1
|
Chen S, Xie Y, Ma K, Wei Z, Ran X, Fu X, Zhang C, Zhao C. Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioact Mater 2024; 42:478-518. [PMID: 39308550 PMCID: PMC11415839 DOI: 10.1016/j.bioactmat.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Electrospun nanofibrous membranes (eNFMs) have been extensively developed for bio-applications due to their structural and compositional similarity to the natural extracellular matrix. However, the emergence of antibiotic resistance in bacterial infections significantly impedes the further development and applications of eNFMs. The development of antibacterial nanomaterials substantially nourishes the engineering design of antibacterial eNFMs for combating bacterial infections without relying on antibiotics. Herein, a comprehensive review of diverse fabrication techniques for incorporating antibacterial nanomaterials into eNFMs is presented, encompassing an exhaustive introduction to various nanomaterials and their bactericidal mechanisms. Furthermore, the latest achievements and breakthroughs in the application of these antibacterial eNFMs in tissue regenerative therapy, mainly focusing on skin, bone, periodontal and tendon tissues regeneration and repair, are systematically summarized and discussed. In particular, for the treatment of skin infection wounds, we highlight the antibiotic-free antibacterial therapy strategies of antibacterial eNFMs, including (i) single model therapies such as metal ion therapy, chemodynamic therapy, photothermal therapy, and photodynamic therapy; and (ii) multi-model therapies involving arbitrary combinations of these single models. Additionally, the limitations, challenges and future opportunities of antibacterial eNFMs in biomedical applications are also discussed. We anticipate that this comprehensive review will provide novel insights for the design and utilization of antibacterial eNFMs in future research.
Collapse
Affiliation(s)
- Shengqiu Chen
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xingwu Ran
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Endocrinology and Metabolism, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Sheybanikashani S, Zandi N, Hosseini D, Lotfi R, Simchi A. A sustainable and self-healable silk fibroin nanocomposite with antibacterial and drug eluting properties for 3D printed wound dressings. J Mater Chem B 2024; 12:784-799. [PMID: 38179665 DOI: 10.1039/d3tb02363j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The development of self-healable and 3D printable hydrogels with decent biocompatibility, mechanical durability, adhesiveness to tissues, and antibacterial activity is of great importance for wound healing applications. In this study, we present a sustainable and environmentally friendly composite hydrogel consisting of silk fibroin (SF), oxidized salep (OS), and kappa carrageenan nanoparticles (NPs) for efficient wound care. The injectable nanocomposite hydrogel is highly stretchable and exhibits strong tissue adhesiveness and self-healing response through Schiff-base cross-linking between OS and SF. The tunable shear-thinning viscoelastic properties of the hydrogel facilitate 3D bioprinting with excellent shape adaptability (97.7 ± 1.1% recovery), enabling the fabrication of complex-shaped constructs. In vitro release kinetics of tetracycline (TC) encapsulated in kappa carrageenan NPs indicate a distinctive Korsmeyer-Peppas profile, including an initial burst release followed by a triphasic pattern controlled by the embedded NPs within the hydrogel matrix. The composite hydrogel shows a remarkable broad-spectrum antibacterial activity with substantial zones of inhibition against S. aureus (34.00 ± 1.00 mm) and E. coli (27.60 ± 2.08 mm) after 24 h of incubation at 37 °C. The addition of TC further enhances the zones of inhibition by approximately 45% for S. aureus and 27% for E. coli. The control group without kappa NP incorporation shows no zone of inhibition, underscoring the critical role of the nanoparticles in imparting antibacterial activity to the hydrogel. Cytocompatibility assays show the high viability of fibroblast (L929) cells (>90%) in vitro. In vivo biocompatibility studies through subcutaneous implantation also do not show malignancy, infection, abscess, necrosis, epidermal or dermal modifications, or inflammation of the wounds after 14 days post-injection. H&E staining shows that the biodegradation of the developed hydrogel facilitates the growth of non-inflammatory cells, leading to the substitution of the injected hydrogel with autologous tissue. The detailed analyses affirm that the multifunctional injectable hydrogel with self-healing and antibacterial properties has high potential for wound healing and skin tissue engineering.
