1
|
Sheng Y, Qing D, Li N, Zhang P, Sun Y, Zhang R. Singlet oxygen production of Zn-Ag-In-S quantum dots for photodynamic treatment of cancer cells and bacteria. J Biomater Appl 2024; 39:129-138. [PMID: 38782577 DOI: 10.1177/08853282241255817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Zn-Ag-In-S (ZAIS) quantum dots (QDs) were synthesized with various Ag-to-In ratios and used as novel photosensitizers for photodynamic therapy (PDT) on cancer cell inhibition and bacterial sterilization, and their structural, optical, and photodynamic properties were investigated. The alloyed QDs displayed a photoluminescence quantum yield of 72% with a long fluorescence lifetime of 5.3 μs when the Ag-to-In ratio was 1:3, suggesting a good opportunity as a dual functional platform for fluorescence imaging and PDT. The ZAIS QDs were then coated with amphiphilic brush copolymer poly(maleic anhydride-alt-1-octadecene) (PMAO) before application. The 1O2 quantum yield of the ZAIS/PMAO was measured to be 8%, which was higher than previously reported CdSe QDs and comparable to some organic photosensitizers. Moreover, the ZAIS QDs showed excellent stability in aqueous and biological media, unlike organic photosensitizers that tend to degrade over time. The in vitro PDT against human melanoma cell line (A2058) and Staphylococcus aureus shows about 30% inhibition rate upon 20 min light irradiation. Cell staining images clearly demonstrated that co-treatment with ZAIS QDs and light irradiation effectively killed A2058 cells, demonstrating the potential of ZAIS QDs as novel and versatile photosensitizers for PDT in cancer and bacterial treatment, and provides useful information for future designing of QD-based photosensitizers.
Collapse
Affiliation(s)
- Yang Sheng
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Danni Qing
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Naijun Li
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Peng Zhang
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Yixin Sun
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Rong Zhang
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
2
|
Patra D, Ghosh S, Mukherjee S, Acharya Y, Mukherjee R, Haldar J. Antimicrobial nanocomposite coatings for rapid intervention against catheter-associated urinary tract infections. NANOSCALE 2024; 16:11109-11125. [PMID: 38787647 DOI: 10.1039/d4nr00653d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Catheter-associated urinary tract infections (CAUTIs) pose a significant challenge in hospital settings. Current solutions available on the market involve incorporating antimicrobials and antiseptics into catheters. However, challenges such as uncontrolled release leading to undesirable toxicity, as well as the prevalence of antimicrobial resistance reduce the effectiveness of these solutions. Additionally, conventional antibiotics fail to effectively eradicate entrenched bacteria and metabolically suppressed bacteria present in the biofilm, necessitating the exploration of alternative strategies. Here, we introduce a novel polymer-nanocomposite coating that imparts rapid antimicrobial and anti-biofilm properties to coated urinary catheters. We have coated silicone-based urinary catheters with an organo-soluble antimicrobial polymer nanocomposite (APN), containing hydrophobic quaternized polyethyleneimine and zinc oxide nanoparticles, in a single step coating process. The coated surfaces exhibited rapid eradication of drug-resistant bacteria within 10-15 min, including E. coli, K. pneumoniae, MRSA, and S. epidermidis, as well as drug-resistant C. albicans fungi. APN coated catheters exhibited potent bactericidal activity against uropathogenic strains of E. coli, even when incubated in human urine. Furthermore, the stability of the coating and retention of antimicrobial activity was validated even after multiple washes. More importantly, this coating deterred biofilm formation on the catheter surface, and displayed rapid inactivation of metabolically repressed stationary phase and persister cells. The ability of the coated surfaces to disrupt bacterial membranes and induce the generation of intracellular reactive oxygen species (ROS) was assessed through different techniques, such as electron microscopy imaging, flow cytometry as well as fluorescence spectroscopy and microscopy. The surface coatings were found to be biocompatible in an in vivo mice model. Our simple one-step coating approach for catheters holds significant potential owing to its ability to tackle multidrug resistant bacteria and fungi, and the challenge of biofilm formation. This work brings us one step closer to enhancing patient care and safety in hospitals.
