1
|
Zhang B, Fan K. Design and application of ferritin-based nanomedicine for targeted cancer therapy. Nanomedicine (Lond) 2025:1-20. [PMID: 39895329 DOI: 10.1080/17435889.2025.2459056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
Owing to its unique structure and favorable biocompatibility, ferritin has been widely studied as a promising drug carrier over the past two decades. Since the identification of its inherent tumor-targeting property due to unique recognition ablity of the transferrin receptor 1 (TfR1), ferritin-based nanomedicine has attracted widespread attention and triggered a research surge in the field of targeted cancer therapy. Along with progress in structure studies and modification technology, diverse strategies have been carried out to equip ferritin with on-demand functions, further improving the antitumor efficacy and in vivo safety of ferritin-based cancer therapy. In this review, we highlight the structure-based rational design of ferritin and summarize the design strategies in detail from two main perspectives: multifunctional modification and drug loading. In particular, the critical issues that need attention in the design are discussed in depth. Furthermore, we provide an overview of the latest advances in the application of ferritin-based nanomedicines in chemotherapy, phototherapy and immunotherapy, with particular emphasis on emerging therapeutic approaches among these therapies.
Collapse
Affiliation(s)
- Baoli Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Chen Y, Fan Z, Xu W, Zhu Z, Tan Z, Hu Y, Kurzina I, Cherdyntseva N, Yang WJ, Wang L. An injectable nanocomposite hydrogel with deep penetration ability for enhanced photothermal and chemotherapy. J Colloid Interface Sci 2025; 685:268-279. [PMID: 39848061 DOI: 10.1016/j.jcis.2025.01.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
The excessive extracellular matrix (ECM) in solid tumors significantly inhibits the deep penetration and homogeneous distribution of nanodrugs, which greatly reduces the therapeutic efficacy. In the present work, an injectable polyelectrolyte hydrogel (CD@IPH) containing collagenase and doxorubicin-loaded polyacrylic acid@polyaniline nanoparticles (DOX@NP) were developed for improved photothermal and chemotherapy. The collagenase is released quickly from the polyelectrolyte hydrogel in the first 12 h, effectively degrading ECM and enhancing the deep penetration and evenly distribution of DOX@NP in tumor tissues. Then, the tumor microenvironment-triggered release of DOX from DOX@NP exhibits improved photothermal and chemotherapeutic efficiency. Owing to the excellent photoacoustic and photothermal properties of polyaniline inner cores of DOX@NP, the drug penetration process can be monitored to enable the image-guided cancer therapy. Both in vitro and in vivo assays prove the superior therapeutic efficacy of collagenase-enhanced photothermal and chemotherapy. The designed nanocomposite hydrogel therefore provides a versatile drug delivery system for deep tumor synergistic therapies.
Collapse
Affiliation(s)
- Yuru Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China
| | - Ziteng Fan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China
| | - Wenya Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China
| | - Ziyi Zhu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China
| | - Zhen Tan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China
| | - Yaqin Hu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China
| | - Irina Kurzina
- Laboratory of Translational Cellular and Molecular Biomedicine, Department of Natural Compounds, Pharmaceutical and Medicinal Chemistry, Department of Chemistry, National Research Tomsk State University, Tomsk 634050 Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, Department of Natural Compounds, Pharmaceutical and Medicinal Chemistry, Department of Chemistry, National Research Tomsk State University, Tomsk 634050 Russia
| | - Wen Jing Yang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China.
| |
Collapse
|
3
|
Cassani M, Fernandes S, Pagliari S, Cavalieri F, Caruso F, Forte G. Unraveling the Role of the Tumor Extracellular Matrix to Inform Nanoparticle Design for Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409898. [PMID: 39629891 PMCID: PMC11727388 DOI: 10.1002/advs.202409898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Indexed: 01/14/2025]
Abstract
The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Stefania Pagliari
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
4
|
Zhou X, Feng S, Xu Q, Li Y, Lan J, Wang Z, Ding Y, Wang S, Zhao Q. Current advances in nanozyme-based nanodynamic therapies for cancer. Acta Biomater 2025; 191:1-28. [PMID: 39571955 DOI: 10.1016/j.actbio.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nano-catalysis materials with enzyme-like activities, which can repair the defects of natural enzyme such as harsh catalytic conditions, and harness their strengths to treat tumor. The emerging nanodynamic therapies improved drug selectivity and decreased drug tolerance, while causing efficient cell apoptosis through the generated reactive oxygen species (ROS). Nanodynamic therapies based on nanozymes can improve the complicated tumor microenvironment (TME) to reduce the defect rate of nanodynamic therapies, and provide more options for tumor treatment. This review summarized the characteristics and applications of nanozymes with different activities and the factors influencing the activity of nanozymes. We also focused on the application of nanozymes in nanodynamic therapies, including photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Moreover, we discussed the strategies for optimizing nanodynamic therapies based on nanozymes for tumor treatment in detail, and provided a systematic review of tactics for synergies with other tumor therapies. Ultimately, we analyzed the shortcomings of nanodynamic therapies based on nanozymes and the relevant research prospect, which would provide sufficient evidence and lay a foundation for further research. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literatures. (1) Recent advances in nanozyme-based nanodynamic therapies are comprehensively and systematically reviewed, and strategies to address the limitations and challenges of current therapies based on nanozymes are discussed firstly. (2) The mechanism of nanozymes in nanodynamic therapies is described for the first time. The synergistic therapies, prospects, and challenges of nanozyme-based nanodynamic therapies are innovatively discussed. 2. The scientific impact and interest to our readership. This review focuses on the recent progress of nanozyme-based nanodynamic therapies. This review indicates the way forward for the combined treatment of nanozymes and nanodynamic therapies, and lays a foundation for facilitating theoretical development in clinic.
