1
|
Kostelec M, Gatalo M, Hodnik N. Fundamental and Practical Aspects of Break-In/Conditioning of Proton Exchange Membrane Fuel Cells. CHEM REC 2024; 24:e202400114. [PMID: 39380349 DOI: 10.1002/tcr.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Indexed: 10/10/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs) have proven to be a promising power source for various applications ranging from portable devices to automotive and stationary power systems. The production of PEMFC involves numerous stages in the value chain, with each stage presenting unique challenges and opportunities to improve the overall performance and durability of the PEMFC stack. These include steps such as manufacturing the key components such as the platinum-based catalyst, processing these components into the membrane electrode assemblies (MEAs), and stacking the MEAs to ultimately produce a PEMFC stack. However, it is also known that the break-in or conditioning phase of the stack plays a crucial role in the final performance as well as durability. It involves several key phenomena such as hydration of the membrane, swelling of the ionomer, redistribution of the catalyst and the creation of suitable electrochemical interfaces - establishment of the triple phase boundary. These improve the proton conductivity, the mass transport of reactants and products, the catalytic activity of the electrode and thus the overall efficiency of the FC. The cruciality of break-in is demonstrated by the improvement in performance, which can even be over 50 % compared to the initial state. The state-of-the-art approach for the break-in of MEAs involves an electrochemical protocol, such as voltage cycling, using a PEMFC testing station. This method is time-consuming, equipment-intensive, and costly. Therefore, new, elegant, and cost-effective solutions are needed. Nevertheless, the primary aim is to achieve maximum/optimal performance so that it is fully operational and ready for the market. It is therefore essential to better understand and deconvolute these complex mechanisms taking place during break-in/conditioning. Strategies include controlled humidity and temperature cycling, novel electrode materials and other advanced break-in methods such as air braking, vacuum activation or steaming. In addition, it is critical to address the challenges associated with standardisation and quantification of protocols to enable interlaboratory comparisons to further advance the field.
Collapse
Affiliation(s)
- Mitja Kostelec
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- ReCatalyst d.o.o., Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| |
Collapse
|
2
|
Shah DD, Carter P, Shivdasani MN, Fong N, Duan W, Esrafilzadeh D, Poole-Warren LA, Aregueta Robles UA. Deciphering platinum dissolution in neural stimulation electrodes: Electrochemistry or biology? Biomaterials 2024; 309:122575. [PMID: 38677220 DOI: 10.1016/j.biomaterials.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Platinum (Pt) is the metal of choice for electrodes in implantable neural prostheses like the cochlear implants, deep brain stimulating devices, and brain-computer interfacing technologies. However, it is well known since the 1970s that Pt dissolution occurs with electrical stimulation. More recent clinical and in vivo studies have shown signs of corrosion in explanted electrode arrays and the presence of Pt-containing particulates in tissue samples. The process of degradation and release of metallic ions and particles can significantly impact on device performance. Moreover, the effects of Pt dissolution products on tissue health and function are still largely unknown. This is due to the highly complex chemistry underlying the dissolution process and the difficulty in decoupling electrical and chemical effects on biological responses. Understanding the mechanisms and effects of Pt dissolution proves challenging as the dissolution process can be influenced by electrical, chemical, physical, and biological factors, all of them highly variable between experimental settings. By evaluating comprehensive findings on Pt dissolution mechanisms reported in the fuel cell field, this review presents a critical analysis of the possible mechanisms that drive Pt dissolution in neural stimulation in vitro and in vivo. Stimulation parameters, such as aggregate charge, charge density, and electrochemical potential can all impact the levels of dissolved Pt. However, chemical factors such as electrolyte types, dissolved gases, and pH can all influence dissolution, confounding the findings of in vitro studies with multiple variables. Biological factors, such as proteins, have been documented to exhibit a mitigating effect on the dissolution process. Other biological factors like cells and fibro-proliferative responses, such as fibrosis and gliosis, impact on electrode properties and are suspected to impact on Pt dissolution. However, the relationship between electrical properties of stimulating electrodes and Pt dissolution remains contentious. Host responses to Pt degradation products are also controversial due to the unknown chemistry of Pt compounds formed and the lack of understanding of Pt distribution in clinical scenarios. The cytotoxicity of Pt produced via electrical stimulation appears similar to Pt-based compounds, including hexachloroplatinates and chemotherapeutic agents like cisplatin. While the levels of Pt produced under clinical and acute stimulation regimes were typically an order of magnitude lower than toxic concentrations observed in vitro, further research is needed to accurately assess the mass balance and type of Pt produced during long-term stimulation and its impact on tissue response. Finally, approaches to mitigating the dissolution process are reviewed. A wide variety of approaches, including stimulation strategies, coating electrode materials, and surface modification techniques to avoid excess charge during stimulation and minimise tissue response, may ultimately support long-term and safe operation of neural stimulating devices.