Collapse
Affiliation(s)
- Dipanjana Patra
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru-560064, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru-560064, Karnataka, India.
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru-560064, Karnataka, India.
| | - Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru-560064, Karnataka, India.
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru-560064, Karnataka, India.
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru-560064, Karnataka, India.
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru-560064, Karnataka, India
| |
Collapse
|
3
|
Bassett S, Ding Y, Roy MK, Reisz JA, D'Alessandro A, Nagpal P, Chatterjee A. Light-Driven Metabolic Pathways in Non-Photosynthetic Biohybrid Bacteria. Chembiochem 2024; 25:e202300572. [PMID: 37861981 DOI: 10.1002/cbic.202300572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Biomanufacturing via microorganisms relies on carbon substrates for molecular feedstocks and a source of energy to carry out enzymatic reactions. This creates metabolic bottlenecks and lowers the efficiency for substrate conversion. Nanoparticle biohybridization with proteins and whole cell surfaces can bypass the need for redox cofactor regeneration for improved secondary metabolite production in a non-specific manner. Here we propose using nanobiohybrid organisms (Nanorgs), intracellular protein-nanoparticle hybrids formed through the spontaneous coupling of core-shell quantum dots (QDs) with histidine-tagged enzymes in non-photosynthetic bacteria, for light-mediated control of bacterial metabolism. This proved to eliminate metabolic constrictions and replace glucose with light as the source of energy in Escherichia coli, with an increase in growth by 1.7-fold in 75 % reduced nutrient media. Metabolomic tracking through carbon isotope labeling confirmed flux shunting through targeted pathways, with accumulation of metabolites downstream of respective targets. Finally, application of Nanorgs with the Ehrlich pathway improved isobutanol titers/yield by 3.9-fold in 75 % less sugar from E. coli strains with no genetic alterations. These results demonstrate the promise of Nanorgs for metabolic engineering and low-cost biomanufacturing.
Collapse
Affiliation(s)
- Shane Bassett
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Yuchen Ding
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Micaela K Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Prashant Nagpal
- ARC Labs, Louisville, CO 80027, USA
- Sachi Bio, Inc., Louisville, CO 80027, USA
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- ARC Labs, Louisville, CO 80027, USA
- Sachi Bio, Inc., Louisville, CO 80027, USA
| |
Collapse
|
4
|
Ogawa Y, Kawaguchi T, Tanaka M, Hashimoto A, Fukui K, Uekawa N, Ozawa T, Kamachi T, Kohno M. Quenching effect of cerium oxide nanoparticles on singlet oxygen: validation of the potential for reaction with multiple reactive oxygen species. J Clin Biochem Nutr 2023; 73:1-8. [PMID: 37534098 PMCID: PMC10390806 DOI: 10.3164/jcbn.22-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/07/2022] [Indexed: 08/04/2023] Open
Abstract
Here we studied cerium oxide nanoparticles (nanoceria) as an agent for the future treatment of oxidative damage by validating and evaluating its scavenging activity towards reactive oxygen species (ROS) in vitro. Nanoceria has been shown to mimic the activities of superoxide dismutase and catalase, degrading superoxide (O2•-) and hydrogen peroxide (H2O2). We examined the antioxidative activity of nanoceria, focusing on its ability to quench singlet oxygen (1O2) in an aqueous solution. Electron paramagnetic resonance (EPR) was used to determine the rates of second-order reactions between nanoceria and three ROS (1O2, O2•-, and H2O2) in aqueous solution, and its antioxidative abilities were demonstrated. Nanoceria shows a wide range of ultraviolet-light absorption bands and thus 1O2 was produced directly in a nanoceria suspension using high-frequency ultrasound. The quenching or scavenging abilities of nanoceria for 1O2 and hypoxanthine-xanthine oxidase reaction-derived O2•- were examined by EPR spin-trapping methods, and the consumption of H2O2 was estimated by the EPR oximetry method. Our results indicated that nanoceria interact not only with two previously reported ROS but also with 1O2. Nanoceria were shown to degrade O2•- and H2O2, and their ability to quench 1O2 may be one mechanism by which they protect against oxidative damage such as inflammation.