Collapse
Affiliation(s)
- Xubin Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qingqing Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaru Lan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yiduo Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
5
|
Macone A, Cappelletti C, Incocciati A, Piacentini R, Botta S, Boffi A, Bonamore A. Challenges in Exploiting Human H Ferritin Nanoparticles for Drug Delivery: Navigating Physiological Constraints. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2016. [PMID: 39541599 DOI: 10.1002/wnan.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Over the past two decades, ferritin has emerged as a promising nanoparticle for drug delivery, catalyzing the development of numerous prototypes capable of encapsulating a wide array of therapeutic agents. These ferritin-based nanoparticles exhibit selectivity for various molecular targets and are distinguished by their potential biocompatibility, unique symmetrical structure, and highly controlled size. The hollow interior of ferritin nanoparticles allows for efficient encapsulation of diverse therapeutic agents, enhancing their delivery and effectiveness. Despite these promising features, the anticipated clinical advancements have yet to be fully realized. As a physiological protein with a central role in both health and disease, ferritin can exert unexpected effects on physiology when employed as a drug delivery system. Many studies have not thoroughly evaluated the pharmacokinetic properties of the ferritin protein shell when administered in vivo, overlooking crucial aspects such as biodistribution, clearance, cellular trafficking, and immune response. Addressing these challenges is crucial for achieving the desired transition from bench to bedside. Biodistribution studies need to account for ferritin's natural accumulation in specific organs (liver, spleen, and kidneys), which may lead to off-target effects. Moreover, the mechanisms of clearance and cellular trafficking must be elucidated to optimize the delivery and reduce potential toxicity of ferritin nanoparticles. Additionally, understanding the immune response elicited by exogenous ferritin is essential to mitigate adverse reactions and enhance therapeutic efficacy. A comprehensive understanding of these physiological constraints, along with innovative solutions, is essential to fully realize the therapeutic potential of ferritin nanoparticles paving the way for their successful clinical translation.
Collapse
Affiliation(s)
- Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Chiara Cappelletti
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Sofia Botta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Aloss K, Hamar P. Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor. Biochim Biophys Acta Rev Cancer 2024; 1879:189109. [PMID: 38750699 DOI: 10.1016/j.bbcan.2024.189109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of the nanoparticle (NP)-based anticancer therapies is still unsatisfactory due to the heterogeneity of the enhanced permeability and retention (EPR) effect. Despite the promising preclinical outcome of the pharmacological EPR enhancers, their systemic toxicity can limit their clinical application. Hyperthermia (HT) presents an efficient tool to augment the EPR by improving tumor blood flow (TBF) and vascular permeability, lowering interstitial fluid pressure (IFP), and disrupting the structure of the extracellular matrix (ECM). Furthermore, the HT-triggered intravascular release approach can overcome the EPR effect. In contrast to pharmacological approaches, HT is safe and can be focused to cancer tissues. Moreover, HT conveys direct anti-cancer effects, which improve the efficacy of the anti-cancer agents encapsulated in NPs. However, the clinical application of HT is challenging due to the heterogeneous distribution of temperature within the tumor, the length of the treatment and the complexity of monitoring.
Collapse
Affiliation(s)
- Kenan Aloss
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary.
| |
Collapse
|
7
|
Qiu N, Lv QY, Li CL, Song X, Wang YQ, Chen J, Cui HF. Optimization and mechanisms of proteolytic enzyme immobilization onto large-pore mesoporous silica nanoparticles: Enhanced tumor penetration. Int J Biol Macromol 2024; 271:132626. [PMID: 38795893 DOI: 10.1016/j.ijbiomac.2024.132626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Immobilization of proteolytic enzymes onto nanocarriers is effective to improve drug diffusion in tumors through degrading the dense extracellular matrix (ECM). Herein, immobilization and release behaviors of hyaluronidase, bromelain, and collagenase (Coll) on mesoporous silica nanoparticles (MSNs) were explored. A series of cationic MSNs (CMSNs) with large and adjustable pore sizes were synthesized, and investigated together with two anionic MSNs of different pore sizes. CMSNs4.0 exhibited the highest enzyme loading capacity for hyaluronidase and bromelain, and CMSNs4.5 was the best for Coll. High electrostatic interaction, matched pore size, and large pore volume and surface area favor the immobilization. Changes of the enzyme conformations and surface charges with pH, existence of a space around the immobilized enzymes, and the depth of the pore structures, affect the release ratio and tunability. The optimal CMSNs-enzyme complexes exhibited deep and homogeneous penetration into pancreatic tumors, a tumor model with the densest ECM, with CMSNs4.5-Coll as the best. Upon loading with doxorubicin (DOX), the CMSNs-enzyme complexes induced high anti-tumor efficiencies. Conceivably, the DOX/CMSNs4.