1
|
Liao Y, Yin X, Liu W, Du Z, Du J. Chaperone Copolymer-Assisted Catalytic Hairpin Assembly for Highly Sensitive Detection of Adenosine. Polymers (Basel) 2024; 16:2179. [PMID: 39125205 PMCID: PMC11314456 DOI: 10.3390/polym16152179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adenosine is an endogenous molecule that plays a vital role in biological processes. Research indicates that abnormal adenosine levels are associated with a range of diseases. The development of sensors capable of detecting adenosine is pivotal for early diagnosis of disease. For example, elevated adenosine levels are closely associated with the onset and progression of cancer. In this study, we designed a novel DNA biosensor utilizing chaperone copolymer-assisted catalytic hairpin assembly for highly sensitive detection of adenosine. The functional probe comprises streptavidin magnetic beads, an aptamer, and a catalytic chain. In the presence of adenosine, it selectively binds to the aptamer, displacing the catalytic chain into the solution. The cyclic portion of H1 hybridizes with the catalytic strand, while H2 hybridizes with the exposed H1 fragment to form an H1/H2 complex containing a G-quadruplex. Thioflavin T binds specifically to the G-quadruplex, generating a fluorescent signal. As a nucleic acid chaperone, PLL-g-Dex expedites the strand exchange reaction, enhancing the efficiency of catalytic hairpin assembly, thus amplifying the signal and reducing detection time. The optimal detection conditions were determined to be a temperature of 25 °C and a reaction time of 10 min. Demonstrating remarkable sensitivity and selectivity, the sensor achieved a lowest limit of detection of 9.82 nM. Furthermore, it exhibited resilience to interference in complex environments such as serum, presenting an effective approach for rapid and sensitive adenosine detection.
Collapse
Affiliation(s)
| | | | | | | | - Jie Du
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (Y.L.); (X.Y.); (W.L.); (Z.D.)
| |
Collapse
|
2
|
Cheng Y, Zhang H, Wei H, Yu CY. Injectable hydrogels as emerging drug-delivery platforms for tumor therapy. Biomater Sci 2024; 12:1151-1170. [PMID: 38319379 DOI: 10.1039/d3bm01840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Tumor therapy continues to be a prominent field within biomedical research. The development of various drug carriers has been propelled by concerns surrounding the side effects and targeting efficacy of various chemotherapeutic drugs and other therapeutic agents. These carriers strive to enhance drug concentration at tumor sites, minimize systemic side effects, and improve therapeutic outcomes. Among the reported delivery systems, injectable hydrogels have emerged as an emerging candidate for the in vivo delivery of chemotherapeutic drugs due to their minimal invasive drug delivery properties. This review systematically summarizes the composition and preparation methodologies of injectable hydrogels and further highlights the delivery mechanisms of diverse drugs using these hydrogels for tumor therapy, along with an in-depth discussion on the optimized therapeutic efficiency of drugs encapsulated within the hydrogels. The work concludes by providing a dynamic forward-looking perspective on the potential challenges and possible solutions of the in situ injectable hydrogels for non-surgical and real-time diagnostic applications.
Collapse
Affiliation(s)
- Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
3
|
Scognamiglio PL, Vicidomini C, Roviello GN. Dancing with Nucleobases: Unveiling the Self-Assembly Properties of DNA and RNA Base-Containing Molecules for Gel Formation. Gels 2023; 10:16. [PMID: 38247739 PMCID: PMC10815473 DOI: 10.3390/gels10010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Nucleobase-containing molecules are compounds essential in biology due to the fundamental role of nucleic acids and, in particular, G-quadruplex DNA and RNA in life. Moreover, some molecules different from nucleic acids isolated from different vegetal sources or microorganisms show nucleobase moieties in their structure. Nucleoamino acids and peptidyl nucleosides belong to this molecular class. Closely related to the above, nucleopeptides, also known as nucleobase-bearing peptides, are chimeric derivatives of synthetic origin and more rarely isolated from plants. Herein, the self-assembly properties of a vast number of structures, belonging to the nucleic acid and nucleoamino acid/nucleopeptide family, are explored in light of the recent scientific literature. Moreover, several technologically relevant properties, such as the hydrogelation ability of some of the nucleobase-containing derivatives, are reviewed in order to make way for future experimental investigations of newly devised nucleobase-driven hydrogels. Nucleobase-containing molecules, such as mononucleosides, DNA, RNA, quadruplex (G4)-forming oligonucleotides, and nucleopeptides are paramount in gel and hydrogel formation owing to their distinctive molecular attributes and ability to self-assemble in biomolecular nanosystems with the most diverse applications in different fields of biomedicine and nanotechnology. In fact, these molecules and their gels present numerous advantages, underscoring their significance and applicability in both material science and biomedicine. Their versatility, capability for molecular recognition, responsiveness to stimuli, biocompatibility, and biodegradability collectively contribute to their prominence in modern nanotechnology and biomedicine. In this review, we emphasize the critical role of nucleobase-containing molecules of different nature in pioneering novel materials with multifaceted applications, highlighting their potential in therapy, diagnostics, and new nanomaterials fabrication as required for addressing numerous current biomedical and nanotechnological challenges.