Collapse
Affiliation(s)
- Sana Sheybanikashani
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| | - Nooshin Zandi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| | - Danial Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| | - Roya Lotfi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
- Center for Bioscioence and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, 14588-89694 Tehran, Iran.
| |
Collapse
|
3
|
Xu X, Chen Z, Xiao L, Xu Y, Xiao N, Jin W, Chen Y, Li Y, Luo K. Nanosilicate-functionalized nanofibrous membrane facilitated periodontal regeneration potential by harnessing periodontal ligament cell-mediated osteogenesis and immunomodulation. J Nanobiotechnology 2023; 21:223. [PMID: 37443072 DOI: 10.1186/s12951-023-01982-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Although various new biomaterials have enriched the methods for periodontal regeneration, their efficacy is still controversial, and the regeneration of damaged support tissue in the periodontium remains challenging. Laponite (LAP) nanosilicate is a layered two-dimensional nanoscale, ultrathin nanomaterial with a unique structure and brilliant biocompatibility and bioactivity. This study aimed to investigate the effects of nanosilicate-incorporated PCL (PCL/LAP) nanofibrous membranes on periodontal ligament cells (PDLCs) in vitro and periodontal regeneration in vivo. A PCL/LAP nanofibrous membrane was fabricated by an electrospinning method. The characterization of PCL/LAP nanofibrous membrane were determined by scanning electron microscopy (SEM), energy dispersive spectrum of X-ray (EDS), inductively coupled plasma mass spectrometry (ICP-MS) and tensile test. The proliferation and osteogenic differentiation of PDLCs on the PCL/LAP nanofibrous membrane were evaluated. A PDLCs and macrophage coculture system was used to explore the immunomodulatory effects of the PCL/LAP nanofibrous membrane. PCL/LAP nanofibrous membrane was implanted into rat calvarial and periodontal defects, and the regenerative potential was evaluated by microcomputed topography (micro-CT) and histological analysis. The PCL/LAP nanofibrous membrane showed good biocompatibility and bioactivity. It enhanced the proliferation and osteogenic differentiation of PDLCs. The PCL/LAP nanofibrous membrane also stimulated anti-inflammatory and pro-remodeling N2 neutrophil formation, regulated inflammatory responses and induced M2 macrophage polarization by orchestrating the immunomodulatory effects of PDLCs. The PCL/LAP nanofibrous membrane promoted rat calvarial defect repair and periodontal regeneration in vivo. LAP nanosilicate-incorporated PCL membrane is capable of mediating osteogenesis and immunomodulation of PDLCs in vitro and accelerating periodontal regeneration in vivo. It could be a promising biomaterial for periodontal regeneration therapy.
Collapse
Affiliation(s)
- Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Ziqin Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Long Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Nianqi Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Weiqiu Jin
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, People's Republic of China
| | - Yuling Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, People's Republic of China.
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
4
|
Wang G, Cui Y, Liu H, Tian Y, Li S, Fan Y, Sun S, Wu D, Peng C. Antibacterial peptides-loaded bioactive materials for the treatment of bone infection. Colloids Surf B Biointerfaces 2023; 225:113255. [PMID: 36924650 DOI: 10.1016/j.colsurfb.2023.113255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Bacterial bone infection in open fractures is an urgent problem to solve in orthopedics. Antimicrobial peptides (AMPs), as a part of innate immune defense, have good biocompatibility. Their antibacterial mechanism and therapeutic application against bacteria have been widely studied. Compared with traditional antibiotics, AMPs do not easily cause bacterial resistance and can be a reliable substitute for antibiotics in the future. Therefore, various physical and chemical strategies have been developed for the combined application of AMPs and bioactive materials to infected sites, which are conducive to maintaining the local stability of AMPs, reducing many complications, and facilitating bone infection resolution. This review explored the molecular structure, function, and direct and indirect antibacterial mechanisms of AMPs, introduced two important AMPs (LL-37 and β-defensins) in bone tissues, and reviewed advanced AMP loading strategies and different bioactive materials. Finally, the latest progress and future development of AMPs-loaded bioactive materials for the promotion of bone infection repair were discussed. This study provided a theoretical basis and application strategy for the treatment of bone infection with AMP-loaded bioactive materials.
