1
|
Chang J, Wu W, Wu R, Guo Z, Wang S, Mao J. Hydrogel biomimetic skin inspired by human skin for resisting bacterial infection. BIOMATERIALS ADVANCES 2025; 168:214126. [PMID: 39616683 DOI: 10.1016/j.bioadv.2024.214126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The flexible surface and chemical compatibility of hydrogels render them particularly appealing for research and development in antibacterial materials. However, designing tough hydrogels with multiple antibacterial mechanisms simultaneously remains a challenge. Inspired by the human skin, a hydrogel with bacterial antifouling, detection, and inactivation functions has been prepared using zwitterionic [2-(methylacrylyl) ethyl] dimethyl-(3-propyl sulfonate) ammonium hydroxide (SBMA) as the matrix and cadmium telluride quantum dots functionalised with cysteamine (CA-CdTe QDs) as the filler through micelle copolymerisation technology, achieving the integration of multiple antimicrobial mechanisms. The experimental analysis demonstrated that the SBMA/CA-CdTe/Micelle (SCM) hydrogel exhibited antibacterial activity against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus), proving its excellent broad-spectrum antibacterial properties. Introducing micelles imparts excellent hydrophilicity, stability, and mechanical properties to the SCM hydrogel. Moreover, the SCM hydrogels possess significant self-adhesive properties, enabling them to function as biomimetic skin that tightly adheres to target surfaces, protecting them from bacterial contamination. In addition, the SCM hydrogel biomimetic skin exhibits good electrical conductivity and biocompatibility, capable of converting the motion amplitude of human activity into stable electrical signals, suggesting potential for human motion sensing applications. Overall, the SCM hydrogel biomimetic skin designed in this work, as a multifunctional antibacterial platform, effectively reduces bacterial contamination and holds significant application potential in healthcare and life sciences.
Collapse
Affiliation(s)
- Junfang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Weijun Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Ranran Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Jie Mao
- Department of Basic, Zhejiang Pharmaceutical University, Ningbo 315500, PR China.
| |
Collapse
|
2
|
Xiang C, Wen C, Wang Z, Tian Y, Li Y, Liao Y, Liu M, Zhong Y, Lin Y, Ning C, Zhou L, Fu R, Tan G. Multifunctional Conductive Hydrogel for Sensing Underwater Applications and Wearable Electroencephalogram Recording. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8327-8339. [PMID: 39841890 DOI: 10.1021/acsami.4c19660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions. The hydrogel has a commendable linear operating range (∼200% strain, GF = 1.44), stability of electrical signals for 200 cycles, excellent conductivity (2.18 S m-1), self-healing properties (∼30 min), and durable underwater adhesion stability. The conductive hydrogel can be developed into a flexible electronic sensor for detecting motion signals, such as joint flexion and swallowing, as well as for real-time underwater communication using Morse code. Additionally, the integration of this polymer with a low contact impedance facilitates real-time, high-fidelity detection of electroencephalogram (EEG) signals, serving as a flexible electrode. It is believed that our hydrogel will have good prospects in future wearable electronics.