Collapse
Affiliation(s)
- Dhyey Devashish Shah
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Paul Carter
- Cochlear Ltd, Macquarie University, NSW, Australia
| | | | - Nicole Fong
- Cochlear Ltd, Macquarie University, NSW, Australia
| | - Wenlu Duan
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Laura Anne Poole-Warren
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia; The Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
3
|
Liu Y, Li N, Su K, Du J, Guo R. Arginine-Rich Peptide-Rhodium Nanocluster@Reduced Graphene Oxide Composite as a Highly Selective and Active Uricase-like Nanozyme for the Degradation of Uric Acid and Inhibition of Urate Crystal. Inorg Chem 2024; 63:13602-13612. [PMID: 38973094 DOI: 10.1021/acs.inorgchem.4c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Metal nanozymes have offered attractive opportunities for biocatalysis and biomedicine. However, fabricating nanozymes simultaneously possessing highly catalytic selectivity and activity remains a great challenge due to the lack of three-dimensional (3D) architecture of the catalytic pocket in natural enzymes. Here, we integrate rhodium nanocluster (RhNC), reduced graphene oxide (rGO), and protamine (PRTM, a typical arginine-rich peptide) into a composite facilely based on the single peptide. Remarkably, the PRTM-RhNC@rGO composite displays outstanding selectivity, activity, and stability for the catalytic degradation of uric acid. The reaction rate constant of the uric acid oxidation catalyzed by the PRTM-RhNC@rGO composite is about 1.88 × 10-3 s-1 (4 μg/mL), which is 37.6 times higher than that of reported RhNP (k = 5 × 10-5 s-1, 20 μg/mL). Enzyme kinetic studies reveal that the PRTM-RhNC@rGO composite exhibits a similar affinity for uric acid as natural uricase. Furthermore, the uricase-like activity of PRTM-RhNC@rGO nanozymes remains in the presence of sulfur substances and halide ions, displaying incredibly well antipoisoning abilities. The analysis of the structure-function relationship indicates the PRTM-RhNC@rGO composite features the substrate binding site near the catalytic site in a confined space contributed by 2D rGO and PRTM, resulting in the high-performance of the composite nanozyme. Based on the outstanding uricase-like activity and the interaction of PRTM and uric acid, the PRTM-RhNC@rGO composite can retard the urate crystallization significantly. The present work provides new insights into the design of metal nanozymes with suitable binding sites near catalytic sites by mimicking pocket-like structures in natural enzymes based on simple peptides, conducing to broadening the practical application of high-performance nanozymes in biomedical fields.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Ning Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Kang Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jiamei Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
4
|
Li X, Duan X, Zhang S, Wang C, Hua K, Wang Z, Wu Y, Li J, Liu J. Strategies for Achieving Ultra-Long ORR Durability-Rh Activates Interatomic Interactions in Alloys. Angew Chem Int Ed Engl 2024; 63:e202400549. [PMID: 38595043 DOI: 10.1002/anie.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
The stability of platinum-based alloy catalysts is crucial for the future development of proton exchange membrane fuel cells, considering the potential dissolution of transition metals under complex operating conditions. Here, we report on a Rh-doped Pt3Co alloy that exhibits strong interatomic interactions, thereby enhancing the durability of fuel cells. The Rh-Pt3Co/C catalyst demonstrates exceptional catalytic activity for oxygen reduction reactions (ORR) (1.31 A mgPt -1 at 0.9 V vs. the reversible hydrogen electrode (RHE) and maintaining 92 % of its mass activity after 170,000 potential cycles). Long-term testing has shown direct inhibition of Co dissolution in Rh-Pt3Co/C. Furthermore, tests on proton exchange membrane fuel cells (PEMFC) have shown excellent performance and long-term durability with low Pt loading. After 50,000 cycles, there was no voltage loss at 0.8 A cm-2 for Rh-Pt3Co/C, while Pt3Co/C experienced a loss of 200 mV. Theoretical calculations suggest that introducing transition metal atoms through doping creates a stronger compressive strain, which in turn leads to increased catalytic activity. Additionally, Rh doping increases the energy barrier for Co diffusion in the bulk phase, while also raising the vacancy formation energy of the surface Pt. This ensures the long-term stability of the alloy over the course of the cycle.