Collapse
Affiliation(s)
- Yukihiro Ogawa
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tsunetaka Kawaguchi
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Mami Tanaka
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Akiko Hashimoto
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Naofumi Uekawa
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-chou, Image-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Toshihiko Ozawa
- School of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, lna-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Toshiaki Kamachi
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masahiro Kohno
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Eller KA, Stamo DF, McCollum CR, Campos JK, Levy M, Nagpal P, Chatterjee A. Photoactivated antibiotics to treat intracellular infection of bacteria. NANOSCALE ADVANCES 2023; 5:1910-1918. [PMID: 36998655 PMCID: PMC10044578 DOI: 10.1039/d2na00378c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/08/2022] [Indexed: 06/19/2023]
Abstract
Antibiotic resistance combined with pathogen internalization leads to debilitating infections. Here we test novel superoxide producing, stimuli-activated quantum dots (QDs), to treat an intracellular infection of Salmonella enterica serovar Typhimurium in an osteoblast precursor cell line. These QDs are precisely tuned to reduce dissolved oxygen to superoxide and kill bacteria upon stimulation (e.g., light). We show QDs provide tunable clearance at various multiplicities of infection and limited host cell toxicity by modulating their concentration and stimuli intensity, proving the efficacy of superoxide producing QDs for intracellular infection treatment and establishing a framework for further testing in different infection models.
Collapse
Affiliation(s)
- Kristen A Eller
- Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80303 USA
| | - Dana F Stamo
- Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80303 USA
| | - Colleen R McCollum
- Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80303 USA
| | - Jocelyn K Campos
- Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80303 USA
| | - Max Levy
- Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80303 USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder Boulder CO 80303 USA
| | - Prashant Nagpal
- Sachi Bioworks Inc., Colorado Technology Center Louisville CO 80027 USA
- Antimicrobial Regeneration Consortium Labs Louisville CO 80027 USA
| | - Anushree Chatterjee
- Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80303 USA
- Sachi Bioworks Inc., Colorado Technology Center Louisville CO 80027 USA
- Antimicrobial Regeneration Consortium Labs Louisville CO 80027 USA
| |
Collapse
|
6
|
Gao Q, Wang Z, Rao Y, Zhao Y, Cao J, Ho KF, Zhai Y, Xiong M, Li J, Huang Y. Oxygen vacancy mediated α-MoO 3 bactericidal nanocatalyst in the dark: Surface structure dependent superoxide generation and antibacterial mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130275. [PMID: 36327852 DOI: 10.1016/j.jhazmat.2022.130275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Understanding bacteria inactivation mechanisms of nanomaterials on the surface molecular level is of prime importance for the development of antibacterial materials and their application in restraining the transmission of pathogenic microorganisms. This study prepared an oxygen vacancy-mediated bactericidal nanocatalyst α-MoO3 which exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus in the dark. By manipulating the surface structure of α-MoO3, the facile tuning of superoxide radical (•O2-) generation can be achieved, which was confirmed by electron paramagnetic resonance. •O2- disrupted bacterial membrane through attacking lipopolysaccharide (LPS) and phosphatidylethanolamine (PE). Intracellular reactive oxygen species (ROS) experiments confirm that oxidative stress induced by •O2- also played a vital role in bacterial inactivation, which might account for DNA damage verified by comet assays. The α-MoO3 with rich oxygen vacancies also exhibited good antibacterial efficiency (>99.00 %) toward airborne microbes under dark conditions, indicating its potential to impede the transmission of pathogenic microbes.