Collapse
Affiliation(s)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
4
|
Abune L, Lee K, Wang Y. Development of a Biomimetic Extracellular Matrix with Functions of Protein Sequestration and Cell Attachment Using Dual Aptamer-Functionalized Hydrogels. ACS Biomater Sci Eng 2022; 8:1279-1289. [PMID: 35179358 PMCID: PMC9764160 DOI: 10.1021/acsbiomaterials.1c01544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) has not only cell-binding sites for cell attachment but also protein-binding sites for molecular sequestration. Aptamers have high binding affinities and specificities against their target molecules. Thus, the purpose of this work was to develop dual aptamer-functionalized hydrogels for simultaneously recapitulating the two key features of the ECM in binding cells and sequestering proteins. We synthesized the hydrogels using free-radical polymerization in a freezing procedure. As the hydrogels were macroporous with pores of 40-50 μm, both cells and proteins could be loaded into the hydrogels after the synthesis. Importantly, the vascular endothelial growth factor (VEGF) aptamer improved VEGF sequestration and reduced the apparent diffusivity of VEGF by over 2 orders of magnitude, resultantly prolonging VEGF retention and release. The c-MET aptamer promoted the attachment of endothelial cells in the hydrogel network. When two aptamers were both incorporated into the hydrogel, they could produce synergistic effects on cell survival and growth. Thus, this work has successfully demonstrated the potential of developing biomimetic ECMs with two key functions of cell attachment and protein sequestration using dual aptamer-functionalized hydrogels.
Collapse
Affiliation(s)
- Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBE Building, University Park, Pennsylvania 16801, United States
| | - Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBE Building, University Park, Pennsylvania 16801, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBE Building, University Park, Pennsylvania 16801, United States
| |
Collapse
|
5
|
|
6
|
Chakraborty A, Ravi SP, Shamiya Y, Cui C, Paul A. Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical and other applications. Chem Soc Rev 2021; 50:7779-7819. [PMID: 34036968 DOI: 10.1039/d0cs01387k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The biological purpose of DNA is to store, replicate, and convey genetic information in cells. Progress in molecular genetics have led to its widespread applications in gene editing, gene therapy, and forensic science. However, in addition to its role as a genetic material, DNA has also emerged as a nongenetic, generic material for diverse biomedical applications. DNA is essentially a natural biopolymer that can be precisely programed by simple chemical modifications to construct materials with desired mechanical, biological, and structural properties. This review critically deciphers the chemical tools and strategies that are currently being employed to harness the nongenetic functions of DNA. Here, the primary product of interest has been crosslinked, hydrated polymers, or hydrogels. State-of-the-art applications of macroscopic, DNA-based hydrogels in the fields of environment, electrochemistry, biologics delivery, and regenerative therapy have been extensively reviewed. Additionally, the review encompasses the status of DNA as a clinically and commercially viable material and provides insight into future possibilities.
Collapse
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Caroline Cui
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada. and School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada and Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
7
|
Di Y, Wang P, Li C, Xu S, Tian Q, Wu T, Tian Y, Gao L. Design, Bioanalytical, and Biomedical Applications of Aptamer-Based Hydrogels. Front Med (Lausanne) 2020; 7:456. [PMID: 33195288 PMCID: PMC7642814 DOI: 10.3389/fmed.2020.00456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
Aptamers are special types of single-stranded DNA generated by a process called systematic evolution of ligands by exponential enrichment (SELEX). Due to significant advances in the chemical synthesis and biotechnological production, aptamers have gained considerable attention as versatile building blocks for the next generation of soft materials. Hydrogels are high water-retainable materials with a three-dimensional (3D) polymeric network. Aptamers, as a vital element, have greatly expanded the applications of hydrogels. Due to their biocompatibility, selective binding, and molecular recognition, aptamer-based hydrogels can be utilized for bioanalytical and biomedical applications. In this review, we focus on the latest strategies of aptamer-based hydrogels in bioanalytical and biomedical applications. We begin this review with an overview of the underlying design principles for the construction of aptamer-based hydrogels. Next, we will discuss some bioanalytical and biomedical applications of aptamer-based hydrogel including biosensing, target capture and release, logic devices, gene and cancer therapy. Finally, the recent progress of aptamer-based hydrogels is discussed, along with challenges and future perspectives.