Collapse
Affiliation(s)
- Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
5
|
Aleemardani M, Trikić MZ, Green NH, Claeyssens F. Elastomeric, bioadhesive and pH-responsive amphiphilic copolymers based on direct crosslinking of poly(glycerol sebacate)- co-polyethylene glycol. Biomater Sci 2022; 10:7015-7031. [PMID: 36342181 DOI: 10.1039/d2bm01335e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poly(glycerol sebacate) (PGS), a synthetic biorubber, is characterised by its biocompatibility, high elasticity and tunable mechanical properties; however, its inherent hydrophobicity and insolubility in water make it unsuitable for use in advanced biomaterials like hydrogels fabrication. Here, we developed new hydrophilic PGS-based copolymers that enable hydrogel formation through use of two different types of polyethylene glycol (PEG), polyethylene glycol (PEG2) or glycerol ethoxylate (PEG3), combined at different ratios. A two-step polycondensation reaction was used to produce poly(glycerol sebacate)-co-polyethylene glycol (PGS-co-PEG) copolymers that were then crosslinked thermally without the use of initiators or crosslinkers, resulting in PGS-co-PEG2 and PGS-co-PEG3 amphiphilic polymers. It has been illustrated that the properties of PGS-co-PEG copolymers can be controlled by altering the type and amount of PEG. PGS-co-PEG copolymers containing PEG ≥ 40% showed high swelling, flexibility, stretching, bioadhesion and biocompatibility, and good enzymatic degradation and mechanical properties. Also, the addition of PEG created hydrogels that demonstrated pH-responsive behaviours, which can be used for bioapplications requiring responding to physicochemical dynamics. Interestingly, PGS-co-40PEG2 and PGS-co-60PEG3 had the highest shear strengths, 340.4 ± 49.7 kPa and 336.0 ± 35.1 kPa, and these are within the range of commercially available sealants or bioglues. Due to the versatile multifunctionalities of these new copolymer hydrogels, they can have great potential in soft tissue engineering and biomedicine.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK. .,Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Michael Zivojin Trikić
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK.
| | - Nicola Helen Green
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK. .,Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK. .,Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| |
Collapse
|
6
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds’ antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities. Antibacterial, antifungal and antibiofilm scaffolds. Antimicrobial scaffold fabrication techniques. Antimicrobial biomaterials for tissue engineering applications. Antimicrobial characterization methods of scaffolds. Bone, oral tissue, skin, muscle, nerve, trachea, cardiac, among other applications.
Collapse
|
7
|
Samadi A, Salati MA, Safari A, Jouyandeh M, Barani M, Singh Chauhan NP, Golab EG, Zarrintaj P, Kar S, Seidi F, Hejna A, Saeb MR. Comparative review of piezoelectric biomaterials approach for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1555-1594. [PMID: 35604896 DOI: 10.1080/09205063.2022.2065409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Bone as a minerals' reservoir and rigid tissue of the body generating red and white blood cells supports various organs. Although the self-regeneration property of bone, it cannot regenerate spontaneously in severe damages and still remains as a challenging issue. Tissue engineering offers several techniques for regenerating damaged bones, where various biomaterials are examined to fabricate scaffolds for bone repair. Piezoelectric characteristic plays a crucial role in repairing and regenerating damaged bone by mimicking the bone niche behavior. Piezoelectric biomaterials show significant potential for bone tissue engineering. Herein we try to have a comparative review on piezoelectric and non-piezoelectric biomaterials used in bone tissue engineering, classified them, and discussed their effects on implanted cells and manufacturing techniques. Especially, Polyvinylidene fluoride (PVDF) and its composites are the most practically used piezoelectric biomaterials for bone regeneration. PVDF and its composites have been summarized and discussed to repair damaged bone tissues.