Collapse
Affiliation(s)
- Qin Gao
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, PR China
| | - Zhenyu Wang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, PR China
| | - Yongfang Rao
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yulei Zhao
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, PR China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yue Zhai
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, PR China
| | - Mingyu Xiong
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, PR China
| | - Juntang Li
- Research Centre for Occupation and Environment Medicine, Collaborative Innovation Centre for Medical Equipment, Key Laboratory of Biological Damage Effect and Protection, Luoyang 471031, PR China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, PR China.
| |
Collapse
|
7
|
Shan Y, Lu W, Xi J, Qian Y. Biomedical applications of iron sulfide-based nanozymes. Front Chem 2022; 10:1000709. [PMID: 36105309 PMCID: PMC9465017 DOI: 10.3389/fchem.2022.1000709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Nanozymes have attracted great interest owing to their marvelous advantages, such as high stability, facile preparation, and high tunability. In particular, iron sulfide-based nanozymes (termed as ISNs), as one of the most researched nanomaterials with versatile enzyme-mimicking properties, have proved their potential in biomedical applications. In this review, we briefly summarize the classification, catalytic mechanisms of ISNs and then principally introduce ISNs’ biomedical applications in biosensors, tumor therapy, antibacterial therapy, and others, demonstrating that ISNs have promising potential for alleviating human health.
Collapse
Affiliation(s)
- Yunyi Shan
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Wenjie Lu
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Juqun Xi
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Yayun Qian
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- *Correspondence: Yayun Qian,
| |
Collapse
|
8
|
McCollum CR, Bertram JR, Nagpal P, Chatterjee A. Photoactivated Indium Phosphide Quantum Dots Treat Multidrug-Resistant Bacterial Abscesses In Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30404-30419. [PMID: 34156817 DOI: 10.1021/acsami.1c08306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing prevalence of drug-resistant bacterial strains is causing illness and death in an unprecedented number of people around the globe. Currently implemented small-molecule antibiotics are both increasingly less efficacious and perpetuating the evolution of resistance. Here, we propose a new treatment for drug-resistant bacterial infection in the form of indium phosphide quantum dots (InP QDs), semiconductor nanoparticles that are activated by light to produce superoxide. We show that the superoxide generated by InP QDs is able to effectively kill drug-resistant bacteria in vivo to reduce subcutaneous abscess infection in mice without being toxic to the animal. Our InP QDs are activated by near-infrared wavelengths with high transmission through skin and tissues and are composed of biocompatible materials. Body weight and organ tissue histology show that the QDs are nontoxic at a macroscale. Inflammation and oxidative stress markers in serum demonstrate that the InP QD treatment did not result in measurable effects on mouse health at concentrations that reduce drug-resistant bacterial viability in subcutaneous abscesses. The InP QD treatment decreased bacterial viability by over 3 orders of magnitude in subcutaneous abscesses formed in mice. These InP QDs thus provide a promising alternative to traditional small-molecule antibiotics, with the potential to be applied to a wide variety of infection types, including wound, respiratory, and urinary tract infections.
Collapse
Affiliation(s)
- Colleen R McCollum
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John R Bertram
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Prashant Nagpal
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
- Quantum Biology, Inc., Boulder, Colorado 80301, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| |
Collapse
|
9
|
Chen YD, Duan X, Zhou X, Wang R, Wang S, Ren NQ, Ho SH. Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. CHEMICAL ENGINEERING JOURNAL 2021. [PMID: 0 DOI: 10.1016/j.cej.2020.128207] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
10
|
Yekani M, Baghi HB, Vahed SZ, Ghanbari H, Hosseinpur R, Azargun R, Azimi S, Memar MY. Tightly controlled response to oxidative stress; an important factor in the tolerance of Bacteroides fragilis. Res Microbiol 2021; 172:103798. [PMID: 33485914 DOI: 10.1016/j.resmic.2021.103798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/01/2022]
Abstract
The exposure of Bacteroides fragilis to highly oxygenated tissues induces an oxidative stress due to a shift from the reduced condition of the gastrointestinal tract to an aerobic environment of host tissues. The potent and effective responses to reactive oxygen species (ROS) make the B. fragilis tolerant to atmospheric oxygen for several days. The response to oxidative stress in B. fragilis is a complicated event that is induced and regulated by different agents. In this review, we will focus on the B. fragilis response to oxidative stress and present an overview of the regulators of responses to oxidative stress in this bacterium.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Ghanbari