Collapse
Affiliation(s)
- Chuyang Xiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chaoyao Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ziqi Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yu Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ying Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yuantao Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Mingjie Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yangengchen Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yeying Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, P. R. China
| | - Rumin Fu
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Sabzi S, Habibi M, Badmasti F, Shahbazi S, Asadi Karam MR, Farokhi M. Polydopamine-based nano adjuvant as a promising vaccine carrier induces significant immune responses against Acinetobacter baumannii-associated pneumonia. Int J Pharm 2024; 654:123961. [PMID: 38432452 DOI: 10.1016/j.ijpharm.2024.123961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The objective of this study was to assess the effectiveness of polydopamine nanoparticles (PDANPs) as a delivery system for intranasal antigen administration to prevent Acinetobacter baumannii (A. baumannii)-associated pneumonia. In the in vitro phase, the conserved outer membrane protein 22 (Omp22)-encoding gene of A. baumannii was cloned, expressed, and purified, resulting in the production of recombinant Omp22 (rOmp22), which was verified using western blot. PDANPs were synthesized using dopamine monomers and loaded with rOmp22 through physical adsorption. The rOmp22-loaded PDANPs were characterized in terms of size, size distribution, zeta potential, field emission scanning electron microscopy (FESEM), loading capacity, Fourier transform infrared spectroscopy (FTIR), release profile, and cytotoxicity. In the in vivo phase, the adjuvant effect of rOmp22-loaded PDANPs was evaluated in terms of eliciting immune responses, including humoral and cytokine levels (IL-4, IL-17, and IFN-γ), as well as protection challenge. The rOmp22-loaded PDANPs were spherical with a size of 205 nm, a zeta potential of -14 mV, and a loading capacity of approximately 35.7 %. The released rOmp22 from nontoxic rOmp22-loaded PDANPs over 20 days was approximately 41.5 %, with preserved rOmp22 integrity. The IgG2a/IgG1 ratio and IFN-γ levels were significantly higher in immunized mice with rOmp22-loaded-PDANPs than in rOmp22-alum, naive Omp22, and control groups. Furthermore, rOmp22-loaded PDANPs induced effective protection against infection in the experimental challenge and showed more normal structures in the lung histopathology assay. The results of this study suggest the potential of PDANPs as a nano-adjuvant for inducing strong immune responses to combat A. baumannii.
Collapse
Affiliation(s)
- Samira Sabzi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Wang Y, Xu T, Xu L, Miao G, Li F, Miao X, Lu J, Hou Z, Ren G, Zhu X. Mechanical Robust GO/PVA Hydrogel for Strong and Recyclable Adhesion in Air, Underwater, and Underoil Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38287225 DOI: 10.1021/acs.langmuir.3c03366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Adhesive hydrogels are considered to be promising interfacial adhesive materials for various applications; however, their adhesive strength is significantly reduced when immersed in liquid environments (water and oil) due to obstruction of the liquid layer or swelling in liquid, and they could not always be reused when the failure of the adhesive performance occurred. Herein, a graphite oxide/poly(vinyl alcohol) (GO/PVA) hydrogel with strong adhesion in air and under liquid environments was developed by rationally regulating the interactions of water and dimethyl sulfoxide (DMSO) in the binary liquid system. The strong interaction between water and DMSO allowed the water layer of the GO/PVA hydrogel on the hydrogel surface to act as a shield to repel oil in air, under water, and even when immersed in oil, and it also endowed the obtained hydrogel with antiswelling property when immersed in water and oil. Importantly, the GO/PVA hydrogel could serve as an advanced adhesive to firmly bond different substrates in air, under water, and under oil, and interestingly, its dry and wet adhesive performance was repeatable and recyclable. This work is expected to be an important addition to the field of adhesive soft materials.
Collapse
Affiliation(s)
- Yumin Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Ting Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Lide Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Gan Miao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Fangchao Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Jingwei Lu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiqiang Hou
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiaotao Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| |
Collapse
|
5
|
Ji Z, Gong D, Zhu M, Yang J, Bao Y, Wang Z, Xu M. Mussel-inspired adhesive and anti-swelling hydrogels for underwater strain sensing. SOFT MATTER 2024; 20:629-639. [PMID: 38163997 DOI: 10.1039/d3sm01503c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The application of hydrogels in an underwater environment is limited due to their swelling behavior and the existence of a hydration layer. In this study, a hydrogel based on poly(sulfobetaine methacrylate) (PSBMA), tannic acid (TA) and montmorillonite (MMT) was prepared with excellent anti-swelling properties and underwater self-adhesion properties. The PSBMA hydrogel has excellent anti-swelling properties due to the strong electrostatic interaction between charged groups of PSBMA chains. Inspired by marine mussels, tannic acid modified montmorillonite (TA@MMT) was introduced. Natural polyphenol tannic acid, as a catechol donor, provides a large number of catechol groups for hydrogels. Montmorillonite acts as the physical cross-linking point of PSBMA chains through electrostatic interaction to improve the cohesion of the hydrogel. By combining the adhesion mechanism of zwitterions and catechol, the hydrogel maintains adhesion in air and underwater environments. In addition, a strain sensor was prepared based on the PSBMA/TA@MMT hydrogel, which can closely fit the human skin and stably monitor different movements in air and in underwater environments. Through a Bluetooth communication system, long-distance information transmission can be achieved. Therefore, the PSBMA/TA@MMT hydrogel broadens the application prospect of wearable devices in the underwater environment.
