1
|
Khan AH, Basak A, Zaman A, Das PK. Inherently targeted estradiol-derived carbon dots for selective killing of ER (+) breast cancer cells via oridonin-triggered p53 pathway activation. J Mater Chem B 2024; 12:11708-11720. [PMID: 39435655 DOI: 10.1039/d4tb01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
One of the most prevalent cancers globally is breast cancer and approximately two thirds of the breast cancers are hormone receptor positive with estrogen receptors (ER) being a prominent target. Notably, p53 that controls several cellular functions and prevents tumor formation, gets suppressed in breast cancers. Reactivation of p53 can lead to cell cycle arrest as well as apoptosis. Therefore, targeting the estrogen receptor for selective delivery of anticancer drugs that can reactivate p53 in ER (+) breast cancers can be a crucial method in breast cancer therapy. Herein, we have designed and developed estradiol-derived inherently targeted specific carbon dots (E2-CA-CD) from 17β-estradiol and citric acid following a solvothermal method. The synthesized carbon dots were characterized using spectroscopic and microscopic techniques. The water soluble, intrinsically fluorescent E2-CA-CD showed excellent biocompatibility in MCF-7, MDA-MB-231 as well as NIH3T3 cells and demonstrated target specific bioimaging in ER (+) MCF-7 cells due to the overexpressed ER receptors. Furthermore, oridonin, a well-known hydrophobic anticancer drug capable of upregulating the p53 pathway, was loaded on the carbon dots to increase its bioavailability. E2-CA-CD-Ori caused ∼2.2 times higher killing in ER (+) MCF-7 cells compared to ER (-) MDA-MB-231 cells and normal cells NIH3T3. Also, E2-CA-CD-Ori showed ∼3 fold better killing in MCF-7 cells compared to native oridonin. E2-CA-CD-Ori-induced killing of MCF-7 cells took place through the early to late apoptotic pathway along with the elevation of the intracellular ROS level. Importantly, E2-CA-CD-Ori triggered the activation of the p53 pathway in MCF-7 cells, which in turn induced apoptosis involving the upregulation of Bax and downregulation of Bcl-2 leading to the selective and efficient killing of ER (+) MCF-7 cells.
Collapse
Affiliation(s)
- Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Ambalika Basak
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| |
Collapse
|
2
|
Kirbas Cilingir E, Besbinar O, Giro L, Bartoli M, Hueso JL, Mintz KJ, Aydogan Y, Garber JM, Turktas M, Ekim O, Ceylan A, Unal MA, Ensoy M, Arı F, Ozgenç Çinar O, Ozturk BI, Gokce C, Cansaran-Duman D, Braun M, Wachtveitl J, Santamaria J, Delogu LG, Tagliaferro A, Yilmazer A, Leblanc RM. Small Warriors of Nature: Novel Red Emissive Chlorophyllin Carbon Dots Harnessing Fenton-Fueled Ferroptosis for In Vitro and In Vivo Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309283. [PMID: 38230862 DOI: 10.1002/smll.202309283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Indexed: 01/18/2024]
Abstract
The appeal of carbon dots (CDs) has grown recently, due to their established biocompatibility, adjustable photoluminescence properties, and excellent water solubility. For the first time in the literature, copper chlorophyllin-based carbon dots (Chl-D CDs) are successfully synthesized. Chl-D CDs exhibit unique spectroscopic traits and are found to induce a Fenton-like reaction, augmenting photodynamic therapy (PDT) efficacies via ferroptotic and apoptotic pathways. To bolster the therapeutic impact of Chl-D CDs, a widely used cancer drug, temozolomide, is linked to their surface, yielding a synergistic effect with PDT and chemotherapy. Chl-D CDs' biocompatibility in immune cells and in vivo models showed great clinical potential.Proteomic analysis was conducted to understand Chl-D CDs' underlying cancer treatment mechanism. The study underscores the role of reactive oxygen species formation and pointed toward various oxidative stress modulators like aldolase A (ALDOA), aldolase C (ALDOC), aldehyde dehydrogenase 1B1 (ALDH1B1), transaldolase 1 (TALDO1), and transketolase (TKT), offering a deeper understanding of the Chl-D CDs' anticancer activity. Notably, the Chl-D CDs' capacity to trigger a Fenton-like reaction leads to enhanced PDT efficiencies through ferroptotic and apoptotic pathways. Hence, it is firmly believed that the inherent attributes of Chl-CDs can lead to a secure and efficient combined cancer therapy.
