1
|
Kostelec M, Gatalo M, Hodnik N. Fundamental and Practical Aspects of Break-In/Conditioning of Proton Exchange Membrane Fuel Cells. CHEM REC 2024; 24:e202400114. [PMID: 39380349 DOI: 10.1002/tcr.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Indexed: 10/10/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs) have proven to be a promising power source for various applications ranging from portable devices to automotive and stationary power systems. The production of PEMFC involves numerous stages in the value chain, with each stage presenting unique challenges and opportunities to improve the overall performance and durability of the PEMFC stack. These include steps such as manufacturing the key components such as the platinum-based catalyst, processing these components into the membrane electrode assemblies (MEAs), and stacking the MEAs to ultimately produce a PEMFC stack. However, it is also known that the break-in or conditioning phase of the stack plays a crucial role in the final performance as well as durability. It involves several key phenomena such as hydration of the membrane, swelling of the ionomer, redistribution of the catalyst and the creation of suitable electrochemical interfaces - establishment of the triple phase boundary. These improve the proton conductivity, the mass transport of reactants and products, the catalytic activity of the electrode and thus the overall efficiency of the FC. The cruciality of break-in is demonstrated by the improvement in performance, which can even be over 50 % compared to the initial state. The state-of-the-art approach for the break-in of MEAs involves an electrochemical protocol, such as voltage cycling, using a PEMFC testing station. This method is time-consuming, equipment-intensive, and costly. Therefore, new, elegant, and cost-effective solutions are needed. Nevertheless, the primary aim is to achieve maximum/optimal performance so that it is fully operational and ready for the market. It is therefore essential to better understand and deconvolute these complex mechanisms taking place during break-in/conditioning. Strategies include controlled humidity and temperature cycling, novel electrode materials and other advanced break-in methods such as air braking, vacuum activation or steaming. In addition, it is critical to address the challenges associated with standardisation and quantification of protocols to enable interlaboratory comparisons to further advance the field.
Collapse
Affiliation(s)
- Mitja Kostelec
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- ReCatalyst d.o.o., Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| |
Collapse
|
2
|
Đukić T, Moriau L, Klofutar I, Šala M, Pavko L, González López FJ, Ruiz-Zepeda F, Pavlišič A, Hotko M, Gatalo M, Hodnik N. Adjusting the Operational Potential Window as a Tool for Prolonging the Durability of Carbon-Supported Pt-Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. ACS Catal 2024; 14:4303-4317. [PMID: 38510667 PMCID: PMC10949198 DOI: 10.1021/acscatal.3c06251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
A current trend in the investigation of state-of-the-art Pt-alloys as proton exchange membrane fuel cell (PEMFC) electrocatalysts is to study their long-term stability as a bottleneck for their full commercialization. Although many parameters have been appropriately addressed, there are still certain issues that must be considered. Here, the stability of an experimental Pt-Co/C electrocatalyst is investigated by high-temperature accelerated degradation tests (HT-ADTs) in a high-temperature disk electrode (HT-DE) setup, allowing the imitation of close-to-real operational conditions in terms of temperature (60 °C). Although the US Department of Energy (DoE) protocol has been chosen as the basis of the study (30,000 trapezoidal wave cycling steps between 0.6 and 0.95 VRHE with a 3 s hold time at both the lower potential limit (LPL) and the upper potential limit (UPL)), this works demonstrates that limiting both the LPL and UPL (from 0.6-0.95 to 0.7-0.85 VRHE) can dramatically reduce the degradation rate of state-of-the-art Pt-alloy electrocatalysts. This has been additionally confirmed with the use of an electrochemical flow cell coupled to inductively coupled plasma mass spectrometry (EFC-ICP-MS), which enables real-time monitoring of the dissolution mechanisms of Pt and Co. In line with the HT-DE methodology observations, a dramatic decrease in the total dissolution of Pt and Co has once again been observed upon narrowing the potential window to 0.7-0.85 VRHE rather than 0.6-0.95 VRHE. Additionally, the effect of the potential hold time at both LPL and UPL on metal dissolution has also been investigated. The findings demonstrate that the dissolution rate of both metals is proportional to the hold time at UPL regardless of the applied potential window, whereas the hold time at the LPL does not appear to be as detrimental to the stability of metals.
