1
|
Wang S, Zhong C, Huang Y, Lu P. Enantioselective Hydrofunctionalization of Cyclobutenones: Total Synthesis of gem-Dimethylcyclobutane Natural Products. Angew Chem Int Ed Engl 2024; 63:e202400515. [PMID: 38494466 DOI: 10.1002/anie.202400515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Cyclobutanes with a gem-dimethyl group are common motifs in natural products. However, strategies for constructing enantioenriched gem-dimethyl cyclobutanes are still underdeveloped. Herein, we report an enantioselective approach to synthesize a broad group of chiral 2,3-disubstituted cyclobutanones through sequential 1,4-conjugate addition/trapping/cross-coupling of readily available cyclobutenones. The intermediate 2-bromocyclobutanone provides a valuable synthetic handle for further coupling transformations. In addition, this strategy was successfully utilized to synthesize gem-dimethyl cyclobutane-containing natural products, including (+)-β-caryophyllene, (-)-raikovenal, (-)-1β,9αH-5-linoleoyloxy-4,5-secocaryophyllen-4-one, and (-)-rumphellanones A-C.
Collapse
Affiliation(s)
- Shaowei Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Changxu Zhong
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Yingchao Huang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Mills LR, Di Mare F, Gygi D, Lee H, Simmons EM, Kim J, Wisniewski SR, Chirik PJ. Phenoxythiazoline (FTz)-Cobalt(II) Precatalysts Enable C(sp 2 )-C(sp 3 ) Bond-Formation for Key Intermediates in the Synthesis of Toll-like Receptor 7/8 Antagonists. Angew Chem Int Ed Engl 2023:e202313848. [PMID: 37917119 DOI: 10.1002/anie.202313848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Evaluation of the relative rates of the cobalt-catalyzed C(sp2 )-C(sp3 ) Suzuki-Miyaura cross-coupling between the neopentylglycol ester of 4-fluorophenylboronic acid and N-Boc-4-bromopiperidine established that smaller N-alkyl substituents on the phenoxyimine (FI) supporting ligand accelerated the overall rate of the reaction. This trend inspired the design of optimal cobalt catalysts with phenoxyoxazoline (FOx) and phenoxythiazoline (FTz) ligands. An air-stable cobalt(II) precatalyst, (FTz)CoBr(py)3 was synthesized and applied to the cross-coupling of an indole-5-boronic ester nucleophile with a piperidine-4-bromide electrophile that is relevant to the synthesis of reported toll-like receptor (TLR) 7/8 antagonist molecules including afimetoran. Addition of excess KOMe⋅B(Oi Pr)3 improved catalyst lifetime due to attenuation of alkoxide basicity that otherwise resulted in demetallation of the FI chelate. A first-order dependence on the cobalt precatalyst and a saturation regime in nucleophile were observed, supporting turnover-limiting transmetalation and the origin of the observed trends in N-imine substitution.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Francesca Di Mare
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David Gygi
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Heejun Lee
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Luo X, Yang D, He X, Wang S, Zhang D, Xu J, Pao CW, Chen JL, Lee JF, Cong H, Lan Y, Alhumade H, Cossy J, Bai R, Chen YH, Yi H, Lei A. Valve turning towards on-cycle in cobalt-catalyzed Negishi-type cross-coupling. Nat Commun 2023; 14:4638. [PMID: 37532729 PMCID: PMC10397345 DOI: 10.1038/s41467-023-40269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Ligands and additives are often utilized to stabilize low-valent catalytic metal species experimentally, while their role in suppressing metal deposition has been less studied. Herein, an on-cycle mechanism is reported for CoCl2bpy2 catalyzed Negishi-type cross-coupling. A full catalytic cycle of this kind of reaction was elucidated by multiple spectroscopic studies. The solvent and ligand were found to be essential for the generation of catalytic active Co(I) species, among which acetonitrile and bipyridine ligand are resistant to the disproportionation events of Co(I). Investigations, based on Quick-X-Ray Absorption Fine Structure (Q-XAFS) spectroscopy, Electron Paramagnetic Resonance (EPR), IR allied with DFT calculations, allow comprehensive mechanistic insights that establish the structural information of the catalytic active cobalt species along with the whole catalytic Co(I)/Co(III) cycle. Moreover, the acetonitrile and bipyridine system can be further extended to the acylation, allylation, and benzylation of aryl zinc reagents, which present a broad substrate scope with a catalytic amount of Co salt. Overall, this work provides a basic mechanistic perspective for designing cobalt-catalyzed cross-coupling reactions.
