1
|
Farajpour B, Alizadeh GB, Majedi S, Moradkhani F, Majedi S, Notash B, Hosseindoust B, Shiri M. Sulfur- and DABCO-Promoted Reaction between Alkylidene Rhodanines and Isothiocyanates: Access to Aminoalkylidene Rhodanines. ACS OMEGA 2024; 9:26607-26615. [PMID: 38911738 PMCID: PMC11191098 DOI: 10.1021/acsomega.4c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
In this work, an efficient sulfur- and DABCO-promoted reaction for the synthesis of aminoalkylidene rhodanines from available alkylidene rhodanines and isothiocyanates is reported. A tandem process including sulfurative annulation/ring-opening by liberation of a CS2 molecule/olefination allows the synthesis of aminoalkylidene rhodanines with acceptable functional group tolerance. Chemo- and stereoselectivity, operational simplicity, and synthetically useful yields are some highlighted advantages of these transformations.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Gul Bahar Alizadeh
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Soma Majedi
- Medical
Analysis Department, Applied Science Faculty, Tishk International University, Kurdistan Region 46001, Iraq
| | - Fatemeh Moradkhani
- Department
of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences
Research Center, Tehran University of Medical
Sciences, Tehran P94V+8MF, Iran
| | - Serveh Majedi
- Department
of Chemistry, Payame Noor University, Tehran RG23+F4X, Iran
| | - Behrouz Notash
- Department
of Inorganic Chemistry, Shahid Beheshti
University, Tehran 1983969411, Iran
| | - Benyamin Hosseindoust
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Morteza Shiri
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| |
Collapse
|
2
|
Chai Y, Chen P, Wu R, Zhou J, Ou J, Min Y, Wang H, Zhang D, Zhou H, Liu Y, Zhou J. Enantioselective Alkynylation of Pyrazole-4,5-diones with Terminal Alkynes Catalyzed by Copper/PyBisulidine. J Org Chem 2023; 88:13645-13654. [PMID: 37681260 DOI: 10.1021/acs.joc.3c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A copper/PyBisulidine-catalyzed enantioselective alkynylation of electrophilic pyrazole-4,5-dione with terminal alkynes has been developed. Chiral tertiary propargylic alcohols bearing the pyrazolone motif were prepared with yields (up to 99%) and enantioselectivities (up to 99% ee). The prominent feature of this protocol includes its mild reaction conditions and good stereoselectivities. The nonlinear effect study showed that the catalytically active specie was a monomeric catalyst and that the excess copper activated the alkynes through the π-system.
Collapse
Affiliation(s)
- Yu Chai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ruoran Wu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Junyu Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Min
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Haoting Wang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Dong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Liu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Sharma A, Pandey SK. Catalyst- and additive-free syntheses of rhodanine and S-alkyl dithiocarbamate derivatives from sulfoxonium ylides. Chem Commun (Camb) 2023; 59:1509-1512. [PMID: 36655910 DOI: 10.1039/d2cc06092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An efficient catalyst- and additive-free facile access to rhodanine and S-alkyl dithiocarbamate derivatives via multi-component reaction of amines, CS2 and α-ester sulfoxonium ylides in methanol has been described. The new synthetic methods offer excellent synthetic prospects for several functionalized rhodanines and S-alkyl dithiocarbamates with simple operational procedures.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
4
|
Yang X, Sun J, Huang X, Jin Z. Asymmetric Synthesis of Structurally Sophisticated Spirocyclic Pyrano[2,3- c]pyrazole Derivatives Bearing a Chiral Quaternary Carbon Center. Org Lett 2022; 24:5474-5479. [PMID: 35857420 DOI: 10.1021/acs.orglett.2c02211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A carbene-catalyzed enantio- and diastereoselective [2 + 4] cycloaddition reaction is developed for quick and efficient access to structurally complex multicyclic pyrano[2,3-c]pyrazole molecules. The reaction tolerates a broad scope of substrates bearing various substitution patterns, with the multicyclic pyrano[2,3-c]pyrazole products afforded in generally good to excellent yields and optical purities. The chiral molecules obtained from this approach has found promising applications in the development of novel bacteriacides for plant protection.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
5
|
Lei X, Feng J, Guo Q, Xu C, Shi J. Base-Promoted Formal [3 + 2] Cycloaddition of α-Halohydroxamates with Carbon Disulfide to Synthesize Polysubstituted Rhodanines. Org Lett 2022; 24:2837-2841. [PMID: 35394789 DOI: 10.1021/acs.orglett.2c00736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A concise and practical strategy via potassium-carbonate-mediated [3 + 2]-cycloaddition reaction of α-halohydroxamates with the common solvent carbon disulfide for the synthesis of functionalized rhodanine derivatives in good to excellent yields is developed. The present methodology features a wide substrate scope as well as good functional group tolerance. The potential synthetic utility of this protocol is demonstrated by synthesis of a series of natural product derivatives containing rhodamine skeletons.