Collapse
Affiliation(s)
- Ali Samadi
- Department of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
| | | | - Amin Safari
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Maryam Jouyandeh
- Center of Excellent in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur 313002, Rajasthan, India
| | - Elias Ghaleh Golab
- Department of Petroleum Engineering, Omidiyeh Branch, Islamic Azad University, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Aleksander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| |
Collapse
|
8
|
Sivakumar PM, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydr Polym 2022; 283:119142. [DOI: 10.1016/j.carbpol.2022.119142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
|
9
|
Padilla-Gainza V, Rodríguez-Tobías H, Morales G, Ledezma-Pérez A, Alvarado-Canché C, Loera-Valencia R, Rodríguez C, Gilkerson R, De Leo CT, Lozano K. Development of zinc oxide/hydroxyapatite/poly(D,L-lactic acid) fibrous scaffold for tissue engineering applications. BIOMATERIALS ADVANCES 2022; 133:112594. [PMID: 35527150 DOI: 10.1016/j.msec.2021.112594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Scaffolds based on polymeric fibers represent an engaging biomedical device due to their particular morphology and similarity with extracellular matrices. The biggest challenge to use fibrous materials in the biomedical field is related to their favorable platform for the adhesion of pathogenic microorganisms. Therefore, their optimum performance not only depends on their bioactive potential but also on their antimicrobial properties. The aim of this work was the design of antimicrobial (zinc oxide, ZnO) and bioactive (hydroxyapatite, Hap) fibrous materials using poly(D, L-lactic acid) (PDLLA) as the polymer fiber substrate. Fiber based composite scaffolds were developed using the Forcespinning® technique. For analysis purposes, the morphological, thermal, antimicrobial and biological properties of the fibrous hybrid system obtained at a concentration of 5 wt% of ZnO and 5 wt% of Hap were studied. The incorporation of the aforementioned nanoparticles (NPs) mixture in PDLLA led to an increase in viscosity and a pseudo-plastic tendency of the precursor solution, which caused an increase in fiber diameters and their dispersion of values. Small cavities and certain roughness were the main surface morphology observed on the fibers before and after NPs incorporation. The fiber thermal stability decreased due to the presence of the NPs. The antimicrobial properties of the hybrid fibrous scaffold presented a growth inhibition (GI) of 70 and 85% for E. coli and S. aureus strains, respectively. Concerning the osteoblast-cell compatibility, PDLLA and hybrid PDLLA scaffold showed low toxicity (cell viabilities above 80%), allowing cell growth inside its three-dimension structure and favorable cell morphology extended along the fibers. This behavior suggests a promising potential of this hybrid PDLLA scaffold for bone application.
Collapse
Affiliation(s)
- Victoria Padilla-Gainza
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico; Mechanical Engineering Department, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA.
| | - Heriberto Rodríguez-Tobías
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico
| | - Graciela Morales
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico.
| | - Antonio Ledezma-Pérez
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico.
| | - Carmen Alvarado-Canché
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico.
| | - Raúl Loera-Valencia
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico.
| | - Cristóbal Rodríguez
- Biology Department, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Robert Gilkerson
- Biology Department, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA.
| | - Carlos Trevino De Leo
- Department of Physics and Astronomy, The University of Texas Rio Grande Valley, 1 W. University Blvd., Brownsville, TX 78500, USA
| | - Karen Lozano
- Mechanical Engineering Department, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA.
| |
Collapse
|
10
|
Jafari A, Fakhri V, Kamrani S, Reza Ghaffarian Anbaran S, Su CH, Goodarzi V, Pirouzfar V, Ali Khonakdar H. Development of Flexible Nanocomposites Based on Poly(ε-caprolactone) for Tissue Engineering Application: The Contributing Role of Poly(glycerol succinic acid) and Polypyrrole. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
12
|