Collapse
Affiliation(s)
- Ya Di
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ping Wang
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chunyan Li
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shufeng Xu
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Qi Tian
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tong Wu
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yaling Tian
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Liming Gao
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
8
|
Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020; 161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Wound repair is a fascinatingly complex process, with overlapping events in both space and time needed to pave a pathway to successful healing. This additional complexity presents challenges when developing methods for the controlled delivery of therapeutics for wound repair and tissue engineering. Unlike more traditional applications, where biomaterial-based depots increase drug solubility and stability in vivo, enhance circulation times, and improve retention in the target tissue, when aiming to modulate wound healing, there is a desire to enable localised, spatiotemporal control of multiple therapeutics. Furthermore, many therapeutics of interest in the context of wound repair are sensitive biologics (e.g. growth factors), which present unique challenges when designing biomaterial-based delivery systems. Here, we review the diverse approaches taken by the biomaterials community for creating stimuli-responsive materials that are beginning to enable spatiotemporal control over the delivery of therapeutics for applications in tissue engineering and regenerative medicine.
Collapse
|
9
|
Nishimura T, Akiyoshi K. Artificial Molecular Chaperone Systems for Proteins, Nucleic Acids, and Synthetic Molecules. Bioconjug Chem 2020; 31:1259-1267. [DOI: 10.1021/acs.bioconjchem.0c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
10
|
Zhao N, Suzuki A, Zhang X, Shi P, Abune L, Coyne J, Jia H, Xiong N, Zhang G, Wang Y. Dual Aptamer-Functionalized in Situ Injectable Fibrin Hydrogel for Promotion of Angiogenesis via Codelivery of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor-BB. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18123-18132. [PMID: 31026135 PMCID: PMC6542593 DOI: 10.1021/acsami.9b02462] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In situ injectable hydrogels hold great potential for in vivo applications such as drug delivery and regenerative medicine. However, it is challenging to ensure stable sequestration and sustained release of loaded biomolecules in these hydrogels. As aptamers have high binding affinities and specificities against target biomolecules, we studied the capability of aptamers in functionalizing in situ injectable fibrin (Fn) hydrogels for in vivo delivery of two growth factors including vascular endothelial growth factor (VEGF) and platelet-derived growth factor-BB (PDGF-BB). The results show that aptamer-functionalized fibrinogen (Fg) could form in situ injectable Fn hydrogels with porous structures. The aptamer-functionalized Fn hydrogels could sequester more VEGF and PDGF-BB than the native Fn and release these growth factors in a sustained manner with high bioactivity. After the aptamer-functionalized Fn hydrogels were subcutaneously injected into mice, the codelivery of VEGF and PDGF-BB could promote the growth of mature blood vessels. Therefore, this study has successfully demonstrated that aptamer-functionalized in situ injectable hydrogels hold great potential for in vivo codelivery of multiple growth factors and promotion of angiogenesis .
Collapse
Affiliation(s)
- Nan Zhao
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Akiho Suzuki
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaolong Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - James Coyne
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Huizhen Jia
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Na Xiong
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Han J, Wu J, Du J. Fluorescent DNA Biosensor for Single-Base Mismatch Detection Assisted by Cationic Comb-Type Copolymer. Molecules 2019; 24:E575. [PMID: 30764576 PMCID: PMC6384784 DOI: 10.3390/molecules24030575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 11/16/2022] Open
Abstract
Simple and rapid detection of DNA single base mismatch or point mutation is of great significance for the diagnosis, treatment, and detection of single nucleotide polymorphism (SNP) in genetic diseases. Homogeneous mutation assays with fast hybridization kinetics and amplified discrimination signals facilitate the automatic detection. Herein we report a quick and cost-effective assay for SNP analysis with a fluorescent single-labeled DNA probe. This convenient strategy is based on the efficient quenching effect and the preferential binding of graphene oxide (GO) to ssDNA over dsDNA. Further, a cationic comb-type copolymer (CCC), poly(l-lysine)-graft-dextran (PLL-g-Dex), significantly accelerates DNA hybridization and strand-exchange reaction, amplifying the effective distinction of the kinetic barrier between a perfect matched DNA and a mismatched DNA. Moreover, in vitro experiments indicate that RAW 264.7 cells cultured on PLL-g-Dex exhibits excellent survival and proliferation ability, which makes this mismatch detection strategy highly sensitive and practical.
Collapse
Affiliation(s)
- Jialun Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of materials and chemical engineering, Hainan University, Haikou 570228, China.
| | - Jincai Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of materials and chemical engineering, Hainan University, Haikou 570228, China.
| | - Jie Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of materials and chemical engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|