1
|
Li Y, Zhang J, Ma B, Yu W, Xu M, Luan W, Yu Q, Zhang L, Rong R, Fu Y, Cao H. Nanotechnology used for siRNA delivery for the treatment of neurodegenerative diseases: Focusing on Alzheimer's disease and Parkinson's disease. Int J Pharm 2024; 666:124786. [PMID: 39378955 DOI: 10.1016/j.ijpharm.2024.124786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Neurodegenerative diseases (ND) are often accompanied by dementia, motor dysfunction, or disability. Caring for these patients imposes a significant psychological and financial burden on families. Until now, there are no effective methods for the treatment of NDs. Among them, Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common. Recently, studies have revealed that the overexpression of certain genes may be linked to the occurrence of AD and PD. Small interfering RNAs (siRNAs) are a powerful tool for gene silencing because they can specifically bind to and cleave target mRNA. However, the intrinsic properties of naked siRNA and various physiological barriers limit the application of siRNA in the brain. Nanotechnology is a promising option for addressing these issues. Nanoparticles are not only able to protect siRNA from degradation but also have the advantage of crossing various physiological barriers to reach the brain target of siRNA. In this review, we aim to introduce diverse nanotechnology used for delivering siRNA to treat AD and PD. Finally, we will briefly discuss our perspectives on this promising field.
Collapse
Affiliation(s)
- Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jiahui Zhang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Boqin Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Meixia Xu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Weijing Luan
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Qinglong Yu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Li Zhang
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Rong Rong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Yuanlei Fu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Haiqiang Cao
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
2
|
Zhang Y, Lu K, Yao L, Zhang H, Zhang S, Zou Y, Yu Q, Chen H. A photothermal surface modified with polyelectrolyte multilayers for gene transfection and cell harvest. Colloids Surf B Biointerfaces 2024; 242:114110. [PMID: 39047645 DOI: 10.1016/j.colsurfb.2024.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Gene transfection, which involves introducing nucleic acids into cells, is a pivotal technology in the life sciences and medical fields, particularly in gene therapy. Surface-mediated transfection, primarily targeting cells adhering to surfaces, shows promise for enhancing cell transfection by localizing and presenting surface-bound nucleic acids directly to the cells. However, optimizing endocytosis for efficient delivery remains a persistent challenge. Additionally, ensuring efficient and non-traumatic cell harvest capability is crucial for applications such as ex vivo cell-based therapy. To address these challenges, we developed a photothermal platform with enzymatic degradation capability for efficient gene transfection and cell harvest. This platform is based on carbon nanotubes (CNTs) doped with poly(dimethylsiloxane) and modified with polyelectrolyte multilayers (PEMs) containing hyaluronic acid and quaternized chitosan, allowing for substantial loading of poly(ethyleneimine)/plasmid DNA (pDNA) complexes through electrostatic interactions. Upon irradiation of near-infrared laser, the photothermal properties of CNTs enable high transfection efficiency by delivering pDNA into attached cells via a membrane disruption mechanism. The engineered cells can be harvested by treating with a non-toxic hyaluronidase solution to degrade PEMs, thus maintaining good viability for further applications. This platform has demonstrated remarkable efficacy across various cell lines (including Hep-G2 cells, Ramos cells and primary T cells), achieving a transfection efficiency exceeding 95 %, cell viability exceeding 90 %, and release efficiency surpassing 95 %, highlighting its potential for engineering living cells.
Collapse
Affiliation(s)
- Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Lihua Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
3
|
Motta MA, Mulko L, Marin E, Larrañaga A, Calderón M. Polypeptide-based multilayer nanoarchitectures: Controlled assembly on planar and colloidal substrates for biomedical applications. Adv Colloid Interface Sci 2024; 331:103248. [PMID: 39033588 DOI: 10.1016/j.cis.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Polypeptides have shown an excellent potential in nanomedicine thanks to their biocompatibility, biodegradability, high functionality, and responsiveness to several stimuli. Polypeptides exhibit high propensity to organize at the supramolecular level; hence, they have been extensively considered as building blocks in the layer-by-layer (LbL) assembly. The LbL technique is a highly versatile methodology, which involves the sequential assembly of building blocks, mainly driven by electrostatic interactions, onto planar or colloidal templates to fabricate sophisticated multilayer nanoarchitectures. The simplicity and the mild conditions required in the LbL approach have led to the inclusion of biopolymers and bioactive molecules for the fabrication of a wide spectrum of biodegradable, biocompatible, and precisely engineered multilayer films for biomedical applications. This review focuses on those examples in which polypeptides have been used as building blocks of multilayer nanoarchitectures for tissue engineering and drug delivery applications, highlighting the characteristics of the polypeptides and the strategies adopted to increase the stability of the multilayer film. Cross-linking is presented as a powerful strategy to enhance the stability and stiffness of the multilayer network, which is a fundamental requirement for biomedical applications. For example, in tissue engineering, a stiff multilayer coating, the presence of adhesion promoters, and/or bioactive molecules boost the adhesion, growth, and differentiation of cells. On the contrary, antimicrobial coatings should repel and inhibit the growth of bacteria. In drug delivery applications, mainly focused on particles and capsules at the micro- and nano-meter scale, the stability of the multilayer film is crucial in terms of retention and controlled release of the payload. Recent advances have shown the key role of the polypeptides in the adsorption of genetic material with high loading efficiency, and in addressing different pathways of the particles/capsules during the intracellular uptake, paving the way for applications in personalized medicine. Although there are a few studies, the responsiveness of the polypeptides to the pH changes, together with the inclusion of stimuli-responsive entities into the multilayer network, represents a further key factor for the development of smart drug delivery systems to promote a sustained release of therapeutics. The degradability of polypeptides may be an obstacle in certain scenarios for the controlled intracellular release of a drug once an external stimulus is applied. Nowadays, the highly engineered design of biodegradable LbL particles/capsules is oriented on the development of theranostics that, limited to use of polypeptides, are still in their infancy.
