1
|
Fang HH, Wang XJ, Marie X, Sun HB. Quantum sensing with optically accessible spin defects in van der Waals layered materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:303. [PMID: 39496613 PMCID: PMC11535532 DOI: 10.1038/s41377-024-01630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 11/06/2024]
Abstract
Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.
Collapse
Affiliation(s)
- Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| | - Xiao-Jie Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
- Institut Universitaire de France, 75231, Paris, France
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
2
|
Aragon-Alberti M, Dyksik M, Brites CDS, Rouquette J, Plochocka P, Carlos LD, Long J. Rethinking Assumptions: Assessing the Impact of Strong Magnetic Fields on Luminescence Thermometry. J Am Chem Soc 2024. [PMID: 39487792 DOI: 10.1021/jacs.4c11584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Luminescence (nano)thermometry has exploded in popularity, offering a remote detection way to measure temperature across diverse fields like nanomedicine, microelectronics, catalysis, and plasmonics. A key advantage is its supposed immunity to strong electromagnetic fields, a crucial feature in many environments. However, this assumption lacks comprehensive experimental verification as most of the proposed luminescent thermometers rely on magnetic ions, such as lanthanides. Here, we address this gap by critically examining the thermometric response of the luminescent molecular thermometer [Tb0.93Eu0.07(bpy)2(NO3)3] (bpy = 2,2'-bipyridine) under high magnetic fields (up to 58 T). Our findings reveal that the conventional intensity-based method for Tb/Eu luminescent thermometers fails even under weak magnetic fields. However, careful data analysis identified specific transitions with minimal magnetic correlation, enabling the thermometer to operate across the entire temperature range up to 20 T, and with larger fields for temperatures exceeding 120 K. This study highlights the strong dependence of thermometric performance on material properties, urging caution, but also offers a path forward for developing robust luminescent thermometers in such environments.
Collapse
Affiliation(s)
| | - Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Carlos D S Brites
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jérôme Rouquette
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Paulina Plochocka
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, 31400 Toulouse, France
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jérôme Long
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
3
|
Dou R, Li Z, Zhu G, Lin C, Liu FX, Wang B. Operando Decoding Ion-Conductive Switch in Stimuli-Responsive Hydrogel by Nanodiamond-Based Quantum Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406944. [PMID: 39312463 DOI: 10.1002/advs.202406944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Thermal-responsive hydrogels are developed as ion-conductive switchs for energy storage devices, however, the molecule mechanism of switch on/off remains unclear. Here, poly(N-isopropylacrylamide-co-acrylamide) hydrogel is synthesized as a model material and nanodiamond (ND) based quantum sensing for phase change study is developed. First, micro-scale phase separation with cross-linked mesh structure after sol-gel transition is visualized in situ and water molecules are trapped by polymer chains and on a chemically "frozen" state. Then, the nano-scale inhomogeneous distributions of viscosity, thermal conductivity and ionic mobility in hydrogel at high temperature are observed by measuring the rotation, translation and zero-field splitting of NDs. Besides, the ionic mobility of hydrogel is found to be dependent not only on temperature but also on polymer concentration. These observations suggested that the physical "wall" induced by inhomogeneous phase separation at microscopic scale blocked the ion conduction pathways, providing a potential intrinsic explanation for ion migration shut-down of ionic hydrogels at high temperature.
Collapse
Affiliation(s)
- Ruqiang Dou
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Zan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Guoli Zhu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Chao Lin
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Biao Wang
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
- School of Physics and Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Sun J, Yan K, Pan A, Zhang P, Chen X, Shi X, Shi C. Shell thickness-induced thermal dependence: highly sensitive core-shell CdSe/ZnS/POSS-based temperature probes. Phys Chem Chem Phys 2024; 26:11498-11505. [PMID: 38563212 DOI: 10.1039/d4cp00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fluorescence nanothermometry based on quantum dots is a current research hotspot for novel non-contact temperature monitoring, and is of vital significance for the modulation and design of the sensing properties of sensors. Herein, a design strategy to modulate the temperature-sensing characteristics of quantum dots based on the thickness of a shell is proposed. In this study, CdSe/ZnS quantum dot/POSS-based temperature probe films with varying fluorescence characteristics were developed, and the influence of the ZnS shell on temperature sensing was examined by varying the thickness of the ZnS shell. The temperature dependency, linearity, range of applications, and reversibility of quantum dot thin film probes were all considerably regulated by the ZnS shell, according to research on quantum dot/POSS-based films coated with various shell thicknesses. The CdSe/ZnS temperature probe with 4 monolayers (MLs) stood out among the rest due to its strong thermal stability (at least 5 cycles), large usable temperature range (20-80 °C), and excellent temperature sensitivity (R2 > 0.994). The results demonstrated that the temperature sensing performance of quantum dots was the consequence of the combined effect of multiple temperature response properties induced by the thickness of the shell, and the shell control of quantum dots to optimize the temperature sensing performance was an essential approach for the design of temperature probes. This work demonstrates the great potential of the shell in tuning the temperature sensing performance of quantum dots and provides a viable approach for the design of quantum dot temperature probes.