Collapse
Affiliation(s)
- Xiaoke Li
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Xiao Duan
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Siao Zhang
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Chuanjie Wang
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Kang Hua
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Zejin Wang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Yongkang Wu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Jia Li
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Jianguo Liu
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| |
Collapse
|
5
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Cipriano LA, Kristoffersen HH, Munhos RL, Pittkowski R, Arenz M, Rossmeisl J. Tuning the chemical composition of binary alloy nanoparticles to prevent their dissolution. NANOSCALE 2023; 15:16697-16705. [PMID: 37772911 DOI: 10.1039/d3nr02808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The dissolution of nanoparticles under corrosive environments represents one of the main issues in electrochemical processes. Here, a model for alloying and protecting nanoparticles from corrosion with an anti-corrosive element (e.g. Au) is proposed based on the hypothesis that under-coordinated atoms are the first atoms to dissolve. The model considers the dissolution of atoms with coordination number ≤6 on A-B nanoparticles with different sizes, shapes, chemical compositions, and exposed crystallographic orientations. The results revealed that the nanoparticle's size and chemical composition play a key role in the dissolution, suggesting that a certain composition of an element with corrosive resistance could be used to protect nanoparticles. DFT simulations were performed to support our model on the dissolution of four types of atoms commonly found on the surface of Au0.20Pd0.80 binary alloys - terrace, edge, kink, and ad atoms. The simulations suggest that the less coordinated ad and kink Pd atoms on Au0.20Pd0.80 alloys are dissolved in a potential window between 0.26-0.56 V, while the rest of the Pd and Au atoms are protected. Furthermore, to show that a corrosion-resistant element can indeed protect nanoparticles, we experimentally investigated the electrochemical dissolution of immobilized Pd, Au0.20Pd0.80, and Au0.40Pd0.60 nanoparticles in a harsh environment. In line with the dissolution model, the experimental results show that an Au molar fraction of the nanoparticle of 0.20, i.e., Au0.20Pd0.80 binary alloy, is a good compromise between maximizing the active surface area (Pd atoms) and corrosion protection by the inactive Au.
Collapse
Affiliation(s)
- Luis A Cipriano
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Henrik H Kristoffersen
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Renan L Munhos
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Rebecca Pittkowski
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Matthias Arenz
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Jan Rossmeisl
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
7
|
Maulana AL, Chen PC, Shi Z, Yang Y, Lizandara-Pueyo C, Seeler F, Abruña HD, Muller D, Schierle-Arndt K, Yang P. Understanding the Structural Evolution of IrFeCoNiCu High-Entropy Alloy Nanoparticles under the Acidic Oxygen Evolution Reaction. NANO LETTERS 2023. [PMID: 37406363 DOI: 10.1021/acs.nanolett.3c01831] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
High-entropy alloy (HEA) nanoparticles are promising catalyst candidates for the acidic oxygen evolution reaction (OER). Herein, we report the synthesis of IrFeCoNiCu-HEA nanoparticles on a carbon paper substrate via a microwave-assisted shock synthesis method. Under OER conditions in 0.1 M HClO4, the HEA nanoparticles exhibit excellent activity with an overpotential of ∼302 mV measured at 10 mA cm-2 and improved stability over 12 h of operation compared to the monometallic Ir counterpart. Importantly, an active Ir-rich shell layer with nanodomain features was observed to form on the surface of IrFeCoNiCu-HEA nanoparticles immediately after undergoing electrochemical activation, mainly due to the dissolution of the constituent 3d metals. The core of the particles was able to preserve the characteristic homogeneous single-phase HEA structure without significant phase separation or elemental segregation. This work illustrates that under acidic operating conditions, the near-surface structure of HEA nanoparticles is susceptible to a certain degree of structural dynamics.
