1
|
Völlmecke K, Kramer M, Horky C, Dückmann O, Mulac D, Langer K, Kuckling D. Self-immolative polydisulfides and their use as nanoparticles for drug delivery systems. RSC Adv 2024; 14:35568-35577. [PMID: 39512642 PMCID: PMC11541933 DOI: 10.1039/d4ra07228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Over the last few decades, nanotechnology has established to be a promising field in medicine. A remaining dominant challenge in today's pharmacotherapy is the limited selectivity of active pharmaceutical ingredients and associated undesirable side effects. Controlled drug release can be promoted by smart drug delivery systems, which release embedded API primarily depending on specific stimuli. Consequently, also the microenvironment of tumor tissue can be used advantageously. Dithiothreitol (DTT) based self-immolative polydisulfides were synthesized that preferentially respond to pathologically increased glutathione (GSH) concentrations, as found in solid tumors. The synthesis with different degrees of polymerisation was investigated as well as the synthesis of a copolymer consisting of dithiothreitol and butanedithiol (BDT). Toxicity tests were carried out on pure polymers and their degradation products. The ability to degrade was examined at pathological and physiological glutathione concentrations in order to test the suitability of the polymer as a matrix for nanoparticulate carrier systems. In addition, the processability of one polymer into nanoparticles was investigated as well as the degradation behaviour with glutathione.
Collapse
Affiliation(s)
| | - Maurice Kramer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster Corrensstr. 48 D-48149 Münster Germany
| | - Corinna Horky
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster Corrensstr. 48 D-48149 Münster Germany
| | - Oliver Dückmann
- Paderborn University Warburger Straße 100 33098 Paderborn Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster Corrensstr. 48 D-48149 Münster Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster Corrensstr. 48 D-48149 Münster Germany
| | - Dirk Kuckling
- Paderborn University Warburger Straße 100 33098 Paderborn Germany
| |
Collapse
|
2
|
Pathan S, Jayakannan M. Zwitterionic Strategy to Stabilize Self-Immolative Polymer Nanoarchitecture under Physiological pH for Drug Delivery In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2304599. [PMID: 38574242 DOI: 10.1002/adhm.202304599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The major bottleneck in using polymer nanovectors for biomedical application, particularly those based on self-immolative poly(amino ester) (PAE), lies in their uncontrolled autodegradation at physiological pH before they can reach the intended target. Here, an elegant triblock-copolymer strategy is designed to stabilize the unstable PAE chains via zwitterionic interactions under physiological pH (pH 7.4) and precisely program their enzyme-responsive biodegradation specifically within the intracellular compartments, ensuring targeted delivery of the cargoes. To achieve this goal, biodegradable polycaprolactone (PCL) platform is chosen, and structure-engineered several di- and triblock architectures to arrive the precise macromolecular geometry. The hydrophobic-PCL core and hydrophilic anionic-PCL block at the periphery shield PAEs against autodegradation, thereby ensuring stability under physiological pH in PBS, FBS, cell culture medium and bloodstream. The clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared IR-780 biomarker is encapsulated to study their biological actions by in vitro live cancer cells and in vivo bioimaging in live animals. These zwitterions are biocompatible, nonhemolytic, and real-time in vitro live-cell confocal studies have confirmed their internalization and enzymatic biodegradation in the endo-lysosomal compartments to deliver the payload. In vivo bioimaging establishes their prolonged blood circulation for over 72 h, and the biodistribution analysis reveals the accumulation of nanoparticles predominantly in the excretory organs.
Collapse
Affiliation(s)
- Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
3
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
4
|
Kumar K, Umapathi R, Ghoreishian SM, Tiwari JN, Hwang SK, Huh YS, Venkatesu P, Shetti NP, Aminabhavi TM. Microplastics and biobased polymers to combat plastics waste. CHEMOSPHERE 2023; 341:140000. [PMID: 37652244 DOI: 10.1016/j.chemosphere.2023.140000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Microplastics (MPs) have become the major global concern due to their adverse effects on the environment, human health, and hygiene. These complex molecules have numerous toxic impacts on human well-being. This review focuses on the methods for chemically quantifying and identifying MPs in real-time samples, as well as the detrimental effects resulting from exposure to them. Biopolymers offer promising solutions for reducing the environmental impact caused by persistent plastic pollution. The review also examines the significant progress achieved in the preparation and modification of various biobased polymers, including polylactic acid (PLA), poly(ε-caprolactone) (PCL), lignin-based polymers, poly-3-hydroxybutyrate (PHB), and poly(hydroxyalkanoates) (PHA), which hold promise for addressing the challenges associated with unplanned plastic waste disposal.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Chemistry, University of Delhi, India; NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Reddicherla Umapathi
- Department of Chemistry, University of Delhi, India; NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Seyed Majid Ghoreishian
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jitendra N Tiwari
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100-715, Republic of Korea
| | - Seung Kyu Hwang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | | | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India.