Collapse
Affiliation(s)
- Jiannan Sun
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Ke Yan
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Aizhao Pan
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Pan Zhang
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Xuehang Chen
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Xinyi Shi
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chengyu Shi
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
5
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
6
|
Du Z, Gupta M, Xu F, Zhang K, Zhang J, Zhou Y, Liu Y, Wang Z, Wrachtrup J, Wong N, Li C, Chu Z. Widefield Diamond Quantum Sensing with Neuromorphic Vision Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304355. [PMID: 37939304 PMCID: PMC10787069 DOI: 10.1002/advs.202304355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Indexed: 11/10/2023]
Abstract
Despite increasing interest in developing ultrasensitive widefield diamond magnetometry for various applications, achieving high temporal resolution and sensitivity simultaneously remains a key challenge. This is largely due to the transfer and processing of massive amounts of data from the frame-based sensor to capture the widefield fluorescence intensity of spin defects in diamonds. In this study, a neuromorphic vision sensor to encode the changes of fluorescence intensity into spikes in the optically detected magnetic resonance (ODMR) measurements is adopted, closely resembling the operation of the human vision system, which leads to highly compressed data volume and reduced latency. It also results in a vast dynamic range, high temporal resolution, and exceptional signal-to-background ratio. After a thorough theoretical evaluation, the experiment with an off-the-shelf event camera demonstrated a 13× improvement in temporal resolution with comparable precision of detecting ODMR resonance frequencies compared with the state-of-the-art highly specialized frame-based approach. It is successfully deploy this technology in monitoring dynamically modulated laser heating of gold nanoparticles coated on a diamond surface, a recognizably difficult task using existing approaches. The current development provides new insights for high-precision and low-latency widefield quantum sensing, with possibilities for integration with emerging memory devices to realize more intelligent quantum sensors.
Collapse
Affiliation(s)
- Zhiyuan Du
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Madhav Gupta
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Jiahua Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Yiyao Liu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhenyu Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
- Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Ngai Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Can Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, 999077, P. R. China
| |
Collapse
|
7
|
Luntz-Martin DR, Bommidi DK, Zhang K, Pickel AD, Vamivakas AN. Nanothermometry in rarefied gas using optically levitated nanodiamonds. OPTICS EXPRESS 2023; 31:36219-36227. [PMID: 38017776 DOI: 10.1364/oe.500463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/30/2023] [Indexed: 11/30/2023]
Abstract
Heat transfer in gases in the continuum regime follows Fourier's law and is well understood. However, it has been long understood that in the subcontinuum, rarefied gas regime Fourier's law is no longer valid and various models have been proposed to describe heat transfer in these systems. These models have very limited experimental exploration for spherical geometries due to the difficulties involved. Optically levitated nanoparticles are presented as the ideal experimental system to study heat transfer in rarefied gases due to their isolation from their environment. Nanodiamonds with nitrogen-vacancy centers are used to measure temperature. As the pressure decreases so does the heat transfer to the rarefied gas and the nanodiamond temperature increases by over 200 K. These experiments demonstrate the utility of optically levitated nanoparticles to study heat transfer in any gas across a wide range of pressures. In the future, these measurements can be combined with models to empirically determine the energy accommodation coefficient of any gas.
Collapse
|
8
|
Zhao Y, Chakraborty P, Passian A, Thundat T. Ultrasensitive Photothermal Spectroscopy: Harnessing the Seebeck Effect for Attogram-Level Detection. NANO LETTERS 2023; 23:7883-7889. [PMID: 37579260 DOI: 10.1021/acs.nanolett.3c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Molecular-level spectroscopy is crucial for sensing and imaging applications, yet detecting and quantifying minuscule quantities of chemicals remain a challenge, especially when they surface adsorb in low numbers. Here, we introduce a photothermal spectroscopic technique that enables the high selectivity sensing of adsorbates with an attogram detection limit. Our approach utilizes the Seebeck effect in a microfabricated nanoscale thermocouple junction, incorporated into the apex of a microcantilever. We observe minimal thermal mass exhibited by the sensor, which maintains exceptional thermal insulation. The temperature variation driving the thermoelectric junction arises from the nonradiative decay of molecular adsorbates' vibrational states on the tip. We demonstrate the detection of photothermal spectra of physisorbed trinitrotoluene (TNT) and dimethyl methylphosphonate (DMMP) molecules, as well as representative polymers, with an estimated mass of 10-18 g.
