1
|
Govindasamy C, Al-Numair KS, Alsaif MA, Gopalakrishnan AV, Ganesan R. Assessment of metabolic responses following silica nanoparticles in zebrafish models using 1H NMR analysis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109808. [PMID: 38061618 DOI: 10.1016/j.cbpc.2023.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Silica nanoparticles (SNPs) are widely explored as drug carriers, gene delivery vehicles, and as nanoparticles intended for bone and tissue engineering. SNPs are highly evident through various clinical trials for a wide range of biomedical applications. SNPs are biocompatible and promising nanoparticles for next-generation therapeutics. However, despite the well-established importance of SNPs, metabolomics methods for the SNPs remain elusive which renders its maximal clinical translation. We applied 1H nuclear magnetic resonance (1H NMR) spectroscopy to investigate the metabolomics profile in Zebrafish (Danio rerio) exposed to SNPs. Zebrafish were exposed to the SNPs (10.0, 25.0, and 50.0 μg/mL) for 72 h and whole-body samples were subjected for targeted profiling. Pattern recognition of 1H NMR spectral data depicted alterations in the metabolomic profiles between control and SNPs exposed zebrafish. We found that tryptophane, lysine, methionine, phenylalanine, tyrosine, sn-glycero-3-phosphocholine (G3PC), and o-phosphocholine were decreased. The metabolic expression of niacinamide, nicotinamide adenine dinucleotide (NAD+), citrate, adenosine triphosphate (ATP), and xanthine were increased in zebrafish with SNPs treatment. We are report for the first time on metabolite alterations and phenotypic expression in zebrafish via 1H NMR. These results demonstrate that SNPs can adversely affect the significant metabolic pathways involved in energy, amino acids, cellular membrane, lipids, and fatty acid metabolisms. Metabolomics profiling may be able to detect metabolic dysregulation in SNPs-treated zebrafish and establish a foundation for further toxicological studies.
Collapse
Affiliation(s)
- Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Khalid S Al-Numair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohammed A Alsaif
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Raja Ganesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Esthar S, Dhivya R, Ramesh U, Rajesh J, Webster TJ, Annaraj J, Rajagopal G. Biocompatible, Biodegradable, and Improved Fluorescent Silicon Quantum Dots for Zebrafish Imaging. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
One of the greatest benefits of nanomedicine elucidated to date includes the non-invasive tracking and monitoring of living organisms by the selective uptake of harmless metallic nanoparticles. Several nanoscale probes have been employed for biomolecular imaging. Among them, fluorescent
nanoscale silicon materials have been recently established with a strong and safe potential for bioimaging and biosensing applications due to their bright fluorescence coupled with strong photostability, biocompatibility and negligible toxicity. Herein, we developed high-quality silicon nanomaterials
(4–5 nm; SiNPs) as biological fluorescent probes for bioimaging of living organisms through an easy aquatic synthesis method with a quantum yield of ∼8%. In this regard, we report that the presently synthesized SiNPs-based sensors/probes are attractive materials for solvent-based
fluorescence measurements and are biocompatible, non-toxic, highly photo-stable and pH stable. Most importantly, their fluorescence lifetime is much longer than that of native probes in living cells. Thus, these presently formulated SiNPs are improved fluorescent probes for in vivo
biological imaging in zebra fish embryos as well as numerous other living organisms and, thus, should be further studied.
Collapse
|
3
|
Färkkilä SMA, Kiers ET, Jaaniso R, Mäeorg U, Leblanc RM, Treseder KK, Kang Z, Tedersoo L. Fluorescent nanoparticles as tools in ecology and physiology. Biol Rev Camb Philos Soc 2021; 96:2392-2424. [PMID: 34142416 DOI: 10.1111/brv.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022]
Abstract
Fluorescent nanoparticles (FNPs) have been widely used in chemistry and medicine for decades, but their employment in biology is relatively recent. Past reviews on FNPs have focused on chemical, physical or medical uses, making the extrapolation to biological applications difficult. In biology, FNPs have largely been used for biosensing and molecular tracking. However, concerns over toxicity in early types of FNPs, such as cadmium-containing quantum dots (QDs), may have prevented wide adoption. Recent developments, especially in non-Cd-containing FNPs, have alleviated toxicity problems, facilitating the use of FNPs for addressing ecological, physiological and molecule-level processes in biological research. Standardised protocols from synthesis to application and interdisciplinary approaches are critical for establishing FNPs in the biologists' tool kit. Here, we present an introduction to FNPs, summarise their use in biological applications, and discuss technical issues such as data reliability and biocompatibility. We assess whether biological research can benefit from FNPs and suggest ways in which FNPs can be applied to answer questions in biology. We conclude that FNPs have a great potential for studying various biological processes, especially tracking, sensing and imaging in physiology and ecology.
