1
|
Budrienė S, Kochanė T, Žurauskaitė N, Balčiūnas E, Rinkūnaitė I, Jonas K, Širmenis R, Bukelskienė V, Baltriukienė D. Synthesis and characterization of UV curable biocompatible hydrophilic copolymers containing siloxane units. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-20. [PMID: 36651136 DOI: 10.1080/09205063.2023.2170141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tissues are highly three-dimensional structure complexes composed of different cell types and their interactions. One of the main challenges in tissue engineering is the inability to produce large, highly perfused scaffolds in which cells can grow at a high cell density and viability. Poly(dimethyl siloxane) (PDMS) is used as a flexible, biocompatible cell culture substrate with tunable mechanical properties. However, its fragility and hydrophobicity still pose a challenge. Here, we present a new strategy for the three-step one-pot synthesis of novel biocompatible hydrophilic copolymers containing siloxane units. In the first step, free radical copolymerization of acrylic acid (AA), butyl methacrylate (BMA), and 2-hydroxyethyl methacrylate (HEMA) was carried out in dioxane (DO) solution in the presence of 2,2'-azodiisobutyronitrile (AIBN). In the second step, the copolymers were modified with diepoxypropoxypropyl-terminated polydimethylsiloxane (DE-PDMS), and in the third step, the copolymers were additionally modified with glycidyl methacrylate (GMA). The modified copolymers were characterized by FTIR, NMR spectroscopy and elemental analysis. Films of modified copolymers were prepared by UV curing. SEM studies revealed microphase separated morphology with distribution of PDMS domains. The mechanical properties of the films depended on the amount of incorporated silicone modifier. The films were more hydrophilic than PDMS films. All novel copolymers showed high biocompatibility.
Collapse
Affiliation(s)
- Saulutė Budrienė
- Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Tatjana Kochanė
- Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Neringa Žurauskaitė
- Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Evaldas Balčiūnas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ieva Rinkūnaitė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Karolis Jonas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Raimondas Širmenis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Bukelskienė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Baltriukienė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Wang CG, Surat'man NEB, Chang JJ, Ong ZL, Li B, Fan X, Loh XJ, Li Z. Polyelectrolyte hydrogels for tissue engineering and regenerative medicine. Chem Asian J 2022; 17:e202200604. [DOI: 10.1002/asia.202200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chen-Gang Wang
- Institute of Sustainability for Chemicals Energy and Environment Sustainable Polymers SINGAPORE
| | | | - Jun Jie Chang
- Institute of Materials Research and Engineering Strategic research initiatives SINGAPORE
| | - Zhi Lin Ong
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Bofan Li
- Institute of Sustainability for Chemicals Energy and Environment Sustainable Polymers SINGAPORE
| | - Xiaotong Fan
- Institute of Sustainability for Chemicals Energy and Environment Sustainable Polymers SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Strategic research initiatives SINGAPORE
| | - Zibiao Li
- Institute of Materials Research and Engineering 2 Fusionopolis Way, Innovis, #08-03Singapore 138634 Singapore SINGAPORE
| |
Collapse
|
3
|
Zada S, Raza S, Khan S, Iqbal A, Kai Z, Ahmad A, Ullah M, Kakar M, Fu P, Dong H, Xueji Z. Microalgal and cyanobacterial strains used for the bio sorption of copper ions from soil and wastewater and their relative study. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Zada S, Lu H, Khan S, Iqbal A, Ahmad A, Ahmad A, Ali H, Fu P, Dong H, Zhang X. Biosorption of iron ions through microalgae from wastewater and soil: Optimization and comparative study. CHEMOSPHERE 2021; 265:129172. [PMID: 33302204 DOI: 10.1016/j.chemosphere.2020.129172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Microalgae play a significant role in wastewater and soil-bioremediation due to their low-cost and eco-friendly nature. In this study, 21 strains of microalgae were evaluated during removal of iron Fe2+ from aqueous solutions. Out of 21 strains, five strains (S. obliquus, C. fusca, C. saccharophila, A. braunii, and Leptolyngbya JSC-1) were selected based on their comparative tolerance for the iron Fe2+. These strains were further studied for their Fe2+ removal efficiency. The results indicated that the selected strains could maintain normal growth pattern up to 50 ppm of Fe2+, while the concentration beyond 50 ppm inhibited the growth. The Fe2+ bio-removal efficiencies from wastewater were 97, 98, 97.5, 99, and 99.9%, respectively. Similarly, in soil the bio-removal efficiencies of the five strains were measured as 76, 77, 76, 77.5, and 79%, repectively. A slight increase in leakage of protein and nucleic acids was observed in all strains, which is unlikely could be the reason of iron exposure as similar pattern was also found in control groups. Current results suggested that the selected five strains have high potential to be used as bioremediation tools for Fe2+ contaminated water and soil.
Collapse
Affiliation(s)
- Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China.
| | - Huiting Lu
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China.
| | - Sikandar Khan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, KPK, Pakistan.
| | - Arshad Iqbal
- Center for Biotechnology and Microbiology, University of Swat, Pakistan.
| | - Adnan Ahmad
- Department of Forestory, Shaheed Benazir Bhutto University, Sheringal, KPK, Pakistan.
| | - Aftab Ahmad
- College of Science, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Hamid Ali
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, 44000, Pakistan.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District Haikou, Hainan Province, 570228, PR China.
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China; School of Biomedical Engineering, Health Science Centre, Shenzhen University Shenzhen, Guangdong, 518060, PR China.
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China; School of Biomedical Engineering, Health Science Centre, Shenzhen University Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|