellington 6140 New Zealand
| | - Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand .,Biomolecular Interaction Centre, University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
10
|
Yadav RN, Hossain MF, Das A, Srivastava AK, Banik BK. Organocatalysis: A recent development on stereoselective synthesis of o-glycosides. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Md. Firoj Hossain
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Ashok Kumar Srivastava
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| |
Collapse
|
11
|
Liu X, Song Y, Liu A, Zhou Y, Zhu Q, Lin Y, Sun H, Zhu K, Liu W, Ding N, Xie W, Sun H, Yu B, Xu P, Li W. More than a Leaving Group: N‐Phenyltrifluoroacetimidate as a Remote Directing Group for Highly α‐Selective 1,2‐cis Glycosylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianglai Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yingying Song
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Ao Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yueer Zhou
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Qian Zhu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Yetong Lin
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Huiyong Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Kaidi Zhu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wei Liu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Ning Ding
- Fudan University Department of Medicinal Chemistry CHINA
| | - Weijia Xie
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Haopeng Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Biao Yu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Peng Xu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wei Li
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry 639 Longmian Avenue 211198 Nanjing CHINA
| |
Collapse
|
12
|
Xiao K, Hu Y, Wan Y, Li X, Nie Q, Yan H, Wang L, Liao J, Liu D, Tu Y, Sun J, Codée JDC, Zhang Q. Hydrogen bond activated glycosylation under mild conditions. Chem Sci 2022; 13:1600-1607. [PMID: 35282639 PMCID: PMC8826775 DOI: 10.1039/d1sc05772c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a new glycosylation system for the highly efficient and stereoselective formation of glycosidic bonds using glycosyl N-phenyl trifluoroacetimidate (PTFAI) donors and a charged thiourea hydrogen-bond-donor catalyst. The glycosylation protocol features broad substrate scope, controllable stereoselectivity, good to excellent yields and exceptionally mild catalysis conditions. Benefitting from the mild reaction conditions, this new hydrogen bond-mediated glycosylation system in combination with a hydrogen bond-mediated aglycon delivery system provides a reliable method for the synthesis of challenging phenolic glycosides. In addition, a chemoselective glycosylation procedure was developed using different imidate donors (trichloroacetimidates, N-phenyl trifluoroacetimidates, N-4-nitrophenyl trifluoroacetimidates, benzoxazolyl imidates and 6-nitro-benzothiazolyl imidates) and it was applied for a trisaccharide synthesis through a novel one-pot single catalyst strategy. A mild glycosylation system was developed using glycosyl imidate donors and a charge-enhanced thiourea H-bond donor catalyst. The method can be used for the effective synthesis of O-, C-, S- and N-glycosides and chemoselective one-pot glycosylation.![]()
Collapse
Affiliation(s)
- Ke Xiao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongyong Wan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - XinXin Li
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jinxi Liao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Deyong Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jiansong Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China .,Key Laboratory of Functional Small Molecule, Ministry of Education, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
13
|
Yangxing S, Yanzhi L, Yanlai C, Nengzhong W, Shaohua X, Mingguo L, Hui Y. Research Advances in Functional Group-Directed Stereoselective Glycosylation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Tokatly AI, Vinnitskiy DZ, Ustuzhanina NE, Nifantiev NE. Protecting Groups as a Factor of Stereocontrol in Glycosylation Reactions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Hansen T, Ofman TP, Vlaming JGC, Gagarinov IA, van Beek J, Goté TA, Tichem JM, Ruijgrok G, Overkleeft HS, Filippov DV, van der Marel GA, Codée JDC. Reactivity-Stereoselectivity Mapping for the Assembly of Mycobacterium marinum Lipooligosaccharides. Angew Chem Int Ed Engl 2021; 60:937-945. [PMID: 32856761 PMCID: PMC7821131 DOI: 10.1002/anie.202010280] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 01/08/2023]
Abstract
The assembly of complex bacterial glycans presenting rare structural motifs and cis-glycosidic linkages is significantly obstructed by the lack of knowledge of the reactivity of the constituting building blocks and the stereoselectivity of the reactions in which they partake. We here report a strategy to map the reactivity of carbohydrate building blocks and apply it to understand the reactivity of the bacterial sugar, caryophyllose, a rare C12-monosaccharide, containing a characteristic tetrasubstituted stereocenter. We mapped reactivity-stereoselectivity relationships for caryophyllose donor and acceptor glycosides by a systematic series of glycosylations in combination with the detection and characterization of different reactive intermediates using experimental and computational techniques. The insights garnered from these studies enabled the rational design of building blocks with the required properties to assemble mycobacterial lipooligosaccharide fragments of M. marinum.