Collapse
Affiliation(s)
- Xu Luo
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Dali Yang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Xiaoqian He
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P.R. China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Dongchao Zhang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Jiaxin Xu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P.R. China
| | - Hesham Alhumade
- K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Chemical and Materials Engineering, Faculty of Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 75005, Paris, France.
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P.R. China.
| | - Yi-Hung Chen
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China.
| | - Hong Yi
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China.
- Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P.R. China.
| |
Collapse
|
4
|
Cobalt-Catalyzed C–C Coupling Reactions with Csp3 Electrophiles. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Li Z, Cheng XY, Yang NY, Chen JJ, Tang WY, Bian JQ, Cheng YF, Li ZL, Gu QS, Liu XY. A Cobalt-Catalyzed Enantioconvergent Radical Negishi C(sp 3)–C(sp 2) Cross-Coupling with Chiral Multidentate N, N, P-Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuang Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xian-Yan Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Jun Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen-Yue Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Song XD, Guo MM, Xu S, Shen C, Zhou X, Chu XQ, Ma M, Shen ZL. Nickel-Catalyzed Diastereoselective Reductive Cross-Coupling of Disubstituted Cycloalkyl Iodides with Aryl Iodides. Org Lett 2021; 23:5118-5122. [PMID: 34160224 DOI: 10.1021/acs.orglett.1c01649] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nickel-catalyzed direct reductive cross-coupling of disubstituted cycloalkyl iodides with aryl iodides was developed. The one-pot reaction, which is simple to operate, was capable of proceeding efficiently in a stereocontrolled manner to afford a variety of cross-coupled products with high diastereoselectivity and wide functional group tolerance.
Collapse
Affiliation(s)
- Xuan-Di Song
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng-Meng Guo
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuang Xu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chuanji Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Kremsmair A, Harenberg JH, Schwärzer K, Hess A, Knochel P. Preparation and reactions of polyfunctional magnesium and zinc organometallics in organic synthesis. Chem Sci 2021; 12:6011-6019. [PMID: 33995997 PMCID: PMC8098701 DOI: 10.1039/d1sc00685a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Polyfunctional organometallics of magnesium and zinc are readily prepared from organic halides via a direct metal insertion in the presence of LiCl or a Br/Mg-exchange using iPrMgCl·LiCl (turbo-Grignard) or related reagents. Alternatively, such functionalized organometallics are prepared by metalations with TMP-bases (TMP = 2,2,6,6-tetramethylpiperidyl). The scope of these methods is described as well as applications in new Co- or Fe-catalyzed cross-couplings or aminations. It is shown that the use of a continous flow set-up considerably expands the field of applications of these methods and further allows the preparation of highly reactive organosodium reagents.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Johannes H Harenberg
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Kuno Schwärzer
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Andreas Hess
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| |
Collapse
|
8
|
Dong ZB, Chen JQ. Recent Progress in Utilization of Functionalized Organometallic Reagents in Cross Coupling Reactions and Nucleophilic Additions. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractOrganometallic compounds have become increasingly important in organic synthesis because of their high chemoselectivity and excellent reactivity. Recently, a variety of organometallic reagents were found to facilitate transition-metal-catalyzed cross-coupling reactions and nucleophilic addition reactions. Here, we have summarized the latest progress in cross-coupling reactions and in nucleophilic addition reactions with functionalized organometallic reagents present to illustrate their application value. Due to the tremendous contribution made by the Knochel group towards the development of novel organometallic reagents, this review draws extensively from their work in this area in recent years.Introduction1 Transition-Metal-Catalyzed Cross Couplings Involving Organozinc Reagents2 Transition-Metal-Catalyzed Cross Couplings Involving Organomagnesium Reagents3 Transition-Metal-Free Cross Couplings Involving Zn and Mg Organometallic Reagents4 Nucleophilic Additions Involving Zn and Mg Organometallic Reagents5 Cross-Coupling Reactions or Nucleophilic Additions Involving Mn, Al-, La-, Li-, Sm- and In-Organometallics6 Conclusion
Collapse
Affiliation(s)
- Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology
| | - Jin-Quan Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
| |
Collapse
|
9
|
Lorion MM, Koch V, Nieger M, Chen HY, Lei A, Bräse S, Cossy J. Cobalt-Catalyzed α-Arylation of Substituted α-Bromo α-Fluoro β-Lactams with Diaryl Zinc Reagents: Generalization to Functionalized Bromo Derivatives. Chemistry 2020; 26:13163-13169. [PMID: 32359179 DOI: 10.1002/chem.202001721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Indexed: 12/24/2022]
Abstract
A cobalt-catalyzed cross-coupling of α-bromo α-fluoro β-lactams with diarylzinc or diallylzinc reagents is herein disclosed. The protocol proved to be general, chemoselective and operationally simple allowing the C4 functionalization of β-lactams. The substrate scope was expanded to α-bromo lactams and amides, α-bromo lactones and esters as well as N- and O-containing heterocycles.