Collapse
Affiliation(s)
- Arifin Luthfi Maulana
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States
| | - Peng-Cheng Chen
- California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zixiao Shi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, United States
| | - Yao Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 94720, United States
| | - Carlos Lizandara-Pueyo
- California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States
| | | | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - David Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca 14850, New York United States
| | | | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Potsi G, Tsai YHJ, Reese A, Yoon D, Hitt JL, Kouloumpis A, Suntivich J, Muller DA, Mallouk TE, Giannelis EP. Effects of Mesoporosity and Conductivity of Hierarchically Porous Carbon Supports on the Deposition of Pt Nanoparticles and Their Performance as Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368963 DOI: 10.1021/acsami.3c01935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The structural characteristics of supports, such as surface area and type of porosity, affect the deposition of electrocatalysts and greatly influence their electrochemical performance in fuel cells. In this work, we use a series of high surface area hierarchical porous carbons (HPCs) with defined mesoporosity as model supports to study the deposition mechanism of Pt nanoparticles. The resulting electrocatalysts are characterized by several analytical techniques, and their electrochemical performance is compared to a state-of-the-art, commercial Pt/C system. Despite the similar chemical composition and surface area of the supports, as well as similar amounts of Pt precursor used, the size of the deposited Pt nanoparticles varies, and it is inversely proportional to the mesopore size of the system. In addition, we show that an increase in the size of the catalyst particles can increase the specific activity of the oxygen reduction reaction. We also report on our efforts to improve the overall performance of the above electrocatalyst systems and show that increasing the electronic conductivity of the carbon support by the addition of highly conductive graphene sheets improves the overall performance of an alkaline fuel cell.
Collapse
Affiliation(s)
- Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca 14853, New York, United States
| | - Yu-Han Joseph Tsai
- Department of Materials Science and Engineering, Cornell University, Ithaca 14853, New York, United States
| | - Austin Reese
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca 14853, New York, United States
| | - Dasol Yoon
- Department of Materials Science and Engineering, Cornell University, Ithaca 14853, New York, United States
| | - Jeremy L Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Antonios Kouloumpis
- Department of Materials Science and Engineering, Cornell University, Ithaca 14853, New York, United States
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca 14853, New York, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca 14853, New York, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca 14853, New York, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca 14853, New York, United States
| |
Collapse
|
9
|
Quinson J, Kunz S, Arenz M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Zhou Y, Liu X, Yang X, Du Laing G, Yang Y, Tack FMG, Bank MS, Bundschuh J. Effects of Platinum Nanoparticles on Rice Seedlings ( Oryza sativa L.): Size-dependent Accumulation, Transformation, and Ionomic Influence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3733-3745. [PMID: 36821792 DOI: 10.1021/acs.est.2c07734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Platinum nanoparticles (PtNPs) are increasing in the environment largely due to their wide use and application in automobile and medical industries. The mechanism of uptake behavior of different-sized PtNPs and their association with PtNPs-induced phytotoxicity to plants remains unclear. The present study investigated PtNP uptake mechanisms and phytotoxicity simultaneously to further understand the accumulation and transformation dynamics. The uptake mechanisms were investigated by comparing the uptake and toxicological effects of three different-sized PtNPs (25, 50, and 70 nm) on rice seedlings across an experimental concentration gradient (0.25, 0.5, and 1 mg/L) during germination. The quantitative and qualitative results indicated that 70 nm-sized PtNPs were more efficiently transferred in rice roots. The increase in the PtNP concentration restricted the particle uptake. Particle aggregation was common in plant cells and tended to dissolve on root surfaces. Notably, the dissolution of small particles was simultaneous with the growth of larger particles after PtNPs entered the rice tissues. Ionomic results revealed that PtNP accumulation induced element homeostasis in the shoot ionome. We observed a significant positive correlation between the PtNP concentration and Fe and B accumulation in rice shoots. Compared to particle size, the exposure concentration of PtNPs had a stronger effect on the shoot ionomic response. Our study provides better understanding of the correlation of ionomic change and NP quantitative accumulation induced by PtNPs in rice seedlings.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of the Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Liu