Collapse
Affiliation(s)
- Sanni M A Färkkilä
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam, Noord-Holland, The Netherlands
| | - Raivo Jaaniso
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Tartumaa, Estonia
| | - Uno Mäeorg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Roger M Leblanc
- Department of Chemistry, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33124, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, 3106 Biological Sciences III, Mail Code: 2525, 92697, Irvine, CA, U.S.A
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
4
|
Sancataldo G, Ferrara V, Bonomo FP, Chillura Martino DF, Licciardi M, Pignataro BG, Vetri V. Identification of microplastics using 4-dimethylamino-4'-nitrostilbene solvatochromic fluorescence. Microsc Res Tech 2021; 84:2820-2831. [PMID: 34047435 PMCID: PMC9291063 DOI: 10.1002/jemt.23841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 01/20/2023]
Abstract
In this work, we introduce the use of 4‐dimethylamino‐4′‐nitrostilbene (DANS) fluorescent dye for applications in the detection and analysis of microplastics, an impendent source of pollution made of synthetic organic polymers with a size varying from less than 5 mm to nanometer scale. The use of this dye revealed itself as a versatile, fast and sensitive tool for readily discriminate microplastics in water environment. The experimental evidences herein presented demonstrate that DANS efficiently absorbs into a variety of polymers constituting microplastics, and its solvatochromic properties lead to a positive shift of the fluorescence emission spectrum according to the polarity of the polymers. Therefore, under UV illumination, microplastics glow a specific emission spectrum from blue to red that allows for a straightforward polymer identification. In addition, we show that DANS staining gives access to different detection and analysis strategies based on fluorescence microscopy, from simple epifluorescence fragments visualization, to confocal microscopy and phasor approach for plastic components quantification.
Collapse
Affiliation(s)
- Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica – Emilio SegrèUniversità degli Studi di PalermoViale delle Scienze, 18PalermoItaly
| | - Vittorio Ferrara
- National Interuniversity Consortium of Materials Science and Technology (INSTM)UdR of PalermoFlorenceItaly
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e FarmaceuticheUniversità di PalermoViale delle Scienze, 17PalermoItaly
| | | | - Delia Francesca Chillura Martino
- National Interuniversity Consortium of Materials Science and Technology (INSTM)UdR of PalermoFlorenceItaly
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e FarmaceuticheUniversità di PalermoViale delle Scienze, 17PalermoItaly
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e FarmaceuticheUniversità di PalermoViale delle Scienze, 17PalermoItaly
| | - Bruno Giuseppe Pignataro
- Dipartimento di Fisica e Chimica – Emilio SegrèUniversità degli Studi di PalermoViale delle Scienze, 18PalermoItaly
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica – Emilio SegrèUniversità degli Studi di PalermoViale delle Scienze, 18PalermoItaly
| |
Collapse
|
5
|
Sancataldo G, Avellone G, Vetri V. Nile Red lifetime reveals microplastic identity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2266-2275. [PMID: 33064112 DOI: 10.1039/d0em00348d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microplastic pollution is recognized as a worldwide environmental problem. The increasing daily use and release of plastics into the environment have led to the accumulation of fragmented microplastics, with potentially awful consequences for the environment, and animal and human health. The detection and identification of microplastics are of utmost importance, but available methods are still limited. In this work, a new approach is presented for the analysis of microplastics based on hydrophobic fluorescence staining with Nile Red, using spectrally resolved confocal fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM). Significant differences were observed in the emission spectra and fluorescence lifetimes of the analyzed microplastics. Nile Red fluorescence shows determinable behavior based on the polymer matrix and provides a fingerprint for the identification of fragments from different types of plastics. Lifetime imaging coupled with phasor analysis constitutes a fast, robust, and straightforward method for mapping and identifying different microplastics within the same sample in an aquatic environment.
Collapse
Affiliation(s)
- Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università degli Studi di Palermo, Viale delle scienze Edificio 18, 90128 Palermo, Italy
| | | | | |
Collapse
|
6
|
d'Amora M, Camisasca A, Boarino A, Arpicco S, Giordani S. Supramolecular functionalization of carbon nano-onions with hyaluronic acid-phospholipid conjugates for selective targeting of cancer cells. Colloids Surf B Biointerfaces 2020; 188:110779. [PMID: 31955017 DOI: 10.1016/j.colsurfb.2020.110779] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 01/04/2020] [Indexed: 01/05/2023]
Abstract
Carbon nano-onions (CNOs) are promising materials for biomedical applications due to their low cytotoxicity and excellent biocompatibility. Supramolecular functionalization with biocompatible polymers is an effective strategy to develop engineered drug carriers for targeted delivery applications. In this study, we report the use of a hyaluronic acid-phospholipid (HA-DMPE) conjugate to target CD44 overexpressing cancer cells, while enhancing solubility of the nanoconstruct. Non-covalently functionalized CNOs with HA-DMPE show excellent in vitro cell viability in human breast carcinoma cells overexpressing CD44 and are uptaken to a greater extent compared to human ovarian carcinoma cells with an undetectable amount of CD44. In addition, they possess high in vivo biocompatibility in zebrafish (Danio Rerio) during the different stages of development and they prevalently localize in the digestive tract of the zebrafish larvae.
Collapse
Affiliation(s)
- Marta d'Amora
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), via Livorno 60, 10144, Torino, Italy
| | - Adalberto Camisasca
- School of Chemical Sciences, Dublin City University (DCU), Glasnevin, Dublin 9, Ireland
| | - Alice Boarino
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), via Livorno 60, 10144, Torino, Italy; Department of Chemistry, University of Turin, via Giuria 7, 10125, Torino, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, via Giuria 9, 10125, Torino, Italy
| | - Silvia Giordani
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), via Livorno 60, 10144, Torino, Italy; School of Chemical Sciences, Dublin City University (DCU), Glasnevin, Dublin 9, Ireland; Department of Chemistry, University of Turin, via Giuria 7, 10125, Torino, Italy.
| |
Collapse
|