Collapse
Affiliation(s)
- Thomas Hansen
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Tim P. Ofman
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Joey G. C. Vlaming
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Ivan A. Gagarinov
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Jessey van Beek
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Tessa A. Goté
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Jacoba M. Tichem
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Gijs Ruijgrok
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Dmitri V. Filippov
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | | | - Jeroen D. C. Codée
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
16
|
Shadrick M, Singh Y, Demchenko AV. Stereocontrolled α-Galactosylation under Cooperative Catalysis. J Org Chem 2020; 85:15936-15944. [PMID: 33064474 PMCID: PMC8142852 DOI: 10.1021/acs.joc.0c01279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A recent discovery of a cooperative catalysis comprising a silver salt and an acid led to a dramatic improvement in the way glycosyl halides are glycosidated. Excellent yields have been achieved, but the stereoselectivity achieved with 2-O-benzylated donors was poor. Reported herein is our first attempt to refine the stereoselectivity of the cooperatively catalyzed galactosylation reaction. Careful optimization of the reaction conditions along with studying effects of the remote protecting groups led to excellent stereocontrol of α-galactosylation of a variety of glycosyl acceptors with differentially protected galactosyl donors.
Collapse
Affiliation(s)
- Melanie Shadrick
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| |
Collapse
|
17
|
Total Synthesis and Structural Revision of Rebaudioside S, a Steviol Glycoside. J Org Chem 2020; 85:15857-15871. [PMID: 32281375 DOI: 10.1021/acs.joc.0c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The total synthesis of rebaudioside S, a minor steviol glycoside from the leaves of Stevia rebaudiana, was investigated via a modular strategy, culminating not only in the first and highly efficient synthesis of Reb-S and analogues thereof but also in the revision of the originally proposed structure. The modular strategy dictated the application of C2-branched disaccharide Yu donors to forge C-13 steviol glycosidic linkages, posing considerable challenges in stereoselectivity control. Through systematic investigations, the effect of the internal glycosidic linkage configuration on the glycosylation stereoselectivity of 1,2-linked disaccharide donors was disclosed, and the intensified solvent effect by the 4,6-O-benzylidene protecting group was also observed with glucosyl donors. Through the orchestrated application of these favorable effects, the stereoselectivity problems were exquisitely tackled.
Collapse
|
18
|
Hansen T, Ofman TP, Vlaming JGC, Gagarinov IA, Beek J, Goté TA, Tichem JM, Ruijgrok G, Overkleeft HS, Filippov DV, Marel GA, Codée JDC. Reactivity–Stereoselectivity Mapping for the Assembly of
Mycobacterium marinum
Lipooligosaccharides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thomas Hansen
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tim P. Ofman
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Joey G. C. Vlaming
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Ivan A. Gagarinov
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jessey Beek
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tessa A. Goté
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jacoba M. Tichem
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijs Ruijgrok
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dmitri V. Filippov
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
19
|
Zeng ZY, Liao JX, Hu ZN, Liu DY, Zhang QJ, Sun JS. Synthetic Investigation toward QS-21 Analogues. Org Lett 2020; 22:8613-8617. [PMID: 33074676 DOI: 10.1021/acs.orglett.0c03185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With glycosyl o-alkynylbenzotes as donors, a highly efficient protocol to construct the challenging glycosidic linkages at C3-OH of C23-oxo oleanane triterpenoids is disclosed, on the basis of which different strategies for the highly efficient synthesis of QS-21 analogues with the west-wing trisaccharide of QS-21 have been established.
Collapse
Affiliation(s)
- Zhi-Yong Zeng
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jin-Xi Liao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhen-Ni Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - De-Yong Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qing-Ju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
20
|
Hettikankanamalage AA, Lassfolk R, Ekholm FS, Leino R, Crich D. Mechanisms of Stereodirecting Participation and Ester Migration from Near and Far in Glycosylation and Related Reactions. Chem Rev 2020; 120:7104-7151. [PMID: 32627532 PMCID: PMC7429366 DOI: 10.1021/acs.chemrev.0c00243] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review is the counterpart of a 2018 Chemical Reviews article (Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. Chem. Rev. 2018, 118, 8242-8284) that examined the mechanisms of chemical glycosylation in the absence of stereodirecting participation. Attention is now turned to a critical review of the evidence in support of stereodirecting participation in glycosylation reactions by esters from either the vicinal or more remote positions. As participation by esters is often accompanied by ester migration, the mechanism(s) of migration are also reviewed. Esters are central to the entire review, which accordingly opens with an overview of their structure and their influence on the conformations of six-membered rings. Next the structure and relative energetics of dioxacarbeniun ions are covered with emphasis on the influence of ring size. The existing kinetic evidence for participation is then presented followed by an overview of the various intermediates either isolated or characterized spectroscopically. The evidence supporting participation from remote or distal positions is critically examined, and alternative hypotheses for the stereodirecting effect of such esters are presented. The mechanisms of ester migration are first examined from the perspective of glycosylation reactions and then more broadly in the context of partially acylated polyols.