Collapse
Affiliation(s)
- Xiaoqiang Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Juan Feng
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
6
|
Bao X, Wang X, Tian JM, Ye X, Wang B, Wang H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org Biomol Chem 2022; 20:2370-2386. [PMID: 35234777 DOI: 10.1039/d1ob02426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrazolones and pyrazoles, featuring nitrogen-nitrogen bonds, are two of the most important classes of heterocycles, owing to their widespread occurrence in medicinal chemistry and functional materials. The last decade has witnessed a rapid increase in the construction of chiral pyrazolone and pyrazole derivatives, with the application of pyrazolone derivatives as powerful synthons. Since our last review in 2018, a large number of new achievements has emerged in this area, requiring a timely update. Thus, this review summarizes these elegant achievements based on the multiple reactive sites of different pyrazolone synthons. In addition, important mechanisms and interesting biological investigations relating to the corresponding products are also discussed.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jin-Miao Tian
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Torán R, Miguélez R, Sanz‐Marco A, Vila C, Pedro JR, Blay G. Asymmetric Addition and Cycloaddition Reactions with Ylidene‐Five‐Membered Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ricardo Torán
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Rubén Miguélez
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Amparo Sanz‐Marco
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Carlos Vila
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - José R. Pedro
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| |
Collapse
|
8
|
Li D, Zhang W, Zhang S, Sun W, Zhao J, Wang B, Qu J, Zhou Y. Palladium-Catalyzed Asymmetric Trifluoromethylated Allylic Alkylation of Pyrazolones Enabled by α-(Trifluoromethyl)alkenyl Acetates. Org Lett 2021; 23:5804-5808. [PMID: 34279113 DOI: 10.1021/acs.orglett.1c01957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The first asymmetric trifluoromethylated allylic alkylation of pyrazolones using α-(trifluoromethyl)alkenyl acetates as a novel trifluoromethylated allylation reagent is described, affording various functionalized chiral pyrazolones containing a trifluoromethylated allyl substituent in high yields with excellent regio-/enantio-/diastereoselectivities. Mechanistically, the double-bond migration of α-(trifluoromethyl)alkenyl acetates in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene is initial and interesting step. More importantly, this study is of significance in providing a novel and widely applicable trifluoromethyl-containing allylation reagent.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wande Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wuding Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
9
|
Novel C2-symmetric phenylglycine derivatives as organocatalysts of the Michael reaction between nitroalkenes and ketones. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Biswas A, Ghosh A, Shankhdhar R, Chatterjee I. Squaramide Catalyzed Asymmetric Synthesis of Five‐ and Six‐Membered Rings. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anup Biswas
- Department of Chemistry Hooghly Women's College Hooghly West Bengal India
| | - Avisek Ghosh
- Department of Chemistry Indian Institute of Technology- Ropar India
| | - Rajat Shankhdhar
- Department of Chemistry Indian Institute of Technology- Ropar India
| | | |
Collapse
|
11
|
Xiao X, Shao B, Li J, Yang Z, Lu YJ, Ling F, Zhong W. Enantioselective synthesis of functionalized 1,4-dihydropyrazolo-[4',3':5,6]pyrano[2,3- b]quinolines through ferrocenyl-phosphine-catalyzed annulation of modified MBH carbonates and pyrazolones. Chem Commun (Camb) 2021; 57:4690-4693. [PMID: 33977995 DOI: 10.1039/d1cc00989c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective synthesis of highly functionalized 1,4-dihydropyrazolo[4',3':5,6]pyrano[2,3-b]quinolines from modified MBH carbonates and pyrazolones via a chiral phosphine-mediated alkylation/annulation sequence has been realized. The chiral dihydropyrano[2,3-c]pyrazoles bearing bio-active condensed heterocycles were facilely formed in good chemical yields and with high to excellent enantioselectivity by utilizing low catalyst loading.