Collapse
Affiliation(s)
- Tina Đukić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, Ljubljana 1000, Slovenia
| | - Léonard
Jean Moriau
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Iva Klofutar
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Martin Šala
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Luka Pavko
- ReCatalyst
d.o.o., Hajdrihova Ulica
19, Ljubljana 1001, Slovenia
| | | | - Francisco Ruiz-Zepeda
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Andraž Pavlišič
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Miha Hotko
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| | - Matija Gatalo
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- ReCatalyst
d.o.o., Hajdrihova Ulica
19, Ljubljana 1001, Slovenia
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| |
Collapse
|
3
|
Qiao M, Wei Y, Dong YJ, Wang JX, Chen JF. A Universal Approach for Controllable Synthesis of Homogeneously Alloyed PtM Nanoflowers toward Enhanced Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307283. [PMID: 38109154 DOI: 10.1002/smll.202307283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Platinum (Pt)-based alloys have received considerable attention due to their compositional variability and unique electrochemical properties. However, homogeneous element distribution at the nanoscale, which is beneficial to various electrocatalytic reactions, is still a great challenge. Herein, a universal approach is proposed to synthesize homogeneously alloyed and size-tunable Pt-based nanoflowers utilizing high gravity technology. Owing to the significant intensification of micro-mixing and mass transfer in unique high gravity shearing surroundings, five typical binary/ternary Pt-based nanoflowers are instantaneously achieved at room temperature. As a proof-of-concept, as-synthesized Platinum-Silver nanoflowers (PtAg NFs) demonstrate excellent catalytic performance and anti-CO poisoning ability for anodic methanol oxidation reaction with high mass activity of 1830 mA mgPt -1 , 3.5 and 3.2 times higher than those of conventional beaker products and commercial Pt/C, respectively. The experiment in combination with theory calculations suggest that the enhanced performance is due to additional electronic transmission and optimized d-band center of Pt caused by high alloying degree.
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan-Jun Dong
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Grandi M, Gatalo M, Kamšek AR, Kapun G, Mayer K, Ruiz-Zepeda F, Šala M, Marius B, Bele M, Hodnik N, Bodner M, Gaberšček M, Hacker V. Mechanistic Study of Fast Performance Decay of PtCu Alloy-based Catalyst Layers for Polymer Electrolyte Fuel Cells through Electrochemical Impedance Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093544. [PMID: 37176426 PMCID: PMC10180127 DOI: 10.3390/ma16093544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
In the past, platinum-copper catalysts have proven to be highly active for the oxygen reduction reaction (ORR), but transferring the high activities measured in thin-film rotating disk electrodes (TF-RDEs) to high-performing membrane electrode assemblies (MEAs) has proven difficult due to stability issues during operation. High initial performance can be achieved. However, fast performance decay on a timescale of 24 h is induced by repeated voltage load steps with H2/air supplied. This performance decay is accelerated if high relative humidity (>60% RH) is set for a prolonged time and low voltages are applied during polarization. The reasons and possible solutions for this issue have been investigated by means of electrochemical impedance spectroscopy and distribution of relaxation time analysis (EIS-DRT). The affected electrochemical sub-processes have been identified by comparing the PtCu electrocatalyst with commercial Pt/C benchmark materials in homemade catalyst-coated membranes (CCMs). The proton transport resistance (Rpt) increased by a factor of ~2 compared to the benchmark materials. These results provide important insight into the challenges encountered with the de-alloyed PtCu/KB electrocatalyst during cell break-in and operation. This provides a basis for improvements in the catalysts' design and break-in procedures for the highly attractive PtCu/KB catalyst system.
