1
|
Moore E, Robson AJ, Crisp AR, Cockshell MP, Burzava ALS, Ganesan R, Robinson N, Al-Bataineh S, Nankivell V, Sandeman L, Tondl M, Benveniste G, Finnie JW, Psaltis PJ, Martocq L, Quadrelli A, Jarvis SP, Williams C, Ramage G, Rehman IU, Bursill CA, Simula T, Voelcker NH, Griesser HJ, Short RD, Bonder CS. Study of the Structure of Hyperbranched Polyglycerol Coatings and Their Antibiofouling and Antithrombotic Applications. Adv Healthc Mater 2024; 13:e2401545. [PMID: 38924692 DOI: 10.1002/adhm.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
While blood-contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings. Herein, a novel but simple strategy is described for coating a range of medical materials, that can be applied to objects of complex geometry, involving plasma-grafting of an ultrathin hyperbranched polyglycerol coating (HPG). Plasma activation creates highly reactive surface oxygen moieties that readily react with glycidol. Irrespective of the substrate, coatings are uniform and pinhole free, comprising O─C─O repeats, with HPG chains packing in a fashion that holds reversibly binding proteins at the coating surface. In vitro assays with planar test samples show that HPG prevents platelet adhesion and activation, as well as reducing (>3 log) bacterial attachment and preventing biofilm formation. Ex vivo and preclinical studies show that HPG-coated nitinol stents do not elicit thrombosis or restenosis, nor complement or neutrophil activation. Subcutaneous implantation of HPG coated disks under the skin of mice shows no evidence of toxicity nor inflammation.
Collapse
Affiliation(s)
- Eli Moore
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Alexander J Robson
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Amy R Crisp
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Michaelia P Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Anouck L S Burzava
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | | | - Victoria Nankivell
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Lauren Sandeman
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Markus Tondl
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | | | - John W Finnie
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia, 5000, Australia
| | - Laurine Martocq
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | | | - Samuel P Jarvis
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Craig Williams
- Microbiology Department, Royal Lancaster Infirmary, Lancaster, LA1 4RP, UK
| | - Gordon Ramage
- Department of Nursing and Community Health, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Ihtesham U Rehman
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Christina A Bursill
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Tony Simula
- TekCyte Limited, Mawson Lakes, South Australia, 5095, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Robert D Short
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
2
|
Pagnacco C, Kravicz MH, Sica FS, Fontanini V, González de San Román E, Lund R, Re F, Barroso-Bujans F. In Vitro Biocompatibility and Endothelial Permeability of Branched Polyglycidols Generated by Ring-Opening Polymerization of Glycidol with B(C 6F 5) 3 under Dry and Wet Conditions. Biomacromolecules 2024; 25:3583-3595. [PMID: 38703359 PMCID: PMC11170947 DOI: 10.1021/acs.biomac.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (bcPG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of bcPG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate in vitro biocompatibility, endothelial permeability, and formation of branched linear PG (blPG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for bcPG and the mixture bc+blPG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between bcPG, bc+blPG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. bcPG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.
Collapse
Affiliation(s)
- Carlo
Andrea Pagnacco
- Donostia
International Physics Center (DIPC), Paseo Manuel Lardizábal 4, Donostia−San Sebastián, 20018, Spain
- Centro
de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, Donostia−San Sebastián, 20018, Spain
| | - Marcelo H. Kravicz
- School
of Medicine and Surgery, University of Milano-Bicocca, Milano, 20854, Italy
| | | | - Veronica Fontanini
- School
of Medicine and Surgery, University of Milano-Bicocca, Milano, 20854, Italy
- Department
of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Estibaliz González de San Román
- POLYMAT,
Joxe Mari Korta Center, University of the
Basque Country UPV/EHU, Avda. Tolosa 72, Donostia−San Sebastián, 20018, Spain