Collapse
Affiliation(s)
- Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China and College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Bingxuan Shao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jingyi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yin-Jie Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
12
|
Zhang JL, Liu JY, Xu GQ, Luo YC, Lu H, Tan CY, Hu XQ, Xu PF. One-Pot Enantioselective Construction of Polycyclic Tetrahydroquinoline Scaffolds through Asymmetric Organo/Photoredox Catalysis via Triple-Reaction Sequence. Org Lett 2021; 23:3287-3293. [DOI: 10.1021/acs.orglett.1c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Yu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Chang-Yin Tan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Zhang B, Liu D, Sun Y, Zhang Y, Feng J, Yu F. Preparation of Thiazole-2-thiones through TBPB-Promoted Oxidative Cascade Cyclization of Enaminones with Elemental Sulfur. Org Lett 2021; 23:3076-3082. [DOI: 10.1021/acs.orglett.1c00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yulin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yajing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jiayi Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
14
|
Kostenko AA, Bykova KA, Kucherenko AS, Komogortsev AN, Lichitsky BV, Zlotin SG. 2-Nitroallyl carbonate-based green bifunctional reagents for catalytic asymmetric annulation reactions. Org Biomol Chem 2021; 19:1780-1786. [PMID: 33543186 DOI: 10.1039/d0ob02283g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2-Nitroallylic carbonates, a new class of "green" 1,3-bielectrophilic reagents for organic synthesis and catalysis, have been prepared. The bifunctional tertiary amine-catalyzed asymmetric [3 + 3] annulations of cyclic enols with these reagents occur much faster than corresponding reactions with 2-nitroallylic esters and produce no acidic by-products poisoning the catalyst. Furthermore, 2-nitroallylic carbonates enable highly enantioselective one-pot synthesis of a variety of fused dihydropyrane derivatives from available precursors bearing pharmacophoric fragments.
Collapse
Affiliation(s)
- Alexey A Kostenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Kseniya A Bykova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Alexander S Kucherenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Andrey N Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Boris V Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Sergei G Zlotin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| |
Collapse
|
15
|
Alizadeh A, Farajpour B, Knedel TO, Janiak C. Synthesis of Substituted Phthalimides via Ultrasound-Promoted One-Pot Multicomponent Reaction. J Org Chem 2021; 86:574-580. [PMID: 33226238 DOI: 10.1021/acs.joc.0c02245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel strategy for the straightforward synthesis of substituted phthalimides is described, which includes base-mediated Michael addition/intramolecular cyclization/[1,5]-H shift/cleavage of CS2/aromatization/nucleophilic acyl substitution reaction of 2-(4-oxo-2-thioxothiazolidin-5-ylidene)acetates and α,α-dicyanoolefines under ultrasound (US) irradiation. Some advantages of this method are as follows: having simple operation, easily accessible starting materials, chemoselective cascade process, synthetically useful yields, and green conditions by utilizing US irradiation as a source of energy and using ethanol as solvent.