- College of the Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yuan Yang
- College of the Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Filip M G Tack
- Department Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent B-9000, Belgium
| | - Michael S Bank
- Institute of Marine Research, Bergen NO.5817, Norway
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jochen Bundschuh
- Doctoral Program in Science, Technology, Environment, and Mathematics. Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chiayi County 62102, Taiwan, ROC
- School of Civil Engineering and Surveying, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| |
Collapse
|
11
|
Advances in Low Pt Loading Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020773. [PMID: 36677836 PMCID: PMC9866934 DOI: 10.3390/molecules28020773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Hydrogen has the potential to be one of the solutions that can address environmental pollution and greenhouse emissions from traditional fossil fuels. However, high costs hinder its large-scale commercialization, particularly for enabling devices such as proton exchange membrane fuel cells (PEMFCs). The precious metal Pt is indispensable in boosting the oxygen reduction reaction (ORR) in cathode electrocatalysts from the most crucial component, i.e., the membrane electrode assembly (MEA). MEAs account for a considerable amount of the entire cost of PEMFCs. To address these bottlenecks, researchers either increase Pt utilization efficiency or produce MEAs with enhanced performance but less Pt. Only a few reviews that explain the approaches are available. This review summarizes advances in designing nanocatalysts and optimizing the catalyst layer structure to achieve low-Pt loading MEAs. Different strategies and their corresponding effectiveness, e.g., performance in half-cells or MEA, are summarized and compared. Finally, future directions are discussed and proposed, aiming at affordable, highly active, and durable PEMFCs.
Collapse
|
12
|
Jongmanwattana N, Tantakitti F, Nusen S, Kiatsiriroat T, Pothaya S, Punyawudho K. Electrocatalysts with strong electrostatic adsorption for improving the activity and stability of the oxygen reduction reaction in a polymer electrolyte membrane fuel cell. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Xiao F, Wang Y, Xu GL, Yang F, Zhu S, Sun CJ, Cui Y, Xu Z, Zhao Q, Jang J, Qiu X, Liu E, Drisdell WS, Wei Z, Gu M, Amine K, Shao M. Fe–N–C Boosts the Stability of Supported Platinum Nanoparticles for Fuel Cells. J Am Chem Soc 2022; 144:20372-20384. [DOI: 10.1021/jacs.2c08305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Yian Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Gui-Liang Xu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Fei Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Yingdan Cui
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Zhiwen Xu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Qinglan Zhao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Juhee Jang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Xiaoyi Qiu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Ershuai Liu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Walter S. Drisdell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Zidong Wei
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
- Materials Science and Nano-engineering, Mohammed VI Polytechnic University, Ben Guerir43150, Morocco
- Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University (IAU), Dammam34221, Saudi Arabia
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou511458, China
- Energy Institute, Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| |
Collapse
|
14
|
Tellez-Cruz MM, Escorihuela J, Solorza-Feria O, Compañ V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers (Basel) 2021; 13:3064. [PMID: 34577965 PMCID: PMC8468942 DOI: 10.3390/polym13183064] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies, like cubes, octahedrons, icosahedrons, bipyramids, plates, and polyhedrons, among others, are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
Collapse