Collapse
Affiliation(s)
- Zhengxiao Ji
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Dianjinfeng Gong
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Mengni Zhu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Jiaqi Yang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Yueyue Bao
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Zihui Wang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Min Xu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Zheng X, Duan Z, Zhuang Y, Zhang S, Cui X, Qin D. Application of Solvent-Assisted Dual-Network Hydrogel in Water-Based Drilling Fluid for Lost Circulation Treatment in Fractured Formation. ACS OMEGA 2024; 9:1166-1173. [PMID: 38222518 PMCID: PMC10785652 DOI: 10.1021/acsomega.3c07384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
During oil and gas well construction, lost circulation caused substantial nonoperation time and extra costs, and hydrogel, resilient and environmentally friendly, was one of the major types of material for lost circulation treatment. To migrate the weak bonding and hydrothermal degradation of conventional single network hydrogels, dual network (DN) hydrogel was prepared and immersed in solvents of polyethylene glycol (PEG), ethylene glycol, and glycerol. The swelling of DN gels at different temperatures was studied with water content and swelling rate tests, and the gel structural and morphology was characterized with attenuated total reflectance infrared spectroscopy (ATR-IR) and scanning electron microscopy test. Then, the compression test and fracture plugging performance test were conducted to study the strength of the gel. The results show that compared to those in ethylene glycol and glycerin, DN gel after immersion in PEG (DN-PEG) exhibits greater compression strength and better plugging performance even at high temperatures. The compression strength of DN-PEG was twice that of DN hydrogel before immersion, and its fracture plug breaking pressure can reach over 10.0 MPa. After undergoing hydrothermal treatment at 90 °C, the compression strength of the DN-PEG was nearly 20 times that of the DN hydrogel, and the fracture plug breaking pressure was still 2.81 MPa. According to ATR-IR spectroscopy, as the molecular weight of the solvent increases, more hydroxyl groups in the PEG have better ability to bind with hydrogen bonds, which greatly inhibits the swelling and polymer chain breakage, thereby reducing hydrothermal degradation in the strength of the dual-network hydrogel. Our work proposed an effective method to reduce the degradation of hydrogel in water at high temperature, and the prepared DN-PEG hydrogel was a promising material for lost circulation treatments in fractured formation.
Collapse
Affiliation(s)
- Xin Zheng
- Changzhou
University, Changzhou 213164, China
| | - Zhifeng Duan
- Oil
and Gas Technology Research Institute, PetroChina
Changqing Oilfield Branch, Xi’an 710018, China
| | - Yan Zhuang
- Changzhou
University, Changzhou 213164, China
| | | | - Xinying Cui
- China
Petroleum University (East China), Qingdao 266580, China
| | - Donghui Qin
- Changzhou
University, Changzhou 213164, China
| |
Collapse
|
7
|
Ye B, Ma Y, Zhang D, Gu J, Wang Z, Zhang Y, Chen J. Glycopolymer-Based Antiswelling, Conductive, and Underwater Adhesive Hydrogels for Flexible Strain Sensor Application. ACS Biomater Sci Eng 2023; 9:6891-6901. [PMID: 38013423 DOI: 10.1021/acsbiomaterials.3c01539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
With the fast development of soft electronics, underwater adhesion has become a highly desired feature for various sensing uses. Currently, most adhesive hydrogels are based on catechol-based structures, such as polydopamine, pyrogallol, and tannic acid, with very limited structural variety. Herein, a new type of glycopolymer-based underwater adhesive hydrogel has been prepared straightforwardly by random copolymerization of acrylic acid, acetyl-protected/unprotected glucose, and methacrylic anhydride in dimethyl sulfoxide (DMSO). By employing a DMSO-water solvent exchange strategy, the underwater adhesion was skillfully induced by the synergetic effects of hydrophobic aggregation and hydrogen bonding, leading to excellent adhesion behaviors on various surfaces, including pig skins, glasses, plastics, and metals, even after 5 days of storage in water. In addition, the underwater adhesive hydrogels with simple and low-cost protected/unprotected carbohydrate compositions showed good mechanical and rheological properties, together with cytocompatibility and antiswelling behavior in water, all of which are beneficial for underwater adhesions. In application as a flexible strain sensor, the adhesive hydrogel exhibited stable and reliable sensing ability for monitoring human motion in real time, suggesting great potential for intelligent equipment design.