Collapse
Affiliation(s)
- Maximilian Grandi
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ana Rebeka Kamšek
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Gregor Kapun
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Kurt Mayer
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Bernhard Marius
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Merit Bodner
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Miran Gaberšček
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Viktor Hacker
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| |
Collapse
|
6
|
Heizmann PA, Nguyen H, von Holst M, Fischbach A, Kostelec M, Gonzalez Lopez FJ, Bele M, Pavko L, Đukić T, Šala M, Ruiz-Zepeda F, Klose C, Gatalo M, Hodnik N, Vierrath S, Breitwieser M. Alternative and facile production pathway towards obtaining high surface area PtCo/C intermetallic catalysts for improved PEM fuel cell performance. RSC Adv 2023; 13:4601-4611. [PMID: 36760270 PMCID: PMC9900476 DOI: 10.1039/d2ra07780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The design of catalysts with stable and finely dispersed platinum or platinum alloy nanoparticles on the carbon support is key in controlling the performance of proton exchange membrane (PEM) fuel cells. In the present work, an intermetallic PtCo/C catalyst is synthesized via double-passivation galvanic displacement. TEM and XRD confirm a significantly narrowed particle size distribution for the catalyst particles compared to commercial benchmark catalysts (Umicore PtCo/C). Only about 10% of the mass fraction of PtCo particles show a diameter larger than 8 nm, whereas this is up to or even more than 35% for the reference systems. This directly results in a considerable increase in electrochemically active surface area (96 m2 g-1 vs. >70 m2 g-1), which confirms the more efficient usage of precious catalyst metal in the novel catalyst. Single-cell tests validate this finding by improved PEM fuel cell performance. Reducing the cathode catalyst loading from 0.4 mg cm-2 to 0.25 mg cm-2 resulted in a power density drop at an application-relevant 0.7 V of only 4% for the novel catalyst, compared to the 10% and 20% for the commercial benchmarks reference catalysts.
Collapse
Affiliation(s)
- Philipp A. Heizmann
- Electrochemical Energy Systems, IMTEK – Department of Microsystems Engineering, University of FreiburgGeorges-Koehler-Allee 10379110 FreiburgGermany,Institute and FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of FreiburgGeorges-Köhler-Allee 10579110 FreiburgGermany
| | - Hien Nguyen
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Miriam von Holst
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Andreas Fischbach
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Mitja Kostelec
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Francisco Javier Gonzalez Lopez
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia,ReCatalyst d.o.o.Hajdrihova ulica 19Ljubljana1000Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Tina Đukić
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Carolin Klose
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia,ReCatalyst d.o.o.Hajdrihova ulica 19Ljubljana1000Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Severin Vierrath
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Institute and FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany.,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Matthias Breitwieser
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| |
Collapse
|
7
|
Đukić T, Pavko L, Jovanovič P, Maselj N, Gatalo M, Hodnik N. Stability challenges of carbon-supported Pt-nanoalloys as fuel cell oxygen reduction reaction electrocatalysts. Chem Commun (Camb) 2022; 58:13832-13854. [PMID: 36472187 PMCID: PMC9753161 DOI: 10.1039/d2cc05377b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/21/2022] [Indexed: 11/14/2023]
Abstract
Carbon-supported Pt-based nanoalloys (CSPtNs) as the oxygen reduction reaction (ORR) electrocatalysts are considered state-of-the-art electrocatalysts for use in proton exchange membrane fuel cells (PEMFCs). Although their ORR activity performance is already adequate to allow lowering of the Pt loading and thus commercialisation of the fuel cell technology, their stability remains an open challenge. In this Feature Article, the recent achievements and acquired knowledge on the degradation behaviour of these electrocatalysts are overviewed and discussed.
Collapse
Affiliation(s)
- Tina Đukić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
| | - Nik Maselj
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- ReCatalyst d.o.o., Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Song TW, Xu C, Sheng ZT, Yan HK, Tong L, Liu J, Zeng WJ, Zuo LJ, Yin P, Zuo M, Chu SQ, Chen P, Liang HW. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat Commun 2022; 13:6521. [PMID: 36316330 PMCID: PMC9622856 DOI: 10.1038/s41467-022-34037-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Supported ordered intermetallic compounds exhibit superior catalytic performance over their disordered alloy counterparts in diverse reactions. But the synthesis of intermetallic compounds catalysts often requires high-temperature annealing that leads to the sintering of metals into larger crystallites. Herein, we report a small molecule-assisted impregnation approach to realize the general synthesis of a family of intermetallic catalysts, consisting of 18 binary platinum intermetallic compounds supported on carbon blacks. The molecular additives containing heteroatoms (that is, O, N, or S) can be coordinated with platinum in impregnation and thermally converted into heteroatom-doped graphene layers in high-temperature annealing, which significantly suppress alloy sintering and insure the formation of small-sized intermetallic catalysts. The prepared optimal PtCo intermetallics as cathodic oxygen-reduction catalysts exhibit a high mass activity of 1.08 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a rated power density of 1.17 W cm-2 in H2-air fuel cells.