Collapse
Affiliation(s)
- Mélanie M Lorion
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Vanessa Koch
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, University of Helsinki, Helsinki, 00014, Finland
| | - Hi-Yung Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute for Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| |
Collapse
|
10
|
Palao E, López E, Torres-Moya I, de la Hoz A, Díaz-Ortiz Á, Alcázar J. Formation of quaternary carbons through cobalt-catalyzed C(sp 3)-C(sp 3) Negishi cross-coupling. Chem Commun (Camb) 2020; 56:8210-8213. [PMID: 32555891 DOI: 10.1039/d0cc02734k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation of all-carbon-substituted quaternary carbons is a key challenge in organic and medicinal chemistry. We report a cobalt-catalyzed C(sp3)-C(sp3) cross-coupling that allows for the introduction of benzyl, heteroarylmethylzinc and allyl groups to halo-carbonyl substrates. The cross-coupling reaction is selective for C(sp3)-over C(sp2)-halides, in contrast to most used catalytic metals, and allows access to novel scaffolds of pharmaceutical interest. NMR mechanistic studies suggest the presence of Co(0) complexes as catalytic species.
Collapse
Affiliation(s)
- Eduardo Palao
- Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, Toledo, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Guérinot A, Cossy J. Cobalt-Catalyzed Cross-Couplings between Alkyl Halides and Grignard Reagents. Acc Chem Res 2020; 53:1351-1363. [PMID: 32649826 DOI: 10.1021/acs.accounts.0c00238] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal-catalyzed cross-couplings have emerged as essential tools for the construction of C-C bonds. The identification of efficient catalytic systems as well as large substrate scope made these cross-couplings key reactions to access valuable molecules ranging from materials, agrochemicals to active pharmaceutical ingredients. They have been increasingly integrated in retrosynthetic plans, allowing shorter and original route development. Palladium-catalyzed cross-couplings still largely rule the field, with the most popular reactions in industrial processes being the Suzuki and Sonogashira couplings. However, the extensive use of palladium complexes raises several problems such as limited resources, high cost, environmental impact, and frequent need for sophisticated ligands. As a consequence, the use of nonprecious and cheap metal catalysts has appeared as a new horizon in cross-coupling development. Over the last three decades, a growing interest has thus been devoted to Fe-, Co-, Cu-, or Ni-catalyzed cross-couplings. Their natural abundance makes them cost-effective, allowing the conception of more sustainable and less expensive chemical processes, especially for large-scale production of active molecules. In addition to these economical and environmental considerations, the 3d metal catalysts also exhibit complementary reactivity with palladium complexes, facilitating the use of alkyl halide partners due to the decrease of β-elimination side reactions. In particular, by using cobalt catalysts, numerous cross-couplings between alkyl halides and organometallics have been described. However, cobalt catalysis still stays far behind palladium catalysis in terms of popularity and applications, and the expansion of the substrate scope as well as the development of simple and robust catalytic systems remains an important challenge.In 2012, our group entered the cobalt catalysis field by developing a cobalt-catalyzed cross-coupling between C-bromo glycosides and Grignard reagents. The generality of the coupling allowed the preparation of a range of valuable C-aryl and C-vinyl glycoside building blocks. We then focused on the functionalization of saturated N-heterocycles, and a variety of halo-azetidines, -pyrrolidines, and -piperidines were successfully reacted with aryl and alkenyl Grignard reagents under cobalt catalysis. With the objective of preparing valuable α-aryl amides, a cobalt-catalyzed cross-coupling applied to α-bromo amides was studied and then extended to α-bromo lactams. Recently, we also reported an efficient and general cross-coupling involving cyclopropyl- and cyclobutyl-magnesium bromides. This method allows the alkylation of functionalized small strained rings by a range of primary and secondary alkyl halides.
Collapse
Affiliation(s)
- Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005 Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|