1
|
Zhang J, Sharma D, Dinabandhu A, Sanchez J, Applewhite B, Jee K, Deshpande M, Flores-Bellver M, Hu MW, Guo C, Salman S, Hwang Y, Anders NM, Rudek MA, Qian J, Canto-Soler MV, Semenza GL, Montaner S, Sodhi A. Targeting hypoxia-inducible factors with 32-134D safely and effectively treats diabetic eye disease in mice. J Clin Invest 2023; 133:e163290. [PMID: 37227777 PMCID: PMC10313368 DOI: 10.1172/jci163290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Many patients with diabetic eye disease respond inadequately to anti-VEGF therapies, implicating additional vasoactive mediators in its pathogenesis. We demonstrate that levels of angiogenic proteins regulated by HIF-1 and -2 remain elevated in the eyes of people with diabetes despite treatment with anti-VEGF therapy. Conversely, by inhibiting HIFs, we normalized the expression of multiple vasoactive mediators in mouse models of diabetic eye disease. Accumulation of HIFs and HIF-regulated vasoactive mediators in hyperglycemic animals was observed in the absence of tissue hypoxia, suggesting that targeting HIFs may be an effective early treatment for diabetic retinopathy. However, while the HIF inhibitor acriflavine prevented retinal vascular hyperpermeability in diabetic mice for several months following a single intraocular injection, accumulation of acriflavine in the retina resulted in retinal toxicity over time, raising concerns for its use in patients. Conversely, 32-134D, a recently developed HIF inhibitor structurally unrelated to acriflavine, was not toxic to the retina, yet effectively inhibited HIF accumulation and normalized HIF-regulated gene expression in mice and in human retinal organoids. Intraocular administration of 32-134D prevented retinal neovascularization and vascular hyperpermeability in mice. These results provide the foundation for clinical studies assessing 32-134D for the treatment of patients with diabetic eye disease.
Collapse
Affiliation(s)
- Jing Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Deepti Sharma
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aumreetam Dinabandhu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Jaron Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brooks Applewhite
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Monika Deshpande
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ming-Wen Hu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center; Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yousang Hwang
- Armstrong Oxygen Biology Research Center; Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole M. Anders
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology and the Division of Clinical Pharmacology at the School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle A. Rudek
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology and the Division of Clinical Pharmacology at the School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - M. Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gregg L. Semenza
- Armstrong Oxygen Biology Research Center; Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Menikheim S, Leckron J, Duffy M, Zupan M, Mallory A, Lien W, Lavik E. Biocompatible Nanocapsules for Self-Healing Dental Resins and Bone Cements. ACS OMEGA 2022; 7:31726-31735. [PMID: 36120077 PMCID: PMC9476208 DOI: 10.1021/acsomega.2c02080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Bone cements and dental resins are methacrylate-based materials that have been in use for many years, but their failure rates are quite high with essentially all dental resins failing within 10 years and 25% of all prosthetic implants will undergo aseptic loosening. There are significant healthcare costs and impacts on quality of life of patients. Self-healing bone cements and resins could improve the lifespan of these systems, reduce costs, and improve patient outcomes, but they have been limited by efficacy and toxicity of the components. To address these issues, we developed a self-healing system based on a dual nanocapsule system. Two nanocapsules were synthesized, one containing an initiator and one encapsulating a monomer, both in polyurethane shells. The monomer used was triethylene glycol dimethacrylate. The initiator capsules synthesized contained benzoyl peroxide and butylated hydroxytoluene. Resins containing the nanocapsules were tested in tension until failure, and the fractured surfaces were placed together. 33% of the samples showed self-healing behaviors to the point where they could be reloaded and tested in tension. Furthermore, the capsules and their components showed good biocompatibility with Caco-2 cells, a human epithelial cell line suggesting that they would be well tolerated in vivo.
Collapse
Affiliation(s)
- Sydney Menikheim
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Joshua Leckron
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Michael Duffy
- Department
of Mechanical Engineering, University of
Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Marc Zupan
- Department
of Mechanical Engineering, University of
Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Amber Mallory
- Naval
Medical Research Unit SA, 3650 Chambers Pass Bldg #3610, JBSA Fort Sam Houston, Houston, Texas 78234, United States
| | - Wen Lien
- 59th
Medical Wing, Lackland AFB, San Antonio, Texas 78236, United States
| | - Erin Lavik
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
3
|
Maisha N, Rubenstein M, Bieberich CJ, Lavik E. Getting to the Core of It All: Nanocapsules to Mitigate Infusion Reactions Can Promote Hemostasis and Be a Platform for Intravenous Therapies. NANO LETTERS 2021; 21:9069-9076. [PMID: 34714087 DOI: 10.1021/acs.nanolett.1c02746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the significant challenges to translation of intravenously administered nanomaterials has been complement-mediated infusion reactions which can be lethal. Slow infusions can reduce infusion reactions, but slow infusions are not always possible in applications like controlling bleeding following trauma. Thus, avoiding complement activation and infusion responses is essential to manage bleeding. We identified nanocapsules based on polyurethane as candidates that did not activate C5a and explored their PEGylation and functionalization with the GRGDS peptide to create a new class of hemostatic nanomaterials. Using the clinically relevant rotational thromboelastography (ROTEM), we determined that nanocapsules promote faster clotting than controls and maintain the maximum clot firmness, which is critical for reducing bleeding. Excitingly, these polyurethane-based nanocapsules did not activate complement or the major pro-inflammatory cytokines. This work provides critical evidence for the role of modulating the core material in developing safer nanomedicines for intravenous applications.
Collapse
Affiliation(s)
- Nuzhat Maisha
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Michael Rubenstein
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Charles J Bieberich
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Erin Lavik
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
4
|
Onyeje C, Lavik E. Highlighting the usage of polymeric nanoparticles for the treatment of traumatic brain injury: A review study. Neurochem Int 2021; 147:105048. [PMID: 33901586 DOI: 10.1016/j.neuint.2021.105048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
There are very limited options for treating traumatic brain injury (TBI). Nanoparticles offer the potential of targeting specific cell types, and, potentially, crossing the BBB under the right conditions making them an area of active research for treating TBI. This review focuses on polymeric nanoparticles and the impact of their chemistry, size, and surface groups on their interactions with the vasculature and cells of the brain following injury. The vast majority of the work in the field focuses on acute injury, and when the work is looked at closely, it suggests that nanoparticles rely on interactions with vascular and immune cells to alter the environment of the brain. Nonetheless, there are promising results from a number of approaches that lead to behavioral improvements coupled with neuroprotection that offer promise for therapeutic outcomes. The majority of approaches have been tested immediately following injury. It is not entirely clear what impact these approaches will have in chronic TBI, but being able to modulate inflammation specifically may have a role both during and after the acute phase of injury.
Collapse
Affiliation(s)
- Chiad Onyeje
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA
| | - Erin Lavik
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA.
| |
Collapse
|