| |
Collapse
|
5
|
Kubota H, Ouchi M. Rapid and Selective Photo-degradation of Polymers: Design of an Alternating Copolymer with an o-Nitrobenzyl Ether Pendant. Angew Chem Int Ed Engl 2023; 62:e202217365. [PMID: 36522304 DOI: 10.1002/anie.202217365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The development of polymers with on-demand degradability is required to alleviate the current global issues on polymer-waste pollution. Therefore, we designed a vinyl ether monomer with an o-nitrobenzyl (oNBn) group as a photo-deprotectable pendant (oNBnVE) and synthesized an alternating copolymer with an oNBn-capped acetal backbone via cationic copolymerization with p-tolualdehyde (pMeBzA). The resultant alternating copolymer could be rapidly degraded into lower-molecular-weight compounds upon simple exposure to UV irradiation without any reactants or catalysts, while it was sufficiently stable toward heat and ambient light. This degradation proceeds via cleavage of the hemiacetal structure generated upon photo-deprotection of the oNBn pendant. The oNBn-peculiar degradability allowed the exclusive photo-degradation of the oNBnVE/pMeBzA segments in a diblock copolymer composed of oNBnVE/pMeBzA and benzyl vinyl ether (BnVE)/pMeBzA segments.
Collapse
Affiliation(s)
- Hiroyuki Kubota
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
6
|
Ritaine D, Adronov A. Decoration of Polyfluorene-Wrapped Carbon Nanotubes with Photocleavable Side-Chains. Molecules 2023; 28:1471. [PMID: 36771137 PMCID: PMC9920975 DOI: 10.3390/molecules28031471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Functionalizing polyfluorene-wrapped carbon nanotubes without damaging their properties is effective via Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC). However, the length and nature of polymer side-chains can impact the conductivity of polyfluorene-SWNT films by preventing close contact between the nanotubes. Here, we investigate the functionalization of a polyfluorene-SWNT complex using photocleavable side-chains that can be removed post-processing. The cleavage of the side-chains containing an ortho-nitrobenzyl ether derivative is efficient when exposed to a UV lamp at 365 nm. The photoisomerization of the o-nitrobenzyl ether linker into the corresponding o-nitrosobenzaldehyde was first monitored via UV-Vis absorption spectroscopy and 1H-NMR spectroscopy on the polymer, which showed efficient cleavage after 2 h. We next investigated the cleavage on the polyfluorene-SWNT complex via UV-Vis-NIR absorption spectroscopy. The precipitation of the nanotube dispersion and the broad absorption peaks after overnight irradiation also indicated effective cleavage. In addition, Raman spectroscopy post-irradiation showed that the nanotubes were not damaged upon irradiation. This paper reports a proof of concept that may find applications for SWNT-based materials in which side-chain removal could lead to higher device performance.
Collapse
Affiliation(s)
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
7
|
He M, Wang R, Wan P, Wang H, Cheng Y, Miao P, Wei Z, Leng X, Li Y, Du J, Fan J, Sun W, Peng X. Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules 2022; 23:1733-1744. [PMID: 35107271 DOI: 10.1021/acs.biomac.1c01651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lack of selectivity between tumor and healthy cells, along with inefficient reactive oxygen species production in solid tumors, are two major impediments to the development of anticancer Ru complexes. The development of photoinduced combination therapy based on biodegradable polymers that can be light activated in the "therapeutic window" would be beneficial for enhancing the therapeutic efficacy of Ru complexes. Herein, a biodegradable Ru-containing polymer (poly(DCARu)) is developed, in which two different therapeutics (the drug and the Ru complex) are rationally integrated and then conjugated to a diblock copolymer (MPEG-b-PMCC) containing hydrophilic poly(ethylene glycol) and cyano-functionalized polycarbonate with good degradability and biocompatibility. The polymer self-assembles into micelles with high drug loading capacity, which can be efficiently internalized into tumor cells. Red light induces the generation of singlet oxygen and the release of anticancer drug-Ru complex conjugates from poly(DCARu) micelles, hence inhibiting tumor cell growth. Furthermore, the phototherapy of polymer micelles demonstrates remarkable inhibition of tumor growth in vivo. Meanwhile, polymer micelles exhibit good biocompatibility with blood and healthy tissues, which opens up opportunities for multitherapeutic agent delivery and enhanced phototherapy.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peiyuan Wan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hexiang Wang
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Cheng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Zhang X, Zhao W, Wang C, Cao L, Wang Q, Sun J. L‐glutamic acid as a versatile platform for rapid synthesis of functional polyesters via facile Passerini multicomponent polymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu Zhang
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Wei Zhao
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Chengliang Wang
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Lan Cao
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Qingfu Wang
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Jingjiang Sun
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
9
|
Liu J, Kang W, Wang W. Photocleavage-based Photoresponsive Drug Delivery. Photochem Photobiol 2021; 98:288-302. [PMID: 34861053 DOI: 10.1111/php.13570] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery has been extensively studied in the last decade, whereas both passive and active targeting strategies still face many challenges, such as off-target drug release. Light-responsive drug delivery systems have been developed with high controllability and spatio-temporal resolution to improve drug efficacy and reduce off-target drug release. Photoremovable protecting groups are light-responsive moieties that undergo irreversible photocleavage reactions upon light irradiation. They can be covalently linked to the molecule of interest to control its structure and function with light. In this review, we will summarize recent applications of photocleavage technologies in nanoparticle-based drug delivery for precise targeting and controlled drug release, with a highlight of strategies to achieve long-wavelength light excitation. A greater understanding of these mechanisms and emerging studies will help design more efficient photocleavage-based nanosystems to advance photoresponsive drug delivery.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| | - Weirong Kang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| |
Collapse
|
10
|
|
11
|
Amsden B. In Vivo Degradation Mechanisms of Aliphatic Polycarbonates and Functionalized Aliphatic Polycarbonates. Macromol Biosci 2021; 21:e2100085. [PMID: 33893715 DOI: 10.1002/mabi.202100085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Indexed: 11/06/2022]
Abstract
Aliphatic polycarbonates (APCs) have been studied for decades but have not been as utilized as aliphatic polyesters in biomaterial applications such as drug delivery and tissue engineering. With the recognition that functionalized aliphatic polymers can be readily synthesized, increased attention is being paid to these materials. A frequently provided reason for utilizing these polymers is that they degrade to form diols and carbon dioxide. However, depending on the structure and molecular weight of the APC, degradation may not occur. In this review, the mechanisms by which APCs and functionalized APCs have been found to degrade in vivo are examined with the objective of providing guidance in the continued development of these polymers as biomaterials.
Collapse
Affiliation(s)
- Brian Amsden
- Department of Chemical Engineering, Queen's University, Kingston, K7L 3N6, Canada
| |
Collapse
|
12
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
13
|
Jung D, Rust T, Völlmecke K, Schoppa T, Langer K, Kuckling D. Backbone vs. side-chain: two light-degradable polyurethanes based on 6-nitropiperonal. Polym Chem 2021. [DOI: 10.1039/d1py00442e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel polyurethanes, which are based on 6-nitropiperonal and differ in the implementation of the light-cleavable unit, were synthesized to develop a drug delivery system that only releases cargo upon application of a certain trigger.
Collapse
Affiliation(s)
- Dimitri Jung
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
| | - Tarik Rust
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
| | | | - Timo Schoppa
- Institute of Pharmaceutical Technology and Biopharmacy
- University of Münster
- D-48149 Münster
- Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy
- University of Münster
- D-48149 Münster
- Germany
| | - Dirk Kuckling
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
| |
Collapse
|
14
|
Domiński A, Konieczny T, Duale K, Krawczyk M, Pastuch-Gawołek G, Kurcok P. Stimuli-Responsive Aliphatic Polycarbonate Nanocarriers for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E2890. [PMID: 33276597 PMCID: PMC7761607 DOI: 10.3390/polym12122890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles based on amphiphilic copolymers with tunable physicochemical properties can be used to encapsulate delicate pharmaceutics while at the same time improving their solubility, stability, pharmacokinetic properties, reducing immune surveillance, or achieving tumor-targeting ability. Those nanocarriers based on biodegradable aliphatic polycarbonates are a particularly promising platform for drug delivery due to flexibility in the design and synthesis of appropriate monomers and copolymers. Current studies in this field focus on the design and the synthesis of new effective carriers of hydrophobic drugs and their release in a controlled manner by exogenous or endogenous factors in tumor-specific regions. Reactive groups present in aliphatic carbonate copolymers, undergo a reaction under the action of a stimulus: e.g., acidic hydrolysis, oxidation, reduction, etc. leading to changes in the morphology of nanoparticles. This allows the release of the drug in a highly controlled manner and induces a desired therapeutic outcome without damaging healthy tissues. The presented review summarizes the current advances in chemistry and methods for designing stimuli-responsive nanocarriers based on aliphatic polycarbonates for controlled drug delivery.
Collapse
Affiliation(s)
- Adrian Domiński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Tomasz Konieczny
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Khadar Duale
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (M.K.); (G.P.-G.)
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (M.K.); (G.P.-G.)
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| |
Collapse
|
15
|
Li X, Chen H, Xie S, Wang N, Wu S, Duan Y, Zhang M, Shui L. Fabrication of Photo-Crosslinkable Poly(Trimethylene Carbonate)/Polycaprolactone Nanofibrous Scaffolds for Tendon Regeneration. Int J Nanomedicine 2020; 15:6373-6383. [PMID: 32904686 PMCID: PMC7457647 DOI: 10.2147/ijn.s246966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The treatment of tendon injuries remains a challenging problem in clinical due to their slow and insufficient natural healing process. Scaffold-based tissue engineering provides a promising strategy to facilitate tendon healing and regeneration. However, many tissue engineering scaffolds have failed due to their poor and unstable mechanical properties. To address this, we fabricated nanofibrous polycaprolactone/methacrylated poly(trimethylene carbonate) (PCL/PTMC-MA) composite scaffolds via electrospinning. MATERIALS AND METHODS PTMC-MA was characterized by nuclear magnetic resonance. Fiber morphology of composite scaffolds was evaluated using scanning electron microscopy. The monotonic tensile test was performed for determining the mechanical properties of composite scaffolds. Cell viability and collagen deposition were assessed via PrestoBlue assay and enzyme-linked immunosorbent assay, respectively. RESULTS These PCL/PTMC-MA composite scaffolds had an increase in mechanical properties as PTMC-MA content increase. After photo-crosslinking, they showed further enhanced mechanical properties including creep resistance, which was superior to pure PCL scaffolds. It is worth noting that photo-crosslinked PCL/PTMC-MA (1:3) composite scaffolds had a Young's modulus of 31.13 ± 1.30 MPa and Max stress at break of 23.80 ± 3.44 MPa that were comparable with the mechanical properties of native tendon (Young's modulus 20-1200 MPa, max stress at break 5-100 MPa). In addition, biological experiments demonstrated that PCL/PTMC-MA composite scaffolds were biocompatible for cell adhesion, proliferation, and differentiation.
Collapse
Affiliation(s)
- Xing Li
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
| | - Honglin Chen
- Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou510006, People’s Republic of China
| | - Shuting Xie
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
| | - Ning Wang
- Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou510006, People’s Republic of China
| | - Sujuan Wu
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
| | - Yuyou Duan
- Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou510006, People’s Republic of China
| | - Minmin Zhang
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou510006, People’s Republic of China
| | - Lingling Shui
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou510006, People’s Republic of China
| |
Collapse
|
16
|
Kalva N, Uthaman S, Augustine R, Jeon SH, Huh KM, Park IK, Kim I. Photo- and pH-Responsive Polycarbonate Block Copolymer Prodrug Nanomicelles for Controlled Release of Doxorubicin. Macromol Biosci 2020; 20:e2000118. [PMID: 32567108 DOI: 10.1002/mabi.202000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Photo/pH dual-responsive amphiphilic diblock copolymers with alkyne functionalized pendant o-nitrobenzyl ester group are synthesized using poly(ethylene glycol) as a macroinitiator. The pendant alkynes are functionalized as aldehyde groups by the azide-alkyne Huisgen cycloaddition. The anticancer drug doxorubicin (DOX) molecules are then covalently conjugated through acid-sensitive Schiff-base linkage. The resultant prodrug copolymers self-assemble into nanomicelles in aqueous solution. The prodrug nanomicelles have a well-defined morphology with an average size of 20-40 nm. The dual-stimuli are applied individually or simultaneously to study the release behavior of DOX. Under UV light irradiation, nanomicelles are disassembled due to the ONB ester photocleavage. The light-controlled DOX release behavior is demonstrated using fluorescence spectroscopy. Due to the pH-sensitive imine linkage the DOX molecules are released rapidly from the nanomicelles at the acidic pH of 5.0, whereas only minimal amount of DOX molecules is released at the pH of 7.4. The DOX release rate is tunable by applying the dual-stimuli simultaneously. In vitro studies against colon cancer cells demonstrate that the nanomicelles show the efficient cellular uptake and the intracellular DOX release, indicating that the newly designed copolymers with dual-stimuli-response have significant potential applications as a smart nanomedicine against cancer.
Collapse
Affiliation(s)
- Nagendra Kalva
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Rimesh Augustine
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Su Hyeon Jeon
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Il Kim
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
17
|
Hsu PH, Arboleda C, Stubelius A, Li LW, Olejniczak J, Almutairi A. Highly responsive and rapid hydrogen peroxide-triggered degradation of polycaprolactone nanoparticles. Biomater Sci 2020; 8:2394-2397. [DOI: 10.1039/c9bm02019e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles formulated from fast-degrading oxidation-responsive polycaprolactone are responsive to 50 μM of H2O2.
Collapse
Affiliation(s)
- Peng-Hao Hsu
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Carina Arboleda
- Department of NanoEngineering
- University of California San Diego
- La Jolla
- USA
| | - Alexandra Stubelius
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California San Diego
- La Jolla
- USA
| | - Ling-Wei Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California San Diego
- La Jolla
- USA
| | - Jason Olejniczak
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Adah Almutairi
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
- Department of NanoEngineering
| |
Collapse
|
18
|
Xu Y, Morado EG, Zimmerman SC. Construction from destruction using a photo-triggered self-propagating degradable polyurethane as a one-pot epoxy. Polym Chem 2020. [DOI: 10.1039/d0py00779j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a photo-triggered, base generating, base propagating degradable polyurethane that is triggered by 365 nm UV light irradiation.
Collapse
Affiliation(s)
- Yanhua Xu
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Ephraim G. Morado
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | | |
Collapse
|
19
|
Müller AK, Jung D, Sun J, Kuckling D. Synthesis and characterization of light-degradable bromocoumarin functionalized polycarbonates. Polym Chem 2020. [DOI: 10.1039/c9py01405e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The preparation, characterization and degradation properties of novel light-degradable bromocoumarin functionalized polycarbonates were investigated in the present work.
Collapse
Affiliation(s)
- Ann-Kathrin Müller
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
- Department of Chemistry
| | - Dimitri Jung
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
| | - Jingjiang Sun
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
- Key Laboratory of Rubber-plastics
| | - Dirk Kuckling
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
| |
Collapse
|
20
|
Zhao W, Zhao Y, Wang Q, Liu T, Sun J, Zhang R. Remote Light-Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903060. [PMID: 31599125 DOI: 10.1002/smll.201903060] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Engineering of smart photoactivated nanomaterials for targeted drug delivery systems (DDS) has recently attracted considerable research interest as light enables precise and accurate controlled release of drug molecules in specific diseased cells and/or tissues in a highly spatial and temporal manner. In general, the development of appropriate light-triggered DDS relies on processes of photolysis, photoisomerization, photo-cross-linking/un-cross-linking, and photoreduction, which are normally sensitive to ultraviolet (UV) or visible (Vis) light irradiation. Considering the issues of poor tissue penetration and high phototoxicity of these high-energy photons of UV/Vis light, recently nanocarriers have been developed based on light-response to low-energy photon irradiation, in particular for the light wavelengths located in the near infrared (NIR) range. NIR light-triggered drug release systems are normally achieved by using two-photon absorption and photon upconversion processes. Herein, recent advances of light-responsive nanoplatforms for controlled drug release are reviewed, covering the mechanism of light responsive small molecules and polymers, UV and Vis light responsive nanocarriers, and NIR light responsive nanocarriers. NIR-light triggered drug delivery by two-photon excitation and upconversion luminescence strategies is also included. In addition, the challenges and future perspectives for the development of light triggered DDS are highlighted.
Collapse
Affiliation(s)
- Wei Zhao
- Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao, 266042, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, 4072, Brisbane, Australia
| | - Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong Qixiu Rd. 19, Nantong, 226019, China
| | - Qingfu Wang
- Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao, 266042, China
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute, Herston Rd. 300, QLD, 4006, Brisbane, Australia
| | - Jingjiang Sun
- Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao, 266042, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, 4072, Brisbane, Australia
| |
Collapse
|