Karamat-Ullah N, Demidov Y, Schramm M, Grumme D, Auer J, Bohr C, Brachvogel B, Maleki H. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure. ACS Biomater Sci Eng 2021; 7:4545-4556. [PMID: 34415718 DOI: 10.1021/acsbiomaterials.1c00483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scaffold-mediated tissue engineering has become a golden solution for the regeneration of damaged bone tissues that lack self-regeneration capability. A successful scaffold in bone tissue engineering comprises a multitude of suitable biological, microarchitectural, and mechanical properties acting as different signaling cues for the cells to mediate the new tissue formation. Therefore, careful design of bioactive scaffold macro- and microstructures in multiple length scales and biophysical properties fulfilling the tissue repair demands are necessary yet challenging to achieve. Herein, we have developed an antibacterial and biocompatible silica-silk fibroin (SF) gel-based ink through novel yet simple chemical approaches of sol-gel and self-assembly followed by processing the obtained gels as three-dimensional (3D) hybrid aerogel-based scaffolds exploiting the advanced materials design approaches of micro-extrusion-based 3D printing, and directional freeze-casting/drying approaches. As the main constituent of the hybrid biocompatible scaffold of this study, we used the SF extracted from Bombyx mori silkworm cocoon. However, to increase the cell responsivity and bactericidal efficiency of the final scaffold, thiol-ended antimicrobial and cell adhesive peptide sequence (SH-CM-RGD) was conjugated to silica-SF hybrid gels via covalent attachment using a spacer molecule through either preprint (prior to sol-gel) or during the post-printing steps on the previously printed silica-SF gel. In the next step, the hybrid Silica-SF-CM-RGD hydrogel ink was 3D-printed into the construct with interconnected porous structure with hierarchically organized porosity and a combination of several promising properties. Namely, due to the covalent linkage of the antibacterial peptide to the SF, the scaffold shows potent bactericidal efficiency toward Gram-positive and Gram-negative bacteria. Moreover, nanostructured silica components in the 3D-printed composites could intertwine with SF-CM-RGD to support the mechanical properties in the final scaffold and the final osteoconductivity of the scaffold. This study supports the promising properties of 3D-printed silica-SF-based hybrid aerogels constructs for repairing bone defect.
Collapse
Affiliation(s)
- Nighat Karamat-Ullah
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Yan Demidov
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Daniela Grumme
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Jaqueline Auer
- University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
| | - Christoph Bohr
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Bent Brachvogel
- Experimental Neonatology, Department of Pediatrics and Adolescent Medicine, Center for Biochemistry, Medical Faculty, University of Cologne, 50923 Cologne, Germany
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
13
|
Bakhshi O, Bagherzade G, Ghamari kargar P. Biosynthesis of Organic Nanocomposite Using Pistacia vera L. Hull: An Efficient Antimicrobial Agent. Bioinorg Chem Appl 2021; 2021:4105853. [PMID: 34335708 PMCID: PMC8286193 DOI: 10.1155/2021/4105853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Here presented a quick and easy synthesis of copper nanoparticles (CuNPs). Pistachio hull extract has been used as a reducing and stabilizing agent in the preparation of CuNPs. This biosynthesis is a kind of supporter of the environment because chemical agents were not used to making nanoparticles, and on the other hand, it prevents the release of pistachio waste in nature and its adverse effects on nature. The biosynthesized CuNPs and CuNPs/silver Schiff base nanocomposite (CSS NC) were characterized by UV-VIS spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). CuNP and CSS NC antimicrobial activity was examined by both well diffusion and determination MIC methods against four bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa and two fungi Aspergillus Niger and Candida albicans. CuNPs and CSS NC showed significant antimicrobial activity on the samples, preventing the growth of bacteria and fungi at very low concentrations. CuNPs and CSS NC had the greatest effect on Escherichia coli bacteria and Aspergillus niger fungi. Phenolic compounds are one of the most important antioxidants that are involved in various fields, including pharmacy. Pistacia vera hull is a rich source of phenolic compounds. In this study, the most phenolic compound in Pistacia vera hull is gallic acid and rutin, which has been identified by HPLC analysis. In this study, Pistacia vera hull essential oil analysis was performed by the GC-MS method, in which α-pinene, D-limonene, and isobornyl acetate compounds constitute the highest percentage of Pistacia vera hull essential oil.