Collapse
Affiliation(s)
- Yaoli Zhao
- Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Patatri Chakraborty
- Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Ali Passian
- Quantum Computing and Sensing Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Thomas Thundat
- Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
9
|
Nunn N, Milikisiyants S, Torelli MD, Monge R, Delord T, Shames AI, Meriles CA, Ajoy A, Smirnov AI, Shenderova OA. Optical and electronic spin properties of fluorescent micro- and nanodiamonds upon prolonged ultrahigh-temperature annealing. JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. B, NANOTECHNOLOGY & MICROELECTRONICS : MATERIALS, PROCESSING, MEASUREMENT, & PHENOMENA : JVST B 2023; 41:042206. [PMID: 37387792 PMCID: PMC10306410 DOI: 10.1116/6.0002797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
High-temperature annealing is a promising but still mainly unexplored method for enhancing spin properties of negatively charged nitrogen-vacancy (NV) centers in diamond particles. After high-energy irradiation, the formation of NV centers in diamond particles is typically accomplished via annealing at temperatures in the range of 800-900 °C for 1-2 h to promote vacancy diffusion. Here, we investigate the effects of conventional annealing (900 °C for 2 h) against annealing at a much higher temperature of 1600 °C for the same annealing duration for particles ranging in size from 100 nm to 15 μm using electron paramagnetic resonance and optical characterization. At this high temperature, the vacancy-assisted diffusion of nitrogen can occur. Previously, the annealing of diamond particles at this temperature was performed over short time scales because of concerns of particle graphitization. Our results demonstrate that particles that survive this prolonged 1600 °C annealing show increased NV T1 and T2 electron spin relaxation times in 1 and 15 μm particles, due to the removal of fast relaxing spins. Additionally, this high-temperature annealing also boosts magnetically induced fluorescence contrast of NV centers for particle sizes ranging from 100 nm to 15 μm. At the same time, the content of NV centers is decreased fewfold and reaches a level of <0.5 ppm. The results provide guidance for future studies and the optimization of high-temperature annealing of fluorescent diamond particles for applications relying on the spin properties of NV centers in the host crystals.
Collapse
Affiliation(s)
- Nicholas Nunn
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607
| | | | | | - Tom Delord
- Department of Physics, CUNY—City College of New York, New York, New York 10031
| | - Alexander I. Shames
- Department of Physics, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | | | | | - Alex I. Smirnov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607
| | | |
Collapse
|
10
|
Liu GQ, Liu RB, Li Q. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Acc Chem Res 2023; 56:95-105. [PMID: 36594628 DOI: 10.1021/acs.accounts.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanothermometry is increasingly demanded in frontier research in physics, chemistry, materials science and engineering, and biomedicine. An ideal thermometer should have features of reliable temperature interpretation, high sensitivity, fast response, minimum disturbance of the target's temperature, applicability in a variety of environments, and a large working temperature range. For applications in nanosystems, high spatial resolution is also desirable. Such requirements impose great challenges in nanothermometry since the shrinking of the sensor volume usually leads to a reduction in sensitivity.Diamond with nitrogen-vacancy (NV) centers provides opportunities for nanothermometry. NV center spins have sharp resonances due to their superb coherence. NV centers are multimodal sensors. They can directly sense magnetic fields, electric fields, temperature, pressure, and nuclear spins and, through proper transduction, measure other quantities such as the pH and deformation. In particular, their spin resonance frequencies vary with temperature, making them a promising thermometer. The high thermal conductivity, high hardness, chemical stability, and biocompatibility of diamond enable reliable and fast temperature sensing in complex environments ranging from erosive liquids to live systems. Chemical processing of diamond surfaces allows various functionalities such as targeting. The small size and the targeting capability of nanodiamonds then enable site-specific temperature sensing with nanoscale spatial resolution. However, the sensitivity of NV-based nanothermometry is yet to meet the requirement of practical systems with a large gap of a few orders of magnitude. On the other hand, although NV-based quantum sensing works well from 0.3 to 600 K, extending the sensing scheme to high temperature remains challenging due to uncertainty in identifying the exact physical limits and possible solution at elevated temperatures.This Account focuses on our efforts to enhance the temperature sensitivity and widen the working temperature range of diamond-based nanothermometry. We start with explaining the working principle and features of NV-based thermometry with examples of applications. Then a transducer-based concept is introduced with practical schemes to improve the sensitivity of the nanodiamond thermometer. Specifically, we show that the temperature signal can be transduced and amplified by adopting hybrid structures of nanodiamond and magnetic nanoparticles, which results in a record temperature sensitivity of 76 μK/√Hz. We also demonstrate quantum sensing with NV at high temperatures of up to 1000 K by adopting a pulsed heating-cooling scheme to carry out the spin polarization and readout at room temperature and the spin manipulation (sensing) at high temperatures. Finally, unsolved problems and future endeavors of diamond nanothermometry are discussed.