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasul Hosseinpur
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Robab Azargun
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Somayeh Azimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
McCollum CR, Levy M, Bertram JR, Nagpal P, Chatterjee A. Photoexcited Quantum Dots as Efficacious and Nontoxic Antibiotics in an Animal Model. ACS Biomater Sci Eng 2021; 7:1863-1875. [DOI: 10.1021/acsbiomaterials.0c01406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Colleen R. McCollum
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Max Levy
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John R. Bertram
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Prashant Nagpal
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| |
Collapse
|
12
|
Qi Q, Zeng X, Peng L, Zhang H, Zhou M, Fu J, Yuan J. Tumor-targeting and imaging micelles for pH-triggered anticancer drug release and combined photodynamic therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1385-1404. [PMID: 32345136 DOI: 10.1080/09205063.2020.1760698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we construct a charge - switchable polymer nano micelles poly (2-(hexamethyl eneimino) ethyl methacrylate) - b - poly (ethylene glycol) monomethyl ether methacrylate) - b - poly (diethyl enetriaminepentaacetic acid methacrylate) - b - poly (1-vinyl imidazole) - b - poly (4-vinyl phenylboronic acid) (PC7A-PEG-DTPA-VI-PBA) in different pH solutions. DOX released faster from micelles in a weakly acidic environment (pH 5.0) than at pH 7.4. In order to enhance the anti-tumor effect, the imidazole functional groups in the polymer were used to coordinate CdSeTe quantum dots (QDs) for photodynamic treatment (PDT). In addition, the surfaces of the micelles were further decorated with phenylboronic acidas a targeting group, using DTPA chelating 99mTc for SPECT imaging.It has been successfully demonstrated that the nanoparticles have a good cumulative effect on the tumor site.The structure of the polymer was characterized by 1HNMR. The morphology and particle size of the micelles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The drug loading capacity (DLC) and drug loading efficiency (DLE) of the micelles were analyzed by ultraviolet visible spectroscopy. And the pH-sensitive drug release and cytotoxicity of the micelles were verified in vitro. In vitro experiments showed that the nano micelles were noncytotoxic to different cell lines, while DOX@CdSeTe@PC7A-PEG-DTPA-VI-PBA inhibited the proliferation and promoted the apoptosis of B16F10 cells. An in vivo study with C57BL tumor-bearing mice indicated that DOX@CdSeTe@PC7A-PEG-DTPA-VI-PBA nano micelles efficiently inhibited tumor growth. Results showed that the nano micelles had good pH responsibility and biocompatibility, and the loaded DOX could be released in the weak acidic environment of tumor cells, and it was expected to be a good drug delivery system.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Xianwu Zeng
- Department of Nuclear Medicine, Gansu Academy of Medical Sciences, Gansu Provincial Tumor Hospital, Lanzhou, China
| | - Licong Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Hailiang Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Miao Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jingping Fu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jianchao Yuan
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
13
|
Jena P, Bhattacharya M, Bhattacharjee G, Satpati B, Mukherjee P, Senapati D, Srinivasan R. Bimetallic gold-silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. NANOSCALE 2020; 12:3731-3749. [PMID: 31993609 DOI: 10.1039/c9nr10700b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The actin cytoskeleton is required for the maintenance of the cell shape and viability of bacteria. It remains unknown to which extent nanoparticles (NPs) can orchestrate the mechanical instability by disrupting the cytoskeletal network in bacterial cells. Our work demonstrates that Au-Ag NPs disrupt the bacterial actin cytoskeleton specifically, fluidize the inner membrane and lead to killing of bacterial cells. In this study, we have tried to emphasize on the key parameters important for NP-cell interactions and found that the shape, specific elemental surface localization and enhanced electrostatic interaction developed due to the acquired partial positive charge by silver atoms in the aggregated NPs are some of the major factors contributing towards better NP interactions and subsequent cell death. In vivo studies in bacterial cells showed that the NPs exerted a mild perturbation of the membrane potential. However, its most striking effect was on the actin cytoskeleton MreB resulting in morphological changes in the bacterial cell shape from rods to predominantly spheres. Exposure to NPs resulted in the delocalization of MreB patches from the membrane but not the tubulin homologue FtsZ. Concomitant with the redistribution of MreB localization, a dramatic increase of membrane fluid regions was observed. Our studies reveal for the first time that Au-Ag NPs can mediate bacterial killing and disrupt the actin cytoskeletal functions in bacteria.