Collapse
Affiliation(s)
- Tian-Wei Song
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Cong Xu
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Zhu-Tao Sheng
- grid.440646.40000 0004 1760 6105College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
| | - Hui-Kun Yan
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Lei Tong
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Jun Liu
- grid.454811.d0000 0004 1792 7603Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,Anhui Contango New Energy Technology Co., Ltd, Hefei, 230088 China
| | - Wei-Jie Zeng
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Lu-Jie Zuo
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Peng Yin
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Ming Zuo
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Sheng-Qi Chu
- grid.9227.e0000000119573309Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Chen
- grid.252245.60000 0001 0085 4987School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601 China
| | - Hai-Wei Liang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
9
|
Dzhardimalieva GI, Uflyand IE, Zhinzhilo VA. Metal-polymer nanocomposites based on metal-containing monomers. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Gatalo M, Bonastre AM, Moriau L, Burdett H, Ruiz-Zepeda F, Hughes E, Hodgkinson A, Šala M, Pavko L, Bele M, Hodnik N, Sharman J, Gaberšček M. Importance of Chemical Activation and the Effect of Low Operation Voltage on the Performance of Pt-Alloy Fuel Cell Electrocatalysts. ACS APPLIED ENERGY MATERIALS 2022; 5:8862-8877. [PMID: 35909804 PMCID: PMC9326812 DOI: 10.1021/acsaem.2c01359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pt-alloy (Pt-M) nanoparticles (NPs) with less-expensive 3d transition metals (M = Ni, Cu, Co) supported on high-surface-area carbon supports are currently the state-of-the-art (SoA) solution to reach the production phase in proton exchange membrane fuel cells (PEMFCs). However, while Pt-M electrocatalysts show promise in terms of increased activity for oxygen reduction reaction (ORR) and, thus, cost reductions from the significantly lower use of expensive and rare Pt, key challenges in terms of synthesis, activation, and stability remain to unlock their true potential. This work systematically tackles them with a combination of electrocatalyst synthesis and characterization methodologies including thin-film rotating disc electrodes (TF-RDEs), an electrochemical flow cell linked to an inductively coupled plasma mass spectrometer (EFC-ICP-MS), and testing in 50 cm2 membrane electrode assemblies (MEAs). In the first part of the present work, we highlight the crucial importance of the chemical activation (dealloying) step on the performance of Pt-M electrocatalysts in the MEA at high current densities (HCDs). In addition, we provide the scientific community with a preliminary and facile method of distinguishing between a "poorly" and "adequately" dealloyed (activated) Pt-alloy electrocatalyst using a much simpler and affordable TF-RDE methodology using the well-known CO-stripping process. Since the transition-metal cations can also be introduced in a PEMFC due to the degradation of the Pt-M NPs, the second part of the work focuses on presenting clear evidence on the direct impact of the lower voltage limit (LVL) on the stability of Pt-M electrocatalysts. The data suggests that in addition to intrinsic improvements in stability, significant improvements in the PEMFC lifetime can also be obtained via the correct MEA design and applied limits of operation, namely, restricting not just the upper but equally important also the lower operation voltage.
Collapse
Affiliation(s)
- Matija Gatalo
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- ReCatalyst
d.o.o., Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | | - Léonard
Jean Moriau
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Harriet Burdett
- Johnson
Matthey Technology Centre, Blount’s Court, Sonning
Common, Reading RG4 9NH, U.K.
| | - Francisco Ruiz-Zepeda
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Edwin Hughes
- Johnson
Matthey Technology Centre, Blount’s Court, Sonning
Common, Reading RG4 9NH, U.K.
| | - Adam Hodgkinson
- Johnson
Matthey Fuel Cells, Lydiard
Fields, Great Western Way, Swindon SN5 8AT, U.K.
| | - Martin Šala
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova
19, 1000 Ljubljana, Slovenia
| | - Luka Pavko
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Marjan Bele
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University
of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Jonathan Sharman
- Johnson
Matthey Technology Centre, Blount’s Court, Sonning
Common, Reading RG4 9NH, U.K.