Collapse
Affiliation(s)
- Maria Angela Motta
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Lucinda Mulko
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Edurne Marin
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
4
|
Rowland S, Aghakhani A, Whalley RD, Ferreira AM, Kotov N, Gentile P. Layer-by-Layer Nanoparticle Assembly for Biomedicine: Mechanisms, Technologies, and Advancement via Acoustofluidics. ACS APPLIED NANO MATERIALS 2024; 7:15874-15902. [PMID: 39086513 PMCID: PMC11287493 DOI: 10.1021/acsanm.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The deposition of thin films plays a crucial role in surface engineering, tailoring structural modifications, and functionalization across diverse applications. Layer-by-layer self-assembly, a prominent thin-film deposition method, has witnessed substantial growth since its mid-20th-century inception, driven by the discovery of eligible materials and innovative assembly technologies. Of these materials, micro- and nanoscopic substrates have received far less interest than their macroscopic counterparts; however, this is changing. The catalogue of eligible materials, including nanoparticles, quantum dots, polymers, proteins, cells and liposomes, along with some well-established layer-by-layer technologies, have combined to unlock impactful applications in biomedicine, as well as other areas like food fortification, and water remediation. To access these fields, several well-established technologies have been used, including tangential flow filtration, fluidized bed, atomization, electrophoretic assembly, and dielectrophoresis. Despite the invention of these technologies, the field of particle layer-by-layer still requires further technological development to achieve a high-yield, automatable, and industrially ready process, a requirement for the diverse, reactionary field of biomedicine and high-throughput pharmaceutical industry. This review provides a background on layer-by-layer, focusing on how its constituent building blocks and bonding mechanisms enable unmatched versatility. The discussion then extends to established and recent technologies employed for coating micro- and nanoscopic matter, evaluating their drawbacks and advantages, and highlighting promising areas in microfluidic approaches, where one distinctly auspicious technology emerges, acoustofluidics. The review also explores the potential and demonstrated application of acoustofluidics in layer-by-layer technology, as well as analyzing existing acoustofluidic technologies beyond LbL coating in areas such as cell trapping, cell sorting, and multidimensional particle manipulation. Finally, the review concludes with future perspectives on layer-by-layer nanoparticle coating and the potential impact of integrating acoustofluidic methods.
Collapse
Affiliation(s)
- Seth Rowland
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Amirreza Aghakhani
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
- Institute
for Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Richard D. Whalley
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Ana Marina Ferreira
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Nicholas Kotov
- Department
of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Piergiorgio Gentile
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| |
Collapse
|
5
|
Tan J, Zhu C, Li L, Wang J, Xia XH, Wang C. Engineering Cell Membranes: From Extraction Strategies to Emerging Biosensing Applications. Anal Chem 2024; 96:7880-7894. [PMID: 38272835 DOI: 10.1021/acs.analchem.3c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Affiliation(s)
- Jing Tan
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Chengcheng Zhu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Lulu Li
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, P.R. China
| | - Jin Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P.R. China
| | - Chen Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
6
|
Passos Gibson V, Tahiri H, Gilbert C, Yang C, Phan QT, Banquy X, Hardy P. Modulating the Nature of Ionizable Lipids and Number of Layers in Hyaluronan-Decorated Lipid Nanoparticles for In Vitro Delivery of RNAi. Pharmaceutics 2024; 16:563. [PMID: 38675224 PMCID: PMC11054633 DOI: 10.3390/pharmaceutics16040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Lipid nanoparticles (LNPs) have established their position as nonviral vectors for gene therapy. Tremendous efforts have been made to modulate the properties of LNPs to unleash their full clinical potential. Among the strategies being pursued, the layer-by-layer (LbL) technique has gained considerable attention in the biomedical field. Illuminated by our previous work, here we investigate if the LbL approach could be used to modify the LNP cores formulated with three different ionizable lipids: DODMA, MC3, and DODAP. Additionally, we wondered if more than three layers could be loaded onto LNPs without disrupting their gene transfection ability. Taking advantage of physicochemical analysis, as well as uptake and gene silencing studies, we demonstrate the feasibility of modifying the surface of LNPs with the LbL assembly. Precisely, we successfully modified three different LNPs using the layer-by-layer strategy which abrogated luciferase activity in vitro. Additionally, we constructed a 5×-layered HA-LNP containing the MC3 ionizable lipid which outperformed the 3×-layered counterpart in transfecting miRNA-181-5p to the pediatric GBM cell line, as a proof-of-concept in vitro experiment. The method used herein has been proven reproducible, of easy modification to adapt to different ionizable lipid-containing LNPs, and holds great potential for the translation of RNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Victor Passos Gibson
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.G.); (C.Y.)
| | - Houda Tahiri
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.G.); (C.Y.)
| | - Claudia Gilbert
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.G.); (C.Y.)
| | - Chun Yang
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.G.); (C.Y.)
| | - Quoc Thang Phan
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Q.T.P.); (X.B.)
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Q.T.P.); (X.B.)
| | - Pierre Hardy
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.G.); (C.Y.)
- Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|