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, Postboks 1033, Blindern, Oslo, 0315, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Postboks 1033,
Blindern, Oslo, 0315, Norway
| | - Francesca Re
- School
of Medicine and Surgery, University of Milano-Bicocca, Milano, 20854, Italy
| | - Fabienne Barroso-Bujans
- Donostia
International Physics Center (DIPC), Paseo Manuel Lardizábal 4, Donostia−San Sebastián, 20018, Spain
- Centro
de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, Donostia−San Sebastián, 20018, Spain
- IKERBASQUE
- Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
3
|
Fowler EW, Witt RL, Jia X. Basement Membrane Mimetic Hydrogel Cooperates with Rho-Associated Protein Kinase Inhibitor to Promote the Development of Acini-Like Salivary Gland Spheroids. ADVANCED NANOBIOMED RESEARCH 2023; 3:2300088. [PMID: 38645834 PMCID: PMC11031203 DOI: 10.1002/anbr.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
Successful engineering of functional salivary glands necessitates the creation of cell-instructive environments for ex vivo expansion and lineage specification of primary human salivary gland stem cells (hS/PCs). Herein, basement membrane mimetic hydrogels were prepared using hyaluronic acid, cell adhesive peptides, and hyperbranched polyglycerol (HPG), with or without sulfate groups, to produce "hyperGel+" or "hyperGel", respectively. Differential scanning fluorescence experiments confirmed the ability of the sulphated HPG precursor to stabilize fibroblast growth factor 10. The hydrogels were nanoporous, cytocompatibile and cell-permissive, enabling the development of multicellular hS/PC spheroids in 14 days. Incorporation of sulfated HPG species in the hydrogel enhanced cell proliferation. Culture of hS/PCs in hyperGel+ in the presence of a Rho kinase inhibitor, Y-27632 (Y-27), led to the development of spheroids with a central lumen, increased the expression of acinar marker aquaporin-3 at the transcript level (AQP3), and decreased the expression of ductal marker keratin 7 at both the transcript (KRT7) and the protein levels (K7). Reduced expression of transforming growth factor beta (TGF-β) targets SMAD2/3 was also observed in Y27-treated cultures, suggesting attenuation of TGF-β signaling. Thus, hyperGel+ cooperates with the ROCK inhibitor to promote the development of lumened spheroids with enhanced expression of acinar markers.
Collapse
Affiliation(s)
- Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Robert L. Witt
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, Delaware, 19713, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, USA
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE 19713, USA
| |
Collapse
|
4
|
Perumal G, Pappuru S, Doble M, Chakraborty D, Shajahan S, Abu Haija M. Controlled Synthesis of Dendrite-like Polyglycerols Using Aluminum Complex for Biomedical Applications. ACS OMEGA 2023; 8:2377-2388. [PMID: 36687077 PMCID: PMC9851026 DOI: 10.1021/acsomega.2c06761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This work describes a one-pot synthesis of dendrite-like hyperbranched polyglycerols (HPGs) via a ring-opening multibranching polymerization (ROMBP) process using a bis(5,7-dichloro-2-methyl-8-quinolinolato)methyl aluminum complex (1) as a catalyst and 1,1,1-tris(hydroxymethyl)propane/trimethylol propane (TMP) as an initiator. Single-crystal X-ray diffraction (XRD) analysis was used to elucidate the molecular structure of complex 1. Inverse-gated (IG)13C NMR analysis of HPGs showed degree of branching between 0.50 and 0.57. Gel permeation chromatography (GPC) analysis of the HPG polymers provided low, medium, and high-molecular weight (M n) polymers ranging from 14 to 73 kDa and molecular weight distributions (M w/M n) between 1.16 and 1.35. The obtained HPGs exhibited high wettability with water contact angle between 18 and 21° and T g ranging between -39 and -55 °C. Notably, ancillary ligand-supported aluminum complexes as catalysts for HPG polymerization reactions have not been reported to date. The obtained HPG polymers in the presence of the aluminum complex (1) can be used for various biomedical applications. Here, nanocomposite electrospun fibers were fabricated with synthesized HPG polymer. The nanofibers were subjected to cell culture experiments to evaluate cytocompatibility behavior with L929 and MG63 cells. The cytocompatibility studies of HPG polymer and nanocomposite scaffold showed high cell viability and spreading. The study results concluded, synthesized HPG polymers and composite nanofibers can be used for various biomedical applications.