Collapse
Affiliation(s)
- Emel Kirbas Cilingir
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Omur Besbinar
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
- The Graduate School of Health Sciences of Ankara University, Ankara, 06110, Turkey
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, Zaragoza, 50018, Spain
| | - Linda Giro
- Department of Biomedical Sciences, University of Padua, Padua, 35129, Italy
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Jose L Hueso
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, Zaragoza, 50018, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Avenida San Juan Bosco, 13, Zaragoza, 50009, Spain
| | - Keenan J Mintz
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Yagmur Aydogan
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Jordan M Garber
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Mine Turktas
- Department of Biology, Faculty of Science, Gazi University, Ankara, 06560, Turkey
| | - Okan Ekim
- Department of Anatomy, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | - Ahmet Ceylan
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | | | - Mine Ensoy
- Biotechnology Institute, Ankara University, Ankara, 06135, Turkey
| | - Fikret Arı
- Department of Electrical Electronic Engineering, Faculty of Engineering, Ankara, 06830, Turkey
| | - Ozge Ozgenç Çinar
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | - Berfin Ilayda Ozturk
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
| | - Cemile Gokce
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
| | | | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Jesus Santamaria
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, Zaragoza, 50018, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Avenida San Juan Bosco, 13, Zaragoza, 50009, Spain
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, 35129, Italy
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, 127788, UAE
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Açelya Yilmazer
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
3
|
Ma X, Liuye S, Ning K, Wang X, Cui S, Pu S. A photo-controlled fluorescent switching based on carbon dots and photochromic diarylethene for bioimaging. Photochem Photobiol Sci 2023; 22:2389-2399. [PMID: 37479954 DOI: 10.1007/s43630-023-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Carbon dots (CDs) as luminescent zero-dimensional carbon nanomaterials have good aqueous dissolution, photostability, high quantum yield, and tunability of emission color. It has great application potential in many fields, including bioimaging, labeling of biological species, drug delivery, and sensing in biomedical. However, controlling the fluorescence emission of carbon dots remains a formidable challenge. Herein, we designed and exploited a photo-controlled fluorescent switching based on photochromic diarylethene (DT) and CDs for bioimaging. It could be modulated reversibly between "ON" and "OFF" under UV/vis light exposure. The fluorescent modulation efficiency was as high as 95.3%. The fluorescent switching could be used to the bioimaging in HeLa cells with low cell toxicity. Therefore, this fluorescent switching could be a promising candidate in many potential application areas, especially in bioimaging.
Collapse
Affiliation(s)
- Xinhuan Ma
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Shiqi Liuye
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Kefan Ning
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Xinyao Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Shiqiang Cui
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
| |
Collapse
|
4
|
Ma G, Wang R, Zhang M, Dong Z, Zhang A, Qu M, Gao L, Wei Y, Wei J. Solvothermal preparation of nitrogen-doped carbon dots with PET waste as precursor and their application in LEDs and water detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122178. [PMID: 36527965 DOI: 10.1016/j.saa.2022.122178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Developing novel, alternative ways to recycle PET waste, which has an important influence on reduction of landfilling and CO2 emissions, has always been a research hot spot for industry and academy. In this work, PET waste was adopted as precursor for the preparation of nitrogen-doped Carbon Dots (NCDs). Firstly, PET oligomers were obtained by alcoholysis of PET waste with ethylene glycol. Then, the mixture without isolation and purification as well as pyromellitic acid dianhydride and urea were adopted as precursors for the preparation of NCDs by solvothermal method with tetrahydrofuran (THF) as solvent. The as-prepared NCDs has a spherical structure with an average particle size of 2.3 nm. What is more, NCDs exhibit excitation-independent emission properties, the largest excitation peak and emission peak of NCDs located in 360 nm and 470 nm, and the fluorescence quantum yield is 48.16 %. In term of application, NCDs are dispersed in PMMA and loaded on 365 nm and 430 nm LED chips to obtain LED devices emitting yellow light ((0.55, 0.44), 2018 K) and warm white light ((0.37, 0.31), 3783 K), respectively. In addition, NCDs could be adopted as fluorescent probe for the construction of sensor for water in organic solvents based on dynamic quenching of NCDs, and the limit of detection (LOD) is 0.00001 %.
Collapse
Affiliation(s)
- Guocong Ma
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Rui Wang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Mina Zhang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Zhenfeng Dong
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Anying Zhang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Xiqing District, Tianjin, China
| | - Meiru Qu
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Lu Gao
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yanying Wei
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jianfei Wei
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| |
Collapse
|