1
|
Vo TS, Chit PP, Nguyen VH, Hoang T, Lwin KM, Vo TTBC, Jeon B, Han S, Lee J, Park Y, Kim K. A comprehensive review of chitosan-based functional materials: From history to specific applications. Int J Biol Macromol 2024; 281:136243. [PMID: 39393718 DOI: 10.1016/j.ijbiomac.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Pyone Pyone Chit
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Trung Hoang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Khin Moe Lwin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial Management, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam.
| | - Byounghyun Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soobean Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jaehan Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yunjeong Park
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Valsalakumar VC, Sreevalli Y, P K A, Joseph AS, Ubaid S, Vasudevan S. Removal of anionic dye from textile effluent using zirconium phosphate loaded polyaniline-graphene oxide composite: Lab to pilot scale evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122068. [PMID: 39116819 DOI: 10.1016/j.jenvman.2024.122068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Efficient filtering of dyes is essential for the protection of ecosystem and human health due to the considerable water pollution caused by the effluents released from the sector. We present a simple, scalable UV radiation-assisted method for treating methyl orange dye-polluted water from the textile industry using zirconium phosphate-loaded polyaniline-graphene oxide (PGZrP) composite. The new material was synthesized by sonochemically incorporating a polyaniline-graphene oxide composite with hydrothermally synthesized zirconium phosphate. The efficacy of PGZrP in eliminating methyl orange was evaluated using experimental conditions, and the adsorption capacity was investigated as a function of pH, temperature, adsorbent dosage, and adsorption period. The system follows Langmuir adsorption isotherm with pseudo-second-order kinetics. Thermodynamics studies showed that enthalpy (H°) and entropy (S°) values are positive, indicating that the dye adsorption increases with increasing temperature and is an endothermic reaction. The maximum adsorption capacity was found to be 36.45379 mg/g for methyl orange. Using the COMSOL Multiphysics CFD Platform, an attempt was made to check the temperature and concentration profile of a PGZrP composite in a real industrial system. The predicted result shows that there is no significant temperature change in the material during the adsorption process and the concentration of dye is mainly located on the top region of the bed. The developed zirconium phosphate decorated polyaniline-graphene oxide composite can be successfully utilized for the effective removal of methyl orange from industrial wastewater in bulk quantity which is coming from the textile industry, and the composite can be reused for several cycles with good efficiency. In this work, we have designed a miniaturized proof of concept to remove methyl orange from water which showed good dye removal efficiency.
Collapse
Affiliation(s)
- Vidhya C Valsalakumar
- Department of Chemistry, National Institute of Technology, Calicut, 673601, Kerala, India
| | - Yaddanapudi Sreevalli
- Department of Chemistry, National Institute of Technology, Calicut, 673601, Kerala, India
| | - Archana P K
- Department of Chemistry, National Institute of Technology, Calicut, 673601, Kerala, India
| | - Amala Shaliya Joseph
- Department of Chemistry, National Institute of Technology, Calicut, 673601, Kerala, India
| | - Siyad Ubaid
- Department of Chemistry, Mannaniya College of Arts and Science, Affiliated to the University of Kerala, Trivandrum, 695609, Kerala, India.
| | - Suni Vasudevan
- Department of Chemistry, National Institute of Technology, Calicut, 673601, Kerala, India.
| |
Collapse
|
3
|
Agha HM, Abdulhameed AS, Wu R, Jawad AH, ALOthman ZA, Algburi S. Chitosan-grafted salicylaldehyde/algae composite for methyl violet dye removal: adsorption modeling and optimization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1348-1358. [PMID: 38456236 DOI: 10.1080/15226514.2024.2318777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
In this study, a hydrothermal approach was employed to graft chitosan (Chit)/algae (ALG) with salicylaldehyde (SA), resulting in the synthesis of a biocomposite named salicylaldehyde-based chitosan Schiff base/algae (Chit-SA/ALG). The main objective of this biocomposite was to effectively remove methyl violet (MV), an organic dye, from aqueous solutions. The adsorption performance of Chit-SA/ALG toward MV was investigated in detail, considering the effects of three factors: (A) Chit-SA/ALG dose (ranging from 0.02 to 0.1 g/100 mL), (B) pH (ranging from 4 to 10), and (C) time (ranging from 10 to 120 min). The Box-Behnken design (BBD) was utilized for experimental design and analysis. The experimental results exhibited a good fit with both the pseudo-second-order kinetic model and the Freundlich isotherm, suggesting their suitability for describing the MV adsorption process on Chit-SA/ALG. The maximum adsorption capacity of Chit-SA/ALG, as calculated by the Langmuir model, was found to be 115.6 mg/g. The remarkable adsorption of MV onto Chit-SA/ALG can be primarily attributed to the electrostatic forces between Chit-SA/ALG and MV as well as the involvement of various interactions such as n-π, π-π, and H-bond interactions. This research demonstrates that Chit-SA/ALG exhibits promising potential as a highly efficient adsorbent for the removal of organic dyes from water systems.
Collapse
Affiliation(s)
- Hasan M Agha
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Ruihong Wu
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Department of Chemistry, Heng Shui University, Heng Shui, China
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
4
|
Vo TS, Hossain MM, Kim K. Natural bamboo powder and coffee ground as low-cost green adsorbents for the removal of rhodamine B and their recycling performance. Sci Rep 2023; 13:21487. [PMID: 38057407 DOI: 10.1038/s41598-023-48354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023] Open
Abstract
Bamboo and coffee, which are abundant and inexpensive, have been used as green adsorbents for the adsorption of industrial dye rhodamine B (RB). Bamboo and coffee are natural sources of cellulose, hemicellulose, and lignin, making them promising green materials for industrial dye removal. The effects of various adsorption conditions, such as contact time, temperature, dose of bamboo powder (BP), coffee ground (CG), initial concentration of RB, and pH values of RB solution, were measured. Consequently, the kinetics of RB adsorption onto bamboo and coffee was in accordance with the pseudo-second-order model, with an activation energy of 29.51 kJ mol-1 for bamboo and 27.46 kJ mol-1 for coffee. The Langmuir model is well fitted to the whole adsorption period at different temperatures, in which the increase in the tested temperature has improved the adsorption capacity (i.e., BP: 6.76 mg g-1/30 °C, 6.96 mg g-1/40 °C, 7.64 mg g-1/50 °C and CG: 6.53 mg g-1/30 °C, 6.80 mg g-1/40 °C, 7.51 mg g-1/50 °C). Moreover, the spontaneous nature of the adsorption was based on the negative Gibbs free energy values obtained (i.e., from - 11.09 to - 14.30 kJ mol-1 [BP] and from - 10.34 to - 13.07 kJ mol-1 [CG]). These revealed that RB adsorption occurred at physical and chemical adsorption states. In addition, the recycling capability of adsorbents was determined in five cycles. Therefore, these materials are promising candidates for low-cost adsorbents.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | | | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|