Collapse
Affiliation(s)
- Govindaraj Perumal
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical
and Technical Sciences (SIMATS), Chennai600 077, India
| | - Sreenath Pappuru
- Faculty
of Chemical Engineering and the Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa320003, Israel
| | - Mukesh Doble
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical
and Technical Sciences (SIMATS), Chennai600 077, India
| | - Debashis Chakraborty
- Department
of Chemistry, Indian Institute of Technology
Madras, Chennai600 036, India
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi127788, United
Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi127788, United Arab Emirates
| |
Collapse
|
5
|
Attachment of endothelial colony-forming cells onto a surface bearing immobilized anti-CD34 antibodies: Specific CD34 binding versus nonspecific binding. Biointerphases 2022; 17:031003. [PMID: 35589426 DOI: 10.1116/6.0001746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide; however, despite substantial advances in medical device surface modifications, no synthetic coatings have so far matched the native endothelium as the optimal hemocompatible surface for blood-contacting implants. A promising strategy for rapid restoration of the endothelium on blood-contacting biomedical devices entails attracting circulating endothelial cells or their progenitors, via immobilized cell-capture molecules; for example, anti-CD34 antibody to attract CD34+ endothelial colony-forming cells (ECFCs). Inherent is the assumption that the cells attracted to the biomaterial surface are bound exclusively via a specific CD34 binding. However, serum proteins might adsorb in-between or on the top of antibody molecules and attract ECFCs via other binding mechanisms. Here, we studied whether a surface with immobilized anti-CD34 antibodies attracts ECFCs via a specific CD34 binding or a nonspecific (non-CD34) binding. To minimize serum protein adsorption, a fouling-resistant layer of hyperbranched polyglycerol (HPG) was used as a "blank slate," onto which anti-CD34 antibodies were immobilized via aldehyde-amine coupling reaction after oxidation of terminal diols to aldehydes. An isotype antibody, mIgG1, was surface-immobilized analogously and was used as the control for antigen-binding specificity. Cell binding was also measured on the HPG hydrogel layer before and after oxidation. The surface analysis methods, x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, were used to verify the intended surface chemistries and revealed that the surface coverage of antibodies was sparse, yet the anti-CD34 antibody grafted surface-bound ECFCs very effectively. Moreover, it still captured the ECFCs after BSA passivation. However, cells also attached to oxidized HPG and immobilized mIgG1, though in much lower amounts. While our results confirm the effectiveness of attracting ECFCs via surface-bound anti-CD34 antibodies, our observation of a nonspecific binding component highlights the importance of considering its consequences in future studies.
Collapse
|
6
|
Roeven E, Scheres L, Smulders MM, Zuilhof H. Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Celebrating Hans Griesser's career and influence on biomaterials. Biointerphases 2021; 16:030201. [PMID: 34240959 DOI: 10.1116/6.0001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Antimicrobial nanoparticle coatings for medical implants: Design challenges and prospects. Biointerphases 2020; 15:060801. [DOI: 10.1116/6.0000625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Zhang P, Zhang Z, Wang D, Hao J, Cui J. Monodispersity of Poly(ethylene glycol) Matters for Low-Fouling Coatings. ACS Macro Lett 2020; 9:1478-1482. [PMID: 35653666 DOI: 10.1021/acsmacrolett.0c00557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(ethylene glycol) (PEG) is the most used hydrophilic polymer for low-fouling coatings to minimize nonspecific interactions. The PEG molecular weight or its length as well as surface density are typically considered as the main impacts on the control over low-fouling properties. However, the influence of PEG monodispersity on such investigations is typically ignored and rarely reported. Herein, we report the assembly of PEGylated coatings on planar surfaces and Au nanorods (AuNRs) using a series of monodisperse PEG (Mono-PEG) with exact molecular weights and commonly used polydisperse PEG (Poly-PEG) to investigate the effect of the PEG molecular weight and monodispersity on the low-fouling properties. Nonspecific interactions with proteins or cells on PEGylated planar surfaces can be significantly reduced when Mono-PEG with a molecular weight of 752 Da and above is used, while a higher average molecular weight of 2000 Da is required for Poly-PEG-modified surfaces. Cell association of PEGylated AuNRs further confirms that a low molecular weight of Mono-PEG is sufficient to achieve low-fouling properties. This study provides an insight and general guidance into the engineering of low-fouling surfaces by the appropriate choice based on the PEG monodispersity and/or molecular weights.
Collapse
Affiliation(s)
- Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhonghe Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Donglei Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
10
|
Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
Dendritic polymers have highly branched three-dimensional architectures, the fourth type apart from linear, cross-linked, and branched one. They possess not only a large number of terminal functional units and interior cavities, but also a low viscosity with weak or no entanglement. These features endow them with great potential in various biomedicine applications, including drug delivery, gene therapy, tissue engineering, immunoassay and bioimaging. Most review articles related to bio-related applications of dendritic polymers focus on their drug or gene delivery, while very few of them are devoted to their function as cancer diagnosis agents, which are essential for cancer treatment. In this review, we will provide comprehensive insights into various dendritic polymer-based cancer diagnosis agents. Their classification and preparation are presented for readers to have a precise understanding of dendritic polymers. On account of physical/chemical properties of dendritic polymers and biological properties of cancer, we will suggest a few design strategies for constructing dendritic polymer-based diagnosis agents, such as active or passive targeting strategies, imaging reporters-incorporating strategies, and/or internal stimuli-responsive degradable/enhanced imaging strategies. Their recent applications in in vitro diagnosis of cancer cells or exosomes and in vivo diagnosis of primary and metastasis tumor sites with the aid of single/multiple imaging modalities will be discussed in great detail. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Diagnostic Tools > in vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Haonan Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|