Affiliation(s)
- Miriam M. Tellez-Cruz
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Omar Solorza-Feria
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
15
|
Stumm C, Kastenmeier M, Waidhas F, Bertram M, Sandbeck DJ, Bochmann S, Mayrhofer KJ, Bachmann J, Cherevko S, Brummel O, Libuda J. Model electrocatalysts for the oxidation of rechargeable electrofuels - carbon supported Pt nanoparticles prepared in UHV. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Wang Z, Mai Y, Yang Y, Shen L, Yan C. Highly Ordered Pt-Based Nanoparticles Directed by the Self-Assembly of Block Copolymers for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38138-38146. [PMID: 34355891 DOI: 10.1021/acsami.1c04259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing Pt-based nanoparticle (NP) catalysts is of great interest for the lowering of Pt usage and the enhancement of catalytic activity on the proton-exchange membrane fuel cells (PEMFCs). However, it is still challenging to develop well-arrayed catalyst NPs on supports over multiple-length scales. Herein, we presented a facile strategy of producing well-ordered Pt-based NPs toward oxygen reduction reaction (ORR) catalysts assisted by the self-assembly of block copolymers. In contrast to the conventional Pt/C ORR catalysts with a random dispersion on carbon, the as-prepared Pt, PtCo, and PtCo@Pt NPs in our work were hexagonally arranged with a uniform quasi-spherical shape and ordered distribution. The systematic study related to their ORR activities revealed that the PtCo@Pt core-shell NP arrays were more active and more durable than PtCo, Pt, and the commercial Pt/C catalyst. In the rotating-disk electrode test, a half-wave potential (E1/2) of 0.86 V versus RHE and a 4-e ORR mechanism were found for PtCo@Pt. Single-cell performance showed that the current density and the peak power density of PtCo@Pt achieved 0.86 A/cm2@0.7 V and 1.05 W/cm2, respectively, with a Pt loading of ∼0.15 mg/cm2 on the cathode. Also, they held 81.4 and 82.9% retention, respectively, after the durability test in the single-cell test. Density functional theory calculation results revealed that PtCo@Pt NPs had a lower d-band center and a weaker oxygen binding energy compared to Pt and PtCo, which contributed to the enhancement of the ORR activity.
Collapse
Affiliation(s)
- Zhida Wang
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yilang Mai
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Yang
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lisha Shen
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Changfeng Yan
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
17
|
Observing, tracking and analysing electrochemically induced atomic-scale structural changes of an individual Pt-Co nanoparticle as a fuel cell electrocatalyst by combining modified floating electrode and identical location electron microscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Lin R, Zheng T, Chen L, Wang H, Cai X, Sun Y, Hao Z. Anchored Pt-Co Nanoparticles on Honeycombed Graphene as Highly Durable Catalysts for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34397-34409. [PMID: 34255470 DOI: 10.1021/acsami.1c08810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Durability is an important factor in evaluating the performance of a catalyst. In this work, the spatial protection of the carrier to nanoparticles was considered to improve the durability of the catalyst. It is found that a honeycombed graphene with a three-dimensional (3D)-hierarchical porous structure (3D HPG) can help to reduce the shedding of Pt-Co nanoparticles (Pt-Co NPs) because 3D HPG can form a protective layer to reduce the direct erosion of Pt-Co NPs on the interface by an electrolyte. Then, appropriate oxygen groups were introduced on the 3D reduced hierarchical porous graphene oxide (3D rHPGO) to improve the dispersion of Pt-Co NPs on the surface of the carrier. It was found that the Pt d-band of the catalyst was anchored by π sites of carbonyl of an oxygen group. After optimization, the catalyst (referred to as Pt-Co/3D rHPGO) achieved a 2-fold enhancement in mass activity than that of a commercial Pt/C catalyst. More importantly, after the accelerated durability test (ADT) of 20 000 cycles, the Pt-Co/3D rHPGO catalyst can almost sustain this level of performance, whereas other catalysts showed a comparatively large loss of activity. According to the results, the high durability of Pt-Co/3D rHPGO was attributed to spatial protection of Pt-Co NPs and the defects on the surface allowed the electrolyte to enter. In addition, oxygen groups provided an anchoring effect on nanoparticles. Thus, the Pt-Co/3D rHPGO electrocatalyst exhibited splendid durability, holding a potential to be applied in PEMFC for long-term work.
