1
|
Pu X, Peng X, Shi S, Feng S, Wei X, Gao X, Yu X. A New Type of Bioprosthetic Heart Valve: Synergistic Modification with Anticoagulant Polysaccharides and Anti-inflammatory Drugs. ACS Biomater Sci Eng 2025. [PMID: 39748762 DOI: 10.1021/acsbiomaterials.4c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs. In this study, λ-carrageenan with anticoagulant function was modified by carboxymethylation into carboxymethyl λ-carrageenan (CM-λC); subsequently, CM-λC was used as a cross-linking agent to stabilize decellularized bovine pericardial tissue through amide bonds formed by a 1-(3-(Dimethylamino)propyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide (EDC/NHS)-catalyzed reaction between the amino functional groups within pericardium and the carboxyl group located on CM-λC. Lastly, the inclusion complex (CD/Rutin) (formed by encapsulating the rutin molecule through the hydrophobic cavity of the mono-(6-ethylenediamine-6-deoxy)-β-cyclodextrin) was immobilized onto above BHVs materials (λCar-BP) through the amidation reaction. The treated sample exhibited mechanical properties and collagen stability similar to those of GA-BP, except for improved flexibility. Because of the presence of sulfonic acid groups and absence of aldehyde group as well as the Rutin release from CD/Rutin immobilized onto BHVs, the hemocompatibility, anti-inflammatory, HUVEC-cytocompatibility, and anticalcification properties, of the CM-λC-fixed BP modified with CD/Rutin was significantly better than that of GA-BP. In summary, this nonaldehyde-based natural polysaccharide cross-linking strategy utilizing the combination of CM-λC and CD/Rutin provides a novel solution to obtain BHVs with durable and stable anticoagulant, anticalcification, and anti-inflammatory properties, and has a wide range of potential applications in improving the various properties of BHVs.
Collapse
Affiliation(s)
- Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610041, P.R. China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xi Gao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
2
|
Rodriguez-Rivera GJ, Green M, Shah V, Leyendecker K, Cosgriff-Hernandez E. A user's guide to degradation testing of polyethylene glycol-based hydrogels: From in vitro to in vivo studies. J Biomed Mater Res A 2024; 112:1200-1212. [PMID: 37715481 PMCID: PMC11600467 DOI: 10.1002/jbm.a.37609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
Poly(ethylene glycol) (PEG)-based hydrogels have gained significant attention in the field of biomedical applications due to their versatility and antifouling properties. Acrylate-derivatized PEG hydrogels (PEGDA) are some of the most widely studied hydrogels; however, there has been debate around the degradation mechanism and predicting resorption rates. Several factors influence the degradation rate of PEG hydrogels, including backbone and endgroup chemistry, macromer molecular weight, and polymer concentration. In addition to hydrogel parameters, it is necessary to understand the influence of biological and environmental conditions (e.g., pH and temperature) on hydrogel degradation. Rigorous methods for monitoring degradation in both in vitro and in vivo settings are also critical to hydrogel design and development. Herein, we provide guidance on tailoring PEG hydrogel chemistry to achieve target hydrolytic degradation kinetics for both resorbable and biostable applications. A detailed overview of accelerated testing methods and hydrogel degradation characterization is provided to aid researchers in experimental design and interpreting in vitro-in vivo correlations necessary for predicting hydrogel device performance.
Collapse
Affiliation(s)
- G. J. Rodriguez-Rivera
- McKetta Department of Chemical Engineering, The University of Texas, Austin, Texas, 78712
| | - M. Green
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - V. Shah
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - K. Leyendecker
- Department of Mechanical Engineering, The University of Texas, Austin, Texas, 78712
| | | |
Collapse
|
3
|
Wancura M, Nkansah A, Robinson A, Toubbeh S, Talanker M, Jones S, Cosgriff-Hernandez E. PEG-Based Hydrogel Coatings: Design Tools for Biomedical Applications. Ann Biomed Eng 2024; 52:1804-1815. [PMID: 36774427 DOI: 10.1007/s10439-023-03154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/13/2023]
Abstract
Device failure due to undesired biological responses remains a substantial roadblock in the development and translation of new devices into clinical care. Polyethylene glycol (PEG)-based hydrogel coatings can be used to confer antifouling properties to medical devices-enabling minimization of biological responses such as bacterial infection, thrombosis, and foreign body reactions. Application of hydrogel coatings to diverse substrates requires careful consideration of multiple material factors. Herein, we report a systematic investigation of two coating methods: (1) traditional photoinitiated hydrogel coatings; (2) diffusion-mediated, redox-initiated hydrogel coatings. The effects of method, substrate, and compositional variables on the resulting hydrogel coating thickness are presented. To expand the redox-based method to include high molecular weight macromers, a mechanistic investigation of the role of cure rate and macromer viscosity was necessary to balance solution infiltration and gelation. Overall, these structure-property relationships provide users with a toolbox for hydrogel coating design for a broad range of medical devices.