Collapse
Affiliation(s)
- Omolbanin Bakhshi
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
| | - Pouya Ghamari kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
| |
Collapse
|
14
|
Wu Z, Jin K, Wang L, Fan Y. A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromol Biosci 2021; 21:e2100022. [PMID: 34117837 DOI: 10.1002/mabi.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Poly(glycerol sebacate) (PGS), an emerging promising thermosetting polymer synthesized from sebacic acid and glycerol, has attracted considerable attention due to its elasticity, biocompatibility, and tunable biodegradation properties. But it also has some drawbacks such as harsh synthesis conditions, rapid degradation rates, and low stiffness. To overcome these challenges and optimize PGS performance, various modification methods and fabrication techniques for PGS-based scaffolds have been developed in recent years. Outlining the current modification approaches of PGS and summarizing the fabrication techniques for PGS-based scaffolds are of great importance to accelerate the development of new materials and enable them to be appropriately used in potential applications. Thus, this review comprehensively overviews PGS derivatives, PGS composites, PGS blends, processing for PGS-based scaffolds, and their related applications. It is envisioned that this review could instruct and inspire the design of the PGS-based materials and facilitate tissue engineering advances into clinical practice.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixiang Jin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,School of Medical Science and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
15
|
Shirzaei Sani I, Rezaei M, Baradar Khoshfetrat A, Razzaghi D. Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2021; 182:1638-1649. [PMID: 34052267 DOI: 10.1016/j.ijbiomac.2021.05.163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/23/2023]
Abstract
Chitosan (CS) and poly (ε-caprolactone) (PCL) are two most usable polymers in biomedical applications. In this study, chitosan has been modified and incorporated with poly (ε-caprolactone) to fabricate bone tissue engineering scaffold. Moreover, hydroxyapatite nanoparticles were added to enhance bioactivity and mechanical properties of scaffold. Bulk and fibrous comparative results showed significant effect of fiber diameter and distribution on mechanical properties. Moreover, the incorporation of chitosan-g-poly (ε-caprolactone) (CS-g-PCL) significantly decreases fiber diameter of pure PCL scaffold. Furthermore, both CS-g-PCL and nHA enhance mineralization and degradation of the scaffold soaked in simulated body fluid (SBF) and phosphate buffered saline (PBS), respectively. In vitro cytocompatibility assays also confirmed high cell viability and proliferation on the samples. Taken together, the results suggest that the microfabricated nanocomposite scaffolds could be used in bone tissue engineering.
Collapse
Affiliation(s)
- Iman Shirzaei Sani
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Department of Mechanical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, QC, Canada
| | - Mostafa Rezaei
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Department of Chemical Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Donya Razzaghi
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
16
|
Pal RR, Kumar D, Raj V, Rajpal V, Maurya P, Singh S, Mishra N, Singh N, Singh P, Tiwari N, Saraf SA. Synthesis of pH-sensitive crosslinked guar gum-g-poly(acrylic acid-co-acrylonitrile) for the delivery of thymoquinone against inflammation. Int J Biol Macromol 2021; 182:1218-1228. [PMID: 33991556 DOI: 10.1016/j.ijbiomac.2021.05.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022]
Abstract
The present work aims to synthesize the pH-sensitive crosslinked guar gum-g-poly(acrylic acid-co-acrylonitrile) [guar-g-(AA-co-ACN)] via microwave-assisted technique for the sustained release of thymoquinone. The synthesized material [guar-g-(AA-co-ACN)] was optimized by varying synthetic parameters viz. monomer concentration, reaction time, and microwave power to obtain the maximum yield of the crosslinked guar gum grafted product as well as maximum encapsulation of thymoquinone. The synthesized material [guar-g-poly(AA-co-ACN)] was characterized by FT-IR, SEM, XRD, NMR, zeta potential, and thermal techniques. This synthesized material was used to encapsulate thymoquinone (TQ) for effective nanotherapeutic delivery. In-vitro thymoquinone release behavior of guar-g-poly(AA-co-ACN) based nanoparticles (NpTGG) was investigated. The maximum thymoquinone release (78%) was achieved at pH 7.4 and time (6 h). The NpTGG also exhibited better antioxidant activity and hemocompatibility as compared to thymoquinone. Cytotoxicity of uar-g-(AA-co-ACN) and NpTGG was also evaluated against the human kidney VERO cell line and found to be nontoxic. Current research provides a cost-effective and green approach for the synthesis of guar-g-(AA-co-ACN) and NpTGG for sustained release of thymoquinone.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Deepak Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Vasundhara Rajpal
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raibarelly Road, U.P., Lucknow 226014, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India.