Collapse
Affiliation(s)
- Rui Lin
- School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Tong Zheng
- School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Liang Chen
- School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hong Wang
- School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Xin Cai
- School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ying Sun
- School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhixian Hao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
19
|
Zhao J, Liu J, Jin C, Wang F. Subnanoscale Platinum by Repeated UV Irradiation: From One and Few Atoms to Clusters for the Automotive PEMFC. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8395-8404. [PMID: 33570902 DOI: 10.1021/acsami.0c20935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unaffordable costs of the automotive proton exchange membrane fuel cell (PEMFC), remaining a roadblock for commercial applications as an alternative to combustion engine vehicles, can be overcome partially by remarkably increasing the utilization of irreplaceable platinum (Pt). Herein, atomically precise Pt with scalable atoms ranging from 1 to 43 atoms, stabilized by a homemade carbon from white radish without any ligands, is prepared by a repeated UV irradiation method that is industrially scalable. Compared with the isolated Pt1 in the form of Pt-N4, octahedral Pt6, and icosahedron Pt13, the ordered Pt43 cluster (∼0.75 nm) with higher metal coordination number displays much higher oxygen reduction reaction performance with a mass activity, which is about 1036% higher than that obtained by state-of-the-art Pt/C, an increase by a factor of ∼3.3 as compared with the DOE 2020 target (0.44 A mgPt-1). The utilization rate of Pt atoms reaches up to 94.7%, much higher than that of Pt (2 nm, 56%), capable of further reducing the amount of platinum that is required for PEMFCs. Moreover, the cluster exhibits an outstanding stability due to the improved Pt vacancy formation energy raised by stronger atom interaction in the close-packed cluster. The cluster exhibits a unique finite size effect from self-tuned energy band and strain levels. A clear strain effect on the d-band center is first presented for pure Pt without distortion from ligands like a second metal. Therefore, the assembly of subnanometer Pt with atom alteration opens up new horizons in designing efficient platinum group metal (PGM) catalysts by reducing the size to subnanometer scale.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingjun Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chun Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Quinson J, Kunz S, Arenz M. Beyond Active Site Design: A Surfactant‐Free Toolbox Approach for Optimized Supported Nanoparticle Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202001858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan Quinson
- Chemistry Department University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Sebastian Kunz
- Südzucker AG Central Department Research, Development and Services (CRDS) Wormser Strasse 11 67283 Obrigheim Germany
| | - Matthias Arenz
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
21
|
Schmies H, Bergmann A, Hornberger E, Drnec J, Wang G, Dionigi F, Kühl S, Sandbeck DJS, Mayrhofer KJJ, Ramani V, Cherevko S, Strasser P. Anisotropy of Pt nanoparticles on carbon- and oxide-support and their structural response to electrochemical oxidation probed by in situ techniques. Phys Chem Chem Phys 2020; 22:22260-22270. [PMID: 33001131 DOI: 10.1039/d0cp03233f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identifying the structural response of nanoparticle-support ensembles to the reaction conditions is essential to determine their structure in the catalytically active state as well as to unravel the possible degradation pathways. In this work, we investigate the (electronic) structure of carbon- and oxide-supported Pt nanoparticles during electrochemical oxidation by in situ X-ray diffraction, absorption spectroscopy as well as the Pt dissolution rate by in situ mass spectrometry. We prepared ellipsoidal Pt nanoparticles by impregnation of the carbon and titanium-based oxide support as well as spherical Pt nanoparticles on an indium-based oxide support by a surfactant-assisted synthesis route. During electrochemical oxidation, we show that the oxide-supported Pt nanoparticles resist (bulk) oxide formation and Pt dissolution. The lattice of smaller Pt nanoparticles exhibits a size-induced lattice contraction in the as-prepared state with respect to bulk Pt but it expands reversibly during electrochemical oxidation. This expansion is suppressed for the Pt nanoparticles with a bulk-like relaxed lattice. We could correlate the formation of d-band vacancies in the metallic Pt with Pt lattice expansion. PtOx formation is strongest for platelet-like nanoparticles and we explain this with a higher fraction of exposed Pt(100) facets. Of all investigated nanoparticle-support ensembles, the structural response of RuO2/TiO2-supported Pt nanoparticles is the most promising with respect to their morphological and structural integrity under electrochemical reaction conditions.