Collapse
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Tim-Oliver Knedel
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Awasthi A, Yadav P, Tiwari DK. A three-component, general and practical route for diastereoselective synthesis of aza-spirocyclic pyrazolones via a decarboxylative annulation process. NEW J CHEM 2021. [DOI: 10.1039/d0nj05915c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, general, and practical route for highly diastereoselective synthesis of aza-spirocyclic pyrazolones from easily available α-amino acids, aldehydes, and alkylidene pyrazolones by means of a decarboxylative annulation process is reported.
Collapse
Affiliation(s)
- Annapurna Awasthi
- Molecular Synthesis and Drug Discovery Unit
- Center of Biomedical Research (CBMR)
- SGPGIMS Campus
- Lucknow
- India
| | - Pushpendra Yadav
- Molecular Synthesis and Drug Discovery Unit
- Center of Biomedical Research (CBMR)
- SGPGIMS Campus
- Lucknow
- India
| | - Dharmendra Kumar Tiwari
- Molecular Synthesis and Drug Discovery Unit
- Center of Biomedical Research (CBMR)
- SGPGIMS Campus
- Lucknow
- India
| |
Collapse
|
17
|
Awasthi A, Yadav P, Kumar V, Tiwari DK. α‐Amino Acids Mediated C−C Double Bonds Cleavage in Diastereoselective Synthesis of Aza‐Spirocyclic Pyrazolones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Annapurna Awasthi
- Molecular Synthesis and Drug Discovery Laboratory Center of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus Raebareli Road Lucknow 226014 India
- Department of Chemistry Institute of Science Banaras Hindu University 221005 Varanasi Uttar Pradesh India
| | - Pushpendra Yadav
- Molecular Synthesis and Drug Discovery Laboratory Center of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus Raebareli Road Lucknow 226014 India
- Department of Chemistry Institute of Science Banaras Hindu University 221005 Varanasi Uttar Pradesh India
| | - Virendra Kumar
- School of Basic Sciences Indian Institute of Technology Bhubaneswar Argul Khurdha 752050 Odisha India
| | - Dharmendra Kumar Tiwari
- Molecular Synthesis and Drug Discovery Laboratory Center of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus Raebareli Road Lucknow 226014 India
| |
Collapse
|
18
|
Song YX, Du DM. Recent advances in the catalytic asymmetric reactions of thiazolone derivatives. Org Biomol Chem 2020; 18:6018-6041. [PMID: 32705096 DOI: 10.1039/d0ob01261k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thiazolones as a class of five-membered heterocyclic compounds containing both nitrogen and sulfur, have been proved to possess important biological activities. Because thiazolone molecules have many reaction sites, they can carry out a series of modification reactions, which makes them good reaction substrates for various molecular syntheses. In recent years, research on the use of asymmetric organocatalysis to construct thiazolone derivatives has attracted a lot of attention. Among these, some breakthrough results have been achieved in the asymmetric synthesis of thiazolone derivatives. This review highlights recent developments in thiazolone derivatives in asymmetric reactions, including Michael additions, Mannich reactions as well as various cascade reactions.
Collapse
Affiliation(s)
- Yong-Xing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | |
Collapse
|
19
|
Huang A, Guo X, Li P, Li W. Recent Advances in Catalytic Asymmetric Reactions of Thiazolones, Rhodanines and Their Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anqi Huang
- Department of Medicinal ChemistrySchool of PharmacyQingdao University 38 Dengzhou Road Qingdao Shandong 266021 People's Republic of China
| | - Xing Guo
- Department of ChemistryCollege of ScienceSouthern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
| | - Pengfei Li
- Department of ChemistryCollege of ScienceSouthern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
- Shenzhen Key Laboratory of Marine Archaea Geo-OmicsSouthern University of Science and Technology
| | - Wenjun Li
- Department of Medicinal ChemistrySchool of PharmacyQingdao University 38 Dengzhou Road Qingdao Shandong 266021 People's Republic of China
| |
Collapse
|