Collapse
Affiliation(s)
- Baotong Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Difei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ziyan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
8
|
Han W, Wang S. Advances in Hemostatic Hydrogels That Can Adhere to Wet Surfaces. Gels 2022; 9:2. [PMID: 36661770 PMCID: PMC9858274 DOI: 10.3390/gels9010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, uncontrolled bleeding remains a serious problem in emergency, surgical and battlefield environments. Despite the specific properties of available hemostatic agents, sealants, and adhesives, effective hemostasis under wet and dynamic conditions remains a challenge. In recent years, polymeric hydrogels with excellent hemostatic properties have received much attention because of their adjustable mechanical properties, high porosity, and biocompatibility. In this review, to investigate the role of hydrogels in hemostasis, the mechanisms of hydrogel hemostasis and adhesion are firstly elucidated, the adhesion design strategies of hemostatic hydrogels in wet environments are briefly introduced, and then, based on a comprehensive literature review, the studies and in vivo applications of wet-adhesive hemostatic hydrogels in different environments are summarized, and the improvement directions of such hydrogels in future studies are proposed.
Collapse
Affiliation(s)
| | - Shige Wang
- School of Materials and Chemistry, The University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
9
|
Wang C, Sun J, Long Y, Wang R, Qu Y, Peng L, Ren H, Gao S. A re-crosslinkable composite gel based on curdlan for lost circulation control. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Xu L, Tang S, Yang H, Liang M, Ren P, Wei D, He J, Kong W, Liu P, Zhang T. Sustained delivery of gemcitabine via in situ injectable mussel-inspired hydrogels for the local therapy of pancreatic cancer. J Mater Chem B 2022; 10:6338-6350. [PMID: 35930367 DOI: 10.1039/d1tb02858h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The issue of pervasively enhanced drug resistance of pancreatic cancer is fundamental to a better understanding of gemcitabine-based chemotherapy. Currently available treatment plans involving injectable therapeutics are mainly engineered to improve the performance and broaden their applications in the domain of biomedicine. Fixed-dose-rate infusion of free gemcitabine (Gem) has drawn appropriate attention for its potent anti-tumor efficacy against various solid tumors, whereas it remains a considerable challenge to extend its application and achieve better treatment. Here, we have prepared and demonstrated a long-acting delivery system using gemcitabine and injectable in situ hydrogel for the localized treatment of pancreatic cancer. The hydrogel was prepared using polysaccharide derivatives, oxidized-carboxymethylcellulose (OCMC) and carboxymethylchitosan (CMCS) at optimal ratios by a dopamine-functionalized method for the controlled release of Gem. In vitro drug release behaviors for up to a week indicated sustained drug release of the Gem delivery system. Moreover, desirable apoptosis promotion and apparent cellular proliferation inhibition associated with the drug depot have been found in vitro against BxPC-3 pancreatic cancer cells, bringing minimized side effects to systemic normal tissues. The current findings manifested that the release out of the localized delivery platform in a sustained pattern afforded a durable gemcitabine-based chemotherapy effect and inhibited tumor metastasis more persistently after intratumoral injection of the Gem@Gel system, thereby advancing the development of novel drug-loaded materials with properties not accessed previously.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Shengnan Tang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huiquan Yang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Min Liang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Pengfei Ren
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Dandan Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Weiwei Kong
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
11
|