Collapse
Affiliation(s)
- Gang-Qin Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | | | | |
Collapse
|
11
|
Zhong Y, Zhang L, Park JH, Cruz S, Li L, Guo L, Kong J, Wang EN. A unified approach and descriptor for the thermal expansion of two-dimensional transition metal dichalcogenide monolayers. SCIENCE ADVANCES 2022; 8:eabo3783. [PMID: 36399559 PMCID: PMC9674296 DOI: 10.1126/sciadv.abo3783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) materials have enabled promising applications in modern miniaturized devices. However, device operation may lead to substantial temperature rise and thermal stress, resulting in device failure. To address such thermal challenges, the thermal expansion coefficient (TEC) needs to be well understood. Here, we characterize the in-plane TECs of transition metal dichalcogenide (TMD) monolayers and demonstrate superior accuracy using a three-substrate approach. Our measurements confirm the physical range of 2D monolayer TECs and, hence, address the more than two orders of magnitude discrepancy in literature. Moreover, we identify the thermochemical electronegativity difference of compositional elements as a descriptor, enabling the fast estimation of TECs for various TMD monolayers. Our work presents a unified approach and descriptor for the thermal expansion of TMD monolayers, which can serve as a guideline toward the rational design of reliable 2D devices.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lenan Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ji-Hoon Park
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel Cruz
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Long Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Guo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Evelyn N. Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Li Z, Liang Y, Shen C, Shi Z, Wen H, Guo H, Ma Z, Tang J, Liu J. Wide-field tomography imaging of a double circuit using NV center ensembles in a diamond. OPTICS EXPRESS 2022; 30:39877-39890. [PMID: 36298930 DOI: 10.1364/oe.469077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The wide-field (2.42 mm × 1.36 mm, resolution: 5.04 µm) tomography imaging of double circuits is performed using nitrogen-vacancy (NV) center ensembles in a diamond. The magnetic-field distribution on the surface of the circuit produced by the lower layer is obtained. Vector magnetic superposition is used to separate the magnetic-field distribution produced by the lower layer from the magnetic-field distribution produced by two layers. An inversion model is used to perform the tomography imaging of the magnetic-field distribution on the lower layer surface. Compared with the measurements of the upper layer, the difference in the maximum magnetic-field intensity of inversion is approximately 0.4%, and the difference in the magnetic-field distribution of inversion is approximately 8%, where the depth of the lower layer is 0.32 mm. Simulations are conducted to prove the reliability of the imaging. These results provide a simple and highly accurate reference for the detection and fault diagnosis of multilayer and integrated circuits.
Collapse
|
13
|
Tsukamoto M, Ito S, Ogawa K, Ashida Y, Sasaki K, Kobayashi K. Accurate magnetic field imaging using nanodiamond quantum sensors enhanced by machine learning. Sci Rep 2022; 12:13942. [PMID: 36050487 PMCID: PMC9436989 DOI: 10.1038/s41598-022-18115-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Nanodiamonds can be excellent quantum sensors for local magnetic field measurements. We demonstrate magnetic field imaging with high accuracy of 1.8 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μT combining nanodiamond ensemble (NDE) and machine learning without any physical models. We discover the dependence of the NDE signal on the field direction, suggesting the application of NDE for vector magnetometry and the improvement of the existing model. Our method enhances the NDE performance sufficiently to visualize nano-magnetism and mesoscopic current and expands the applicability of NDE in arbitrarily shaped materials, including living organisms. This accomplishment bridges machine learning to quantum sensing for accurate measurements.