Collapse
Affiliation(s)
- Prajna Jena
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, sector -3, Salt Lake City, Kolkata, India.
| | - Maireyee Bhattacharya
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India.
| | - Gourab Bhattacharjee
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India
| | - Biswarup Satpati
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India
| | - Prasun Mukherjee
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, sector -3, Salt Lake City, Kolkata, India.
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India.
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
14
|
Fazaeli Y, Zare H, Karimi S, Feizi S. 68Ga CdTe/CdS fluorescent quantum dots for detection of tumors: investigation on the effect of nanoparticle size on stability and in vivo pharmacokinetics. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2019-3184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Quantum dots (QDs)-based theranostics offer exciting new approaches to diagnose and therapy of cancer. To take advantage of the unique properties of these fluorescent QDs for different biomedical applications, their structures, size and/or surface chemistry need to be optimized, allowing their stability and functionalities to be tailored for different biomedical applications.
Methodology
Cadmium telluride/Cadmium sulfide QDs (CdTe/CdS QDs) were synthesized and their structure, size, photostability and functionalities as a bioprobe for detection of Fibrosarcoma tumors were studied and compared with Cadmium telluride (CdTe) QDs. Hence, CdTe/CdS QDs were labeled with 68Ga radionuclide for fast in vivo biological nuclear imaging. Using gamma paper chromatography (γ-PC), the physicochemical properties of the prepared labeled QDs were assessed. In vivo biodistribution and positron emission tomography (PET) imaging of the 68Ga@ CdTe/CdS QDs nanocrystals were investigated in Sprague Dawley® rats bearing Fibrosarcoma tumor.
Results
CdS shell on the surface of CdTe core increases the size and photostability against high energy radiations; therefore, CdTe/CdS QDs show prolonged fluorescence as compared to CdTe QDs.
Conclusion
Excellent accumulation in tumor was observed for core/shell quantum dots, but this study showed that small changes in the size of the QDs (+1 nm), after adding the CdS shell around CdTe core, greatly change their biodistribution (especially the liver uptake).
Collapse
Affiliation(s)
- Yousef Fazaeli
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498 , Karaj , Iran
| | - Hakimeh Zare
- Department of Physics , Yazd University , Yazd , Iran
| | - Shokufeh Karimi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498 , Karaj , Iran
| | - Shahzad Feizi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498 , Karaj , Iran
| |
Collapse
|
15
|
Laube C, Taut JA, Kretzschmar J, Zahn S, Knolle W, Ullman S, Kahnt A, Kersting B, Abel B. Light controlled oxidation by supramolecular Zn( ii) Schiff-base complexes. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00980f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Application of Schiff-base ligands for the controlled zinc ion induced formation of electronic triplet states and the initialisation of photoreactivity.
Collapse
Affiliation(s)
- Christian Laube
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
- Department of Chemistry
| | - Josef Anton Taut
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Jonas Kretzschmar
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Stefan Zahn
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Wolfgang Knolle
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Steve Ullman
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Axel Kahnt
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Berthold Kersting
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Bernd Abel
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institute of Physical und Theoretical Chemistry
| |
Collapse
|
16
|
Aunins TR, Eller KA, Courtney CM, Levy M, Goodman SM, Nagpal P, Chatterjee A. Isolating the Escherichia coli Transcriptomic Response to Superoxide Generation from Cadmium Chalcogenide Quantum Dots. ACS Biomater Sci Eng 2019; 5:4206-4218. [PMID: 33417778 DOI: 10.1021/acsbiomaterials.9b01087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanomaterials have been extensively used in the biomedical field and have recently garnered attention as potential antimicrobial agents. Cadmium telluride quantum dots (QDs) with a bandgap of 2.4 eV (CdTe-2.4) were previously shown to inhibit multidrug-resistant clinical isolates of bacterial pathogens via light-activated superoxide generation. Here we investigate the transcriptomic response of Escherichia coli to phototherapeutic CdTe-2.4 QDs both with and without illumination, as well as in comparison with the non-superoxide-generating cadmium selenide QDs (CdSe-2.4) as a negative control. Our analysis sought to separate the transcriptomic response