Wang X, Guo Y, Li J, You M, Yu Y, Yang J, Qin G, Chen Q. Tough Wet Adhesion of Hydrogen-Bond-Based Hydrogel with On-Demand Debonding and Efficient Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36166-36177. [PMID: 35899775 DOI: 10.1021/acsami.2c10202] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels have been widely used in wet tissues. However, the insufficient adhesion of hydrogels for wound hemostasis remains a grand challenge. Herein, a facile yet effective strategy is developed to fabricate tough wet adhesion of hydrogen-bond-based hydrogel (PAAcVI hydrogel) using copolymerization of acrylic acid and 1-vinylimidazole in dimethyl sulfoxide followed by solvent exchange with water. The PAAcVI hydrogel shows equally robust adhesion (>400 J m-2) to both wet and dry tissues. Moreover, the PAAcVI hydrogel also exhibits strong long-term stable adhesion underwater and in various wet environments. Meanwhile, the adhesion of PAAcVI hydrogel can be adjusted through Zn2+-ion-mediated on-demand debonding, which makes it easy to peel off from the tissue reducing pain during dressing removal and avoiding secondary injury. The PAAcVI hydrogel displays efficient hemostasis in the mice-tail docking model and mice-liver bleeding model. This hydrogen-bond-based hydrogel shows tough wet adhesion, and its adhesion is controllable, demonstrating its promising application in moisture-resistant adhesives, medical adhesives, and hemostatic materials.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Yaxin Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Jiangfeng Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 40038, P. R. China
| | - Min You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 40038, P. R. China
| | - Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| |
Collapse
|
12
|
Liang L, Qin Z, Dong X, He S, Yao M, Yu Q, Yu C, Liu M, Guo B, Zhang H, Yao F, Li J. Bio-inspired Antibacterial Hydrogel Adhesives with High Adhesion Strength. Macromol Rapid Commun 2022; 43:e2200182. [PMID: 35640482 DOI: 10.1002/marc.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Indexed: 11/10/2022]
Abstract
Traditional adhesives such as cyanoacrylate glue are mostly solvent based. They are facing the problem of insufficient adhesion to some substrates, and also the drawback of volatilization and release of small organic molecules in the process of usage. Therefore, a novel adhesive with non-irritating, high adhesive strength and antibacterial properties is highly required. In this study, a full physically crosslinked zwitterionic poly(betaine sulfonate methacrylate) (PSBMA) hydrogel is proposed. The physical crosslinking interactions endow the hydrogel with good self-healing property. Besides, the pure physical crosslinking hydrogel can form PSBMA powder adhesive after lyophilization and return to the hydrogel state after hydration. The mechanical properties of PSBMA adhesive can be modulated via adjusting the solid content and initiator dosage. Following the cure process similar to that of snail mucus or insect exoskeleton does in nature, adhesion of the PSBMA adhesive is improved at least 100 times than its wet state. In addition, the PSBMA adhesive is easy to be removed due to the dissociation of cross-linked structure in salt water environment. Moreover, PSBMA adhesive with antifouling properties can effectively prevent adhesion of proteins and bacteria, which shows potential applications in assembly of medical devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhihui Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xiaoru Dong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Shaoshuai He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Qingyu Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Min Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
13
|
3D-printed high-toughness double network hydrogels via digital light processing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Liang M, Wei D, Yao Z, Ren P, Dai J, Xu L, Zhang T, Zhang Q. Hydrogel Adhesive Formed via Multiple Chemical Interactions: From Persistent Wet Adhesion to Rapid Hemostasis. Biomater Sci 2022; 10:1486-1497. [DOI: 10.1039/d1bm01848e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thus far, robust and durable adhesion capability of hydrogel adhesive in wet environment remains a huge challenge. Here, a chemically-physically double-network cross-linked hydrogel matrix was prepared by first mixing acrylic...
Collapse
|
15
|
Zhang X, Tang Y, Wang P, Wang Y, Wu T, Li T, Huang S, Zhang J, Wang H, Ma S, Wang L, Xu W. A review of recent advances in metal ion hydrogels: mechanism, properties and their biological applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj02843c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms, common properties and biological applications of different types of metal ion hydrogels are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Puying Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yanyan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tingting Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tao Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Shuo Huang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jie Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Haili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Linlin Wang
- Department of Food Engineering, Shandong Business Institute, Yantai 264670, P. R. China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| |
Collapse
|