Collapse
Affiliation(s)
- Henrike Schmies
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shang H, Zhou Z, Wu X, Li X, Xu Y. Sunlight-Induced Synthesis of Non-Target Biosafety Silver Nanoparticles for the Control of Rice Bacterial Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2007. [PMID: 33053680 PMCID: PMC7600880 DOI: 10.3390/nano10102007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Silver is an important and efficient bactericide. Nanoscale silver has a large specific surface area, high target adhesion, strong permeability and high bactericidal activity. At present, the control of plant bacterial diseases is difficult, and the resistance of plant bacterial pathogens develops rapidly. Silver nanoparticles are expected to become a new generation of agrochemical to control plant bacterial diseases. In this study, a simple and green natural sunlight-induced method was used to prepare carboxymethylcellulose sodium-stabilized silver nanoparticles (CMC-SNs) with a particle size of around 13.53 ± 4.72 nm. CMC-SNs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and UV-vis spectroscopy and found to be spherical and evenly dispersed. The bacteriostatic activity of the CMC-SNs toward Xanthomonas oryzae pv. oryzae (Xoo) was tested. The minimum inhibitory concentration (MIC) of CMC-SNs to Xoo was 1 mg/L, and the minimum bactericidal concentration (MBC) was 2 mg/L. In addition, the antibacterial mechanism was studied by scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM), which confirmed that the CMC-SNs had high antibacterial activity. In order to verify its impact on the environment, we conducted an acute toxicity test on zebrafish and found that Half lethal concentration (LC50) > 100 mg/L in zebrafish, or no acute toxicity. The ability of CMC-SNs to control rice bacterial blight was verified by a pot experiment.
Collapse
Affiliation(s)
| | | | - Xuemin Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100083, China; (H.S.); (Z.Z.)
| | - Xuefeng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100083, China; (H.S.); (Z.Z.)
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100083, China; (H.S.); (Z.Z.)
| |
Collapse
|
23
|
Bertram M, Prössl C, Ronovský M, Knöppel J, Matvija P, Fusek L, Skála T, Tsud N, Kastenmeier M, Matolín V, Mayrhofer KJJ, Johánek V, Mysliveček J, Cherevko S, Lykhach Y, Brummel O, Libuda J. Cobalt Oxide-Supported Pt Electrocatalysts: Intimate Correlation between Particle Size, Electronic Metal-Support Interaction and Stability. J Phys Chem Lett 2020; 11:8365-8371. [PMID: 32909431 DOI: 10.1021/acs.jpclett.0c02233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxide supports can modify and stabilize platinum nanoparticles (NPs) in electrocatalytic materials. We studied related phenomena on model systems consisting of Pt NPs on atomically defined Co3O4(111) thin films. Chemical states and dissolution behavior of model catalysts were investigated as a function of the particle size and the electrochemical potential by ex situ emersion synchrotron radiation photoelectron spectroscopy and by online inductively coupled plasma mass spectrometry. Electronic metal-support interaction (EMSI) yields partially oxidized Ptδ+ species at the metal/support interface of metallic nanometer-sized Pt NPs. In contrast, subnanometer particles form Ptδ+ aggregates that are exclusively accompanied by subsurface Pt4+ species. Dissolution of Cox+ ions is strongly coupled to the presence of Ptδ+ and the reduction of subsurface Pt4+ species. Our findings suggest that EMSI directly affects the integrity of oxide-based electrocatalysts and may be employed to stabilize Pt NPs against sintering and dissolution.
Collapse
Affiliation(s)
- Manon Bertram
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Carolin Prössl
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michal Ronovský
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Julius Knöppel
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Matvija
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Lukáš Fusek
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Tomáš Skála
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Nataliya Tsud
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Maximilian Kastenmeier
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Vladimír Matolín
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Karl J J Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Viktor Johánek
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Josef Mysliveček
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Yaroslava Lykhach
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Olaf Brummel
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
24
|
Sandbeck DJS, Secher NM, Speck FD, Sørensen JE, Kibsgaard J, Chorkendorff I, Cherevko S. Particle Size Effect on Platinum Dissolution: Considerations for Accelerated Stability Testing of Fuel Cell Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00779] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel J. S. Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Niklas Mørch Secher
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Florian D. Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| |
Collapse
|