of E. coli to the generation of superoxide by the CdTe-2.4 QDs from the presence of cadmium chalcogenide nanoparticles alone. We used comparisons between illuminated CdTe-2.4 conditions and all others to establish the superoxide generation response and used comparisons between all QD conditions and the no treatment condition to establish the cadmium chalcogenide QD response. In our analysis of the gene expression experiments, we found eight genes to be consistently differentially expressed as a response to superoxide generation, and these genes demonstrate a consistent association with the DNA damage response and deactivation of iron-sulfur clusters. Each of these responses is characteristic of a bacterial superoxide response. We found 18 genes associated with the presence of cadmium chalcogenide QDs but not the generation of superoxide by CdTe-2.4, including several that implicated metabolism of amino acids in the E. coli response. To explore each of these gene sets further, we performed both gene knockout and amino acid supplementation experiments. We identified the importance of leucyl-tRNA downregulation as a cadmium chalcogenide QD response and reinforced the relationship between CdTe-2.4 stress and iron-sulfur clusters through examination of the gene tusA. This study demonstrates the transcriptomic response of E. coli to CdTe-2.4 and CdSe-2.4 QDs and parses the different effects of superoxide versus material effects on the bacteria. Our findings may provide useful information toward the development of QD-based antibacterial therapy in the future.
Collapse
|
17
|
Levy M, Bertram JR, Eller KA, Chatterjee A, Nagpal P. Near-Infrared-Light-Triggered Antimicrobial Indium Phosphide Quantum Dots. Angew Chem Int Ed Engl 2019; 58:11414-11418. [PMID: 31184802 DOI: 10.1002/anie.201906501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug-resistant (MDR) pathogens represents one of the most urgent global public health crises. Light-activated quantum dots (QDs) are alternative antimicrobials, with efficient transport, low cost, and therapeutic efficacy, and they can act as antibiotic potentiators, with a mechanism of action orthogonal to small-molecule drugs. Furthermore, light-activation enhances control over the spatiotemporal release and dose of the therapeutic superoxide radicals from QDs. However, the limited deep-tissue penetration of visible light needed for QD activation, and concern over trace heavy metals, have prevented further translation. Herein, we report two indium phosphide (InP) QDs that operate in the near-infrared and deep-red light window, enabling deeper tissue penetration. These heavy-metal-free QDs eliminate MDR pathogenic bacteria, while remaining non-toxic to host human cells. This work provides a pathway for advancing QD nanotherapeutics to combat MDR superbugs.
Collapse
Affiliation(s)
- Max Levy
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
| | - John R Bertram
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA.,Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kristen A Eller
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Prashant Nagpal
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA.,Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
18
|
Levy M, Bertram JR, Eller KA, Chatterjee A, Nagpal P. Near‐Infrared‐Light‐Triggered Antimicrobial Indium Phosphide Quantum Dots. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Max Levy
- Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder Boulder CO USA
| | - John R. Bertram
- Renewable and Sustainable Energy Institute, University of Colorado Boulder Boulder CO USA
- Materials Science and Engineering, University of Colorado Boulder Boulder CO USA
| | - Kristen A. Eller
- Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder CO USA
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder CO USA
| | - Prashant Nagpal
- Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder Boulder CO USA
- Materials Science and Engineering, University of Colorado Boulder Boulder CO USA
| |
Collapse
|
19
|
Levy M, Chowdhury PP, Eller KA, Chatterjee A, Nagpal P. Tuning Ternary Zn1–xCdxTe Quantum Dot Composition: Engineering Electronic States for Light-Activated Superoxide Generation as a Therapeutic against Multidrug-Resistant Bacteria. ACS Biomater Sci Eng 2019; 5:3111-3118. [DOI: 10.1021/acsbiomaterials.9b00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Max Levy
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 4001 Discovery Drive, Boulder, Colorado 80303, United States
| | - Partha P. Chowdhury
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 4001 Discovery Drive, Boulder, Colorado 80303, United States
| | - Kristen A. Eller
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Prashant Nagpal
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 4001 Discovery Drive, Boulder, Colorado 80303, United States
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, Colorado 80303, United States
| |
Collapse
|