Collapse
Affiliation(s)
- Moeta Tsukamoto
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Shuji Ito
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kensuke Ogawa
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuto Ashida
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Institute for Physics of Intelligence, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kento Sasaki
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kensuke Kobayashi
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Institute for Physics of Intelligence, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Trans-scale Quantum Science Institute, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
14
|
Ishikawa L, Shikama T, Kakuno T, Watanabe T, Jouda M, Hasuo M. All-optical thermometry using a single multimode fiber endoscope and diamond nanoparticles containing nitrogen vacancy centers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:083705. [PMID: 36050074 DOI: 10.1063/5.0102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Photoluminescence (PL) spectra from diamond nanoparticles containing negative nitrogen vacancy centers were measured by using a single multimode fiber endoscope combined with a high-sensitivity spectroscopy system. A laser light spot was produced at the distal end of the endoscope and the PL spectra from a temperature-controlled ensemble of diamond nanoparticles were measured. After calibrating the sensitivity and wavelength of the spectroscopy system, the temperature dependence of the zero-phonon line peak wavelength similar to those previously reported was obtained.
Collapse
Affiliation(s)
- Lisa Ishikawa
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Taiichi Shikama
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Takayuki Kakuno
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Takato Watanabe
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Mazin Jouda
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg 76131, Germany
| | - Masahiro Hasuo
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
15
|
Design of a High-Bandwidth Uniform Radiation Antenna for Wide-Field Imaging with Ensemble NV Color Centers in Diamond. MICROMACHINES 2022; 13:mi13071007. [PMID: 35888824 PMCID: PMC9319680 DOI: 10.3390/mi13071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023]
Abstract
Radiation with high-efficiency, large-bandwidth, and uniform magnetic field radiation antennas in a large field of view are the key to achieving high-precision wide-field imaging. This paper presents a hollow Ω-type antenna design for diamond nitrogen-vacancy (NV) ensemble color center imaging. The uniformity of the antenna reaches 94% in a 4.4 × 4.4 mm2 area. Compared with a straight copper antenna, the radiation efficiency of the proposed antenna is 71.8% higher, and the bandwidth is improved by 11.82 times, demonstrating the effectiveness of the hollow Ω-type antenna.
Collapse
|
16
|
Perkinson CF, Einzinger M, Finley J, Bawendi MG, Baldo MA. Magnetic-Field-Switchable Laser via Optical Pumping of Rubrene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103870. [PMID: 34793612 DOI: 10.1002/adma.202103870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Volumetric optical imaging of magnetic fields is challenging with existing magneto-optical materials, motivating the search for dyes with strong magnetic field interactions, distinct emission spectra, and an ability to withstand high photon flux and incorporation within samples. Here, the magnetic field effect on singlet-exciton fission is exploited to demonstrate spatial imaging of magnetic fields in a thin film of rubrene. Doping rubrene with the high-quantum yield dye dibenzotetraphenylperiflanthene (DBP) is shown to enable optically pumped, slab waveguide lasing. This laser is magnetic-field-switchable: when operated just below the lasing threshold, application of a 0.4 T magnetic field switches the device between nonlasing and lasing modes, accompanied by an intensity modulation of +360%. This is thought to be the first demonstration of a magnetically switchable laser, as well as the largest magnetically induced change in emission brightness in a singlet-fission material to date. These results demonstrate that singlet-fission materials are promising materials for magnetic sensing applications and could inspire a new class of magneto-optical modulators.
Collapse
Affiliation(s)
- Collin F Perkinson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Markus Einzinger
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Joseph Finley
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Marc A Baldo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Zhang L, Zhong Y, Qian X, Song Q, Zhou J, Li L, Guo L, Chen G, Wang EN. Toward Optimal Heat Transfer of 2D-3D Heterostructures via van der Waals Binding Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46055-46064. [PMID: 34529424 DOI: 10.1021/acsami.1c08131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials and their heterogeneous integration have enabled promising electronic and photonic applications. However, significant thermal challenges arise due to numerous van der Waals (vdW) interfaces limiting the dissipation of heat generated in the device. In this work, we investigate the vdW binding effect on heat transport through a MoS2-amorphous silica heterostructure. We show using atomistic simulations that the cross-plane thermal conductance starts to saturate with the increase of vdW binding energy, which is attributed to substrate-induced localized phonons. With these atomistic insights, we perform device-level heat transfer optimizations. Accordingly, we identify a regime, characterized by the coupling of in-plane and cross-plane heat transport mediated by vdW binding energy, where maximal heat dissipation in the device is achieved. These results elucidate fundamental heat transport through the vdW heterostructure and provide a pathway toward optimizing thermal management in 2D nanoscale devices.