Collapse
Affiliation(s)
- Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Shireen Toubbeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael Talanker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah Jones
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Zheng C, Yang L, Wang Y. Recent progress in functional modification and crosslinking of bioprosthetic heart valves. Regen Biomater 2023; 11:rbad098. [PMID: 38173770 PMCID: PMC10761211 DOI: 10.1093/rb/rbad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
Valvular heart disease (VHD), clinically manifested as stenosis and regurgitation of native heart valve, is one of the most prevalent cardiovascular diseases with high mortality. Heart valve replacement surgery has been recognized as golden standard for the treatment of VHD. Owing to the clinical application of transcatheter heart valve replacement technic and the excellent hemodynamic performance of bioprosthetic heart valves (BHVs), implantation of BHVs has been increasing over recent years and gradually became the preferred choice for the treatment of VHD. However, BHVs might fail within 10-15 years due to structural valvular degeneration (SVD), which was greatly associated with drawbacks of glutaraldehyde crosslinked BHVs, including cytotoxicity, calcification, component degradation, mechanical failure, thrombosis and immune response. To prolong the service life of BHVs, much effort has been devoted to overcoming the drawbacks of BHVs and reducing the risk of SVD. In this review, we summarized and analyzed the research and progress on: (i) modification strategies based on glutaraldehyde crosslinked BHVs and (ii) nonglutaraldehyde crosslinking strategies for BHVs.
Collapse
Affiliation(s)
- Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Wancura M, Nkansah A, Chwatko M, Robinson A, Fairley A, Cosgriff-Hernandez E. Interpenetrating network design of bioactive hydrogel coatings with enhanced damage resistance. J Mater Chem B 2023; 11:5416-5428. [PMID: 36825927 PMCID: PMC10682960 DOI: 10.1039/d2tb02825e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Bioactive hydrogel coatings offer a promising route to introduce sustained thromboresistance to cardiovascular devices without compromising bulk mechanical properties. Poly(ethylene glycol)-based hydrogels provide antifouling properties to limit acute thromobosis and incorporation of adhesive ligands can be used to promote endothelialization. However, conventional PEG-based hydrogels at stiffnesses that promote cell attachment can be brittle and prone to damage in a surgical setting, limiting their utility in clinical applications. In this work, we developed a durable hydrogel coating using interpenetrating networks of polyether urethane diacrylamide (PEUDAm) and poly(N-acryloyl glycinamide) (pNAGA). First, diffusion-mediated redox initiation of PEUDAm was used to coat electrospun polyurethane fiber meshes with coating thickness controlled by the immersion time. The second network of pNAGA was then introduced to enhance damage resistance of the hydrogel coating. The durability, thromboresistance, and bioactivity of the resulting multilayer grafts were then assessed. The IPN hydrogel coatings displayed resistance to surgically-associated damage mechanisms and retained the anti-fouling nature of PEG-based hydrogels as indicated by reduced protein adsorption and platelet attachment. Moreover, incorporation of functionalized collagen into the IPN hydrogel coating conferred bioactivity that supported endothelial cell adhesion. Overall, this conformable and durable hydrogel coating provides an improved approach for cardiovascular device fabrication with targeted biological activity.
Collapse
Affiliation(s)
- Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ashauntee Fairley
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
6
|
Ding K, Zheng C, Huang X, Zhang S, Li M, Lei Y, Wang Y. A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-crosslinking with improved antithrombogenicity and cytocompatibility. Acta Biomater 2022; 144:279-291. [PMID: 35365404 DOI: 10.1016/j.actbio.2022.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
With the development of diagnostic techniques, the incidence of bioprosthetic heart valve thrombosis (BHVT) is found to be seriously underestimated. Developing bioprosthetic heart valves (BHVs) that have good hemocompatibility without sacrificing other properties such as hydrodynamics and durability will be an effective strategy to alleviate BHVT. In this study, we developed a PEGylation method by co-crosslinking and subsequent radical polymerization. 2-amino-4-pentenoic acid was used to introduce carbon-carbon double bonds for glutaraldehyde crosslinked pericardia. Then poly (ethylene glycol) diacrylate (PEGDA) was immobilized on pericardia by radical polymerization. A comprehensive evaluation of the modified pericardia was performed including structural characterization, hemocompatibility, cytocompatibility, mechanical properties, component stability, hydrodynamic performance and durability of the BHVs. The modified pericardia significantly reduced platelet adhesion by more than 75% compared with traditional glutaraldehyde crosslinked pericardia. Cell viability in the modified pericardia group was nearly 5-fold higher than that in glutaraldehyde crosslinked pericardia. The hydrodynamic performance met the requirements of ISO 5840-3 under physiological aortic valve conditions and its durability was proved after 200 million cycles of accelerated fatigue test. In conclusion, PEGDA modified pericardia exhibited improved antithrombogenicity and cytocompatibility properties compared with glutaraldehyde crosslinked pericardia. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve (BHV) implantation requires BHV to be structurally stable as well as biocompatible in vivo. Traditional glutaraldehyde crosslinking method prepared BHV suffers from severe cytotoxicity, thrombosis, and calcification. BHV modification methods that have simultaneously improved structural stability and biocompatibility were rarely reported. Here, we proposed a PEGylation method for BHV based on co-crosslinking strategy that could improve its structural stability as well as hemocompatibility. We take the advantage of high efficiency of glutaraldehyde crosslinking and demonstrate the feasibility and superiority of the PEGylated strategy, offering a promising option in glutaraldehyde-based BHV fabrication in the future.
Collapse
Affiliation(s)
- Kailei Ding
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Xueyu Huang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Shumang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Meiling Li
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
7
|
Poly-2-methyl-2-oxazoline–modified bioprosthetic heart valve leaflets have enhanced biocompatibility and resist structural degeneration. Proc Natl Acad Sci U S A 2022; 119:2120694119. [PMID: 35131859 PMCID: PMC8833185 DOI: 10.1073/pnas.2120694119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)–modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.
Collapse
|