| |
Collapse
|
17
|
Saleh MA, Taha MM, Mohamed MA, Allam NK. A novel and ultrasensitive electrochemical biosensor based on MnO2-V2O5 nanorods for the detection of the antiplatelet prodrug agent Cilostazol in pharmaceutical formulations. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Zandi N, Sani ES, Mostafavi E, Ibrahim DM, Saleh B, Shokrgozar MA, Tamjid E, Weiss PS, Simchi A, Annabi N. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials 2021; 267:120476. [PMID: 33137603 PMCID: PMC7846391 DOI: 10.1016/j.biomaterials.2020.120476] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/26/2022]
Abstract
The development of bioinks based on shear-thinning and self-healing hydrogels has recently attracted significant attention for constructing complex three-dimensional physiological microenvironments. For extrusion-based bioprinting, it is challenging to provide high structural reliability and resolution of printed structures while protecting cells from shear forces during printing. Herein, we present shear-thinning and printable hydrogels based on silicate nanomaterials, laponite (LA), and glycosaminoglycan nanoparticles (GAGNPs) for bioprinting applications. Nanocomposite hydrogels (GLgels) were rapidly formed within seconds due to the interactions between the negatively charged groups of GAGNPs and the edges of LA. The shear-thinning behavior of the hydrogel protected encapsulated cells from aggressive shear stresses during bioprinting. The bioinks could be printed straightforwardly into shape-persistent and free-standing structures with high aspect ratios. Rheological studies demonstrated fast recovery of GLgels over multiple strain cycles. In vitro studies confirmed the ability of GLgels to support cell growth, proliferation, and spreading. In vitro osteogenic differentiation of pre-osteoblasts murine bone marrow stromal cells encapsulated inside the GLgels was also demonstrated through evaluation of ALP activity and calcium deposition. The subcutaneous implantation of the GLgel in rats confirmed its in vivo biocompatibility and biodegradability. The engineered shear-thinning hydrogel with osteoinductive characteristics can be used as a new bioink for 3D printing of constructs for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran; Department of Chemical Engineering, Northeastern University, Boston, Massachuestts, 02115, United States
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, Massachuestts, 02115, United States
| | - Dina M Ibrahim
- Department of Chemical Engineering, Northeastern University, Boston, Massachuestts, 02115, United States; Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Bahram Saleh
- Department of Chemical Engineering, Northeastern University, Boston, Massachuestts, 02115, United States
| | | | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, United States; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, United States.
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States; Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| |
Collapse
|
19
|
Ordikhani F, Zandi N, Mazaheri M, Luther GA, Ghovvati M, Akbarzadeh A, Annabi N. Targeted nanomedicines for the treatment of bone disease and regeneration. Med Res Rev 2020; 41:1221-1254. [PMID: 33347711 DOI: 10.1002/med.21759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical applications. In the present review, the latest advancements in targeting moieties and nanocarrier drug delivery systems for the treatment of bone diseases are summarized. We also review the regeneration capability and effective delivery of nanomedicines for orthopedic applications.
Collapse
Affiliation(s)
- Farideh Ordikhani
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Gaurav A Luther
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| | - Abolfazl Akbarzadeh
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| |
Collapse
|
20
|
Elnaggar MA, El-Fawal HAN, Allam NK. Biocompatible PCL-nanofibers scaffold with immobilized fibronectin and laminin for neuronal tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111550. [PMID: 33321614 DOI: 10.1016/j.msec.2020.111550] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Recent advances in regenerative medicine have given hope in overcoming and rehabilitating complex medical conditions. In this regard, the biopolymer poly-ε-caprolactone (PCL) may be a promising candidate for tissue regeneration, despite lacking the essential bioactivity. The present study used PCL nanofibers (NFs) scaffold decorated with the extracellular matrix proteins fibronectin and laminin combined for neuronal regeneration. The potential for the dual proteins to support neuronal cells and promote axonal growth was investigated. Two NFs scaffolds were produced with PLC concentrations of 12% or 15%. Under scanning electron microscopy, both scaffolds evidenced uniform diameter distribution in the range of 358 nm and 887 nm, respectively, with >80% porosity. The Brunauer-Emmett-Teller (BET) test confirmed that the fabricated NFs mats had a high surface area, especially for the 12% NFs with 652 m2/g compared to 254 m2/g for the 15% NFs. The proteins of interest were successfully conjugated to the 12% PCL scaffold through chemical carbodiimide reaction as confirmed by Fourier-transform infrared spectroscopy. The addition of fibronectin and laminin together was shown to be the most favorable for cellular attachment and elongation of neuroblastoma SH-SY5Y cells compared to other formulations. Light microscopy revealed longer neurite outgrowth, higher cellular projected area, and lower shape index for the cells cultured on the combined proteins conjugated fibers, indicating enhanced cellular spread on the scaffold. This preliminary study suggests that PCL nanoscaffolding conjugated with matrix proteins can support neuronal cell viability and neurite growth.