Collapse
Affiliation(s)
- Lenan Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xin Qian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qichen Song
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiawei Zhou
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Long Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Guo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Evelyn N Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Fujiwara M, Shikano Y. Diamond quantum thermometry: from foundations to applications. NANOTECHNOLOGY 2021; 32:482002. [PMID: 34416739 DOI: 10.1088/1361-6528/ac1fb1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Diamond quantum thermometry exploits the optical and electrical spin properties of colour defect centres in diamonds and, acts as a quantum sensing method exhibiting ultrahigh precision and robustness. Compared to the existing luminescent nanothermometry techniques, a diamond quantum thermometer can be operated over a wide temperature range and a sensor spatial scale ranging from nanometres to micrometres. Further, diamond quantum thermometry is employed in several applications, including electronics and biology, to explore these fields with nanoscale temperature measurements. This review covers the operational principles of diamond quantum thermometry for spin-based and all-optical methods, material development of diamonds with a focus on thermometry, and examples of applications in electrical and biological systems with demand-based technological requirements.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yutaka Shikano
- Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
- Institute for Quantum Studies, Chapman University, 1 University Dr, Orange, CA 92866, United States of America
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
19
|
Wang T, Li Z, Zhao R, Guo Q, Li X, Guo H, Wen H, Tang J, Liu J. Imaging the magnetic field distribution of a micro-wire with the nitrogen-vacancycolor center ensemble in diamond. APPLIED OPTICS 2021; 60:125-134. [PMID: 33362080 DOI: 10.1364/ao.411208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Imaging the high-precision magnetic distribution generated by the surface current of chips and chip-like structures is an important way to measure thermal parameters of core components. Based on a high-concentration nitrogen-vacancy color center ensemble in diamond, the imaging magnetic field distribution is performed in a wide-field microscope. The magnetic vector detection and reduction model is verified first with continuous wave optical detection of magnetic resonance technology. By systematically measuring the distribution of the electromagnetic field generated on the surface of the micro-wire under different microwave power and different laser power conditions, the imaging quality of the wide-field imaging system can be optimized by adjusting the experimental parameters. Then, the electromagnetic field distribution imaging on the wire surface under different current intensities is obtained. In this way, accurate measurement and characterization of the magnetic distribution on the surface of the micro-wire is realized. Finally, at the field of view in the range of 480µm×270µm, the magnetic intensity is an accurate characterization in 0.5-10 Gs, and the magnetic detection sensitivity can be increased from 100 to 20µT/Hz1/2. The results show the accurate magnetic distribution imaging for chips and chip-like structures, which provide a new method for chip function detection and fault diagnosis based on precision quantum measurement technology.
Collapse
|
20
|
Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E. Real-time nanodiamond thermometry probing in vivo thermogenic responses. SCIENCE ADVANCES 2020; 6:eaba9636. [PMID: 32917703 PMCID: PMC7486095 DOI: 10.1126/sciadv.aba9636] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 05/24/2023]
Abstract
Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities. However, it is challenging to reduce the size of biocompatible thermometers down to submicrometers, despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Here, using quantum nanothermometers based on optically accessible electron spins in nanodiamonds, we demonstrate in vivo real-time temperature monitoring inside Caenorhabditis elegans worms. We developed a microscope system that integrates a quick-docking sample chamber, particle tracking, and an error correction filter for temperature monitoring of mobile nanodiamonds inside live adult worms with a precision of ±0.22°C. With this system, we determined temperature increases based on the worms' thermogenic responses during the chemical stimuli of mitochondrial uncouplers. Our technique demonstrates the submicrometer localization of temperature information in living animals and direct identification of their pharmacological thermogenesis, which may allow for quantification of their biological activities based on temperature.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Simo Sun
- Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Alexander Dohms
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yushi Nishimura
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ken Suto
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yuka Takezawa
- Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Keisuke Oshimi
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Nikola Sadzak
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yumi Umehara
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yoshio Teki
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Oliver Benson
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yutaka Shikano
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi Kohoku, Yokohama 223-8522, Japan.
- Institute for Quantum Studies, Chapman University, 1 University Dr., Orange, CA 92866, USA
| | - Eriko Kage-Nakadai
- Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|