Collapse
Affiliation(s)
- Asiri A. Hettikankanamalage
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - Robert Lassfolk
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - Filip S. Ekholm
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Reko Leino
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
21
|
Shu P, Niu H, Zhang L, Xu H, Yu M, Li J, Yang X, Fei Y, Liu H, Ju Z, Xu Z. Regioselective Dechloroacetylations Mediated by Ammonium Acetate: Practical Syntheses of 2,3,4,6‐Tetra‐
O
‐chloroacetyl‐glycopyranoses and Cinnamoyl Glucose Esters. ChemistrySelect 2020. [DOI: 10.1002/slct.202001955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Penghua Shu
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Haoying Niu
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Lingxiang Zhang
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Haichang Xu
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Mengzhu Yu
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Junping Li
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Xue Yang
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Yingying Fei
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Hao Liu
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Zhiyu Ju
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| | - Zhihong Xu
- School of Chemistry and Chemical EngineeringXuchang University Xuchang 461000 China
| |
Collapse
|
22
|
Hansen T, Elferink H, van Hengst JMA, Houthuijs KJ, Remmerswaal WA, Kromm A, Berden G, van der Vorm S, Rijs AM, Overkleeft HS, Filippov DV, Rutjes FPJT, van der Marel GA, Martens J, Oomens J, Codée JDC, Boltje TJ. Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions. Nat Commun 2020; 11:2664. [PMID: 32471982 PMCID: PMC7260182 DOI: 10.1038/s41467-020-16362-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
Controlling the chemical glycosylation reaction remains the major challenge in the synthesis of oligosaccharides. Though 1,2-trans glycosidic linkages can be installed using neighboring group participation, the construction of 1,2-cis linkages is difficult and has no general solution. Long-range participation (LRP) by distal acyl groups may steer the stereoselectivity, but contradictory results have been reported on the role and strength of this stereoelectronic effect. It has been exceedingly difficult to study the bridging dioxolenium ion intermediates because of their high reactivity and fleeting nature. Here we report an integrated approach, using infrared ion spectroscopy, DFT computations, and a systematic series of glycosylation reactions to probe these ions in detail. Our study reveals how distal acyl groups can play a decisive role in shaping the stereochemical outcome of a glycosylation reaction, and opens new avenues to exploit these species in the assembly of oligosaccharides and glycoconjugates to fuel biological research.
Collapse
Affiliation(s)
- Thomas Hansen
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Hidde Elferink
- Radboud University Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jacob M A van Hengst
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Kas J Houthuijs
- Radboud University Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Wouter A Remmerswaal
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Alexandra Kromm
- Radboud University Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED, Nijmegen, The Netherlands
| | - Stefan van der Vorm
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anouk M Rijs
- Radboud University Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED, Nijmegen, The Netherlands
| | - Hermen S Overkleeft
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Dmitri V Filippov
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Floris P J T Rutjes
- Radboud University Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Gijsbert A van der Marel
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jonathan Martens
- Radboud University Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED, Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED, Nijmegen, The Netherlands.
| | - Jeroen D C Codée
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Thomas J Boltje
- Radboud University Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Ghosh B, Kulkarni SS. Advances in Protecting Groups for Oligosaccharide Synthesis. Chem Asian J 2020; 15:450-462. [DOI: 10.1002/asia.201901621] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/27/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Bhaswati Ghosh
- Department of ChemistryIndian Institute of Technology Bombay Mumbai 400076 India
| | - Suvarn S. Kulkarni
- Department of ChemistryIndian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
24
|
Xu K, Man Q, Zhang Y, Guo J, Liu Y, Fu Z, Zhu Y, Li Y, Zheng M, Ding N. Investigation of the remote acyl group participation in glycosylation from conformational perspectives by using trichloroacetimidate as the acetyl surrogate. Org Chem Front 2020. [DOI: 10.1039/d0qo00363h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The remote acyl group participation in glycosylation was studied by using trichloroacetimidate as the acetyl surrogate. The bridging participation intermediates were systematically trapped, and DFT calculations were applied to explain the results.
Collapse
|