Collapse
Affiliation(s)
- Manar A Elnaggar
- Nanotechnology Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Hassan A N El-Fawal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Nanotechnology Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
21
|
Huang Z, Wang W, Wang Q, Hojnacki T, Wang Y, Fu Y, Wang W. Coaxial nanofiber scaffold with super-active platelet lysate to accelerate the repair of bone defects. RSC Adv 2020; 10:35776-35786. [PMID: 35517109 PMCID: PMC9056889 DOI: 10.1039/d0ra06305c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023] Open
Abstract
To develop biocomposite materials with the local sustained-release function of biological factors to promote bone defect repair, coaxial electrospinning technology was performed to prepare a coaxial nanofiber scaffold with super-active platelet lysate (sPL), containing gelatin/PCL/PLLA. The nanofibers exhibited a uniform bead-free round morphology, observed by a scanning electron microscope (SEM), and the core/shell structure was confirmed by a transmission electron microscope (TEM). A mixture of polycaprolactone and sPL encapsulated by hydrophilic gelatin and hydrophobic l-polylactic acid can continuously release bioactive factors for up to 40 days. Encapsulation of sPL resulted in enhanced cell adhesion and proliferation, and sPL loading can increase the osteogenesis of osteoblasts. Besides, in vivo studies demonstrated that sPL-loaded biocomposites promoted the repair of skull defects in rats. Therefore, these results indicate that core-shell nanofibers loaded with sPL can add enormous potential to the clinical application of this scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Zhipeng Huang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| | - Wantao Wang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| | - Qinglong Wang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| | - Taylor Hojnacki
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania 421 Curie Blvd. Philadelphia PA 19014 USA
| | - Yanli Wang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| | - Yansheng Fu
- Tianqing Stem Cell Co., Ltd. Jubao Second Road, Science and Technology Innovation City, Songbei District Harbin 150000 China
| | - Wenbo Wang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| |
Collapse
|
22
|
Ibrahim S, Rezk MY, Ismail M, Abdelrahman T, Sharkawy M, Abdellatif A, Allam NK. Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications. NANOSCALE ADVANCES 2020; 2:3341-3349. [PMID: 36134273 PMCID: PMC9417322 DOI: 10.1039/d0na00311e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/06/2020] [Indexed: 06/16/2023]
Abstract
Pyrroloquinoline quinone (PQQ), present in breast milk and various foods, is highly recommended as an antioxidant, anti-inflammatory agent, and a cofactor in redox reactions in several biomedical fields. Moreover, PQQ has neuroprotective effects on nervous system disorders and immunosuppressive effects on different diseases. Herein, we report on the optimum fabrication of electrospun CS/PVA coaxial, core/shell, and uniaxial nanofibers. The morphological, elemental, and chemical structure of the fabricated nanofibers were investigated and discussed. PQQ, as a drug, was loaded on the uniaxial nanofibers and in the core of the coaxial nanofibers and the sustained and controlled release of PQQ was compared and discussed. The results revealed the privilege of the coaxial over the uniaxial nanofibers in the sustained release and reduction of the initial burst of PQQ. Remarkably, the results revealed a higher degree of swelling for CS/PVA hollow nanofibers compared to that of the uniaxial and the coaxial nanofibers. The coaxial nanofibers showed a lower release rate than the uniaxial nanofibers. Moreover, the CS/PVA coaxial nanofibers loaded with PQQ were found to enhance cell viability and proliferation. Therefore, the CS/PVA coaxial nanofibers loaded with PQQ assembly is considered a superior drug delivery system for PQQ release.
Collapse
Affiliation(s)
- Sara Ibrahim
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Marwan Y Rezk
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Mohammed Ismail
- Zoology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | | | - Mona Sharkawy
- Zoology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed Abdellatif
- Biology Department, School of Sciences and Engineering, American University in Cairo New Cairo 11835 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|