| | - Miran Gaberšček
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Pavko L, Gatalo M, Finšgar M, Ruiz-Zepeda F, Ehelebe K, Kaiser P, Geuß M, Đukić T, Surca AK, Šala M, Bele M, Cherevko S, Genorio B, Hodnik N, Gaberšček M. Graphene-Derived Carbon Support Boosts Proton Exchange Membrane Fuel Cell Catalyst Stability. ACS Catal 2022; 12:9540-9548. [PMID: 35966603 PMCID: PMC9361283 DOI: 10.1021/acscatal.2c01753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Indexed: 11/30/2022]
Abstract
![]()
The lack of efficient and durable proton exchange membrane
fuel
cell electrocatalysts for the oxygen reduction reaction is still restraining
the present hydrogen technology. Graphene-based carbon materials have
emerged as a potential solution to replace the existing carbon black
(CB) supports; however, their potential was never fully exploited
as a commercial solution because of their more demanding properties.
Here, a unique and industrially scalable synthesis of platinum-based
electrocatalysts on graphene derivative (GD) supports is presented.
With an innovative approach, highly homogeneous as well as high metal
loaded platinum-alloy (up to 60 wt %) intermetallic catalysts on GDs
are achieved. Accelerated degradation tests show enhanced durability
when compared to the CB-supported analogues including the commercial
benchmark. Additionally, in combination with X-ray photoelectron spectroscopy
Auger characterization and Raman spectroscopy, a clear connection
between the sp2 content and structural
defects in carbon materials with the catalyst durability is observed.
Advanced gas diffusion electrode results show that the GD-supported
catalysts exhibit excellent mass activities and possess the properties
necessary to reach high currents if utilized correctly. We show record-high
peak power densities in comparison to the prior best literature on
platinum-based GD-supported materials which is promising information
for future application.
Collapse
Affiliation(s)
- Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
- ReCatalyst d.o.o., Hajdrihova 19, Ljubljana 1000, Slovenia
| | - Matjaž Finšgar
- Laboratory for Analytical Chemistry and Industrial Analysis, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
| | - Konrad Ehelebe
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, Erlangen 91058, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Pascal Kaiser
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, Erlangen 91058, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Moritz Geuß
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, Erlangen 91058, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Tina Đukić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Angelja Kjara Surca
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, Erlangen 91058, Germany
| | - Boštjan Genorio
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
| | - Miran Gaberšček
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
| |
Collapse
|
12
|
Đukić T, Moriau LJ, Pavko L, Kostelec M, Prokop M, Ruiz-Zepeda F, Šala M, Dražić G, Gatalo M, Hodnik N. Understanding the Crucial Significance of the Temperature and Potential Window on the Stability of Carbon Supported Pt-Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. ACS Catal 2022; 12:101-115. [PMID: 35028189 PMCID: PMC8749953 DOI: 10.1021/acscatal.1c04205] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Indexed: 02/03/2023]
Abstract
The present research provides a study of carbon-supported intermetallic Pt-alloy electrocatalysts and assesses their stability against metal dissolution in relation to the operating temperature and the potential window using two advanced electrochemical methodologies: (i) the in-house designed high-temperature disk electrode (HT-DE) methodology as well as (ii) a modification of the electrochemical flow cell coupled to an inductively coupled plasma mass spectrometer (EFC-ICP-MS) methodology, allowing for highly sensitive time- and potential-resolved measurements of metal dissolution. While the rate of carbon corrosion follows the Arrhenius law and increases exponentially with temperature, the findings of the present study contradict the generally accepted hypothesis that the kinetics of Pt and subsequently the less noble metal dissolution are supposed to be for the most part unaffected by temperature. On the contrary, clear evidence is presented that in addition to the importance of the voltage/potential window, the temperature is one of the most critical parameters governing the stability of Pt and thus, in the case of Pt-alloy electrocatalysts, also the ability of the nanoparticles (NPs) to retain the less noble metal. Lastly, but also very importantly, results indicate that the rate of Pt redeposition significantly increases with temperature, which has been the main reason why mechanistic interpretation of the temperature-dependent kinetics related to the stability of Pt remained highly speculative until now.
Collapse
Affiliation(s)
- Tina Đukić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Leonard Jean Moriau
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Mitja Kostelec
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Martin Prokop
- University of Chemistry and Technology Prague, Technická 5, 166 28 Dejvice, Prague 6, Czech Republic
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,ReCatalyst d.o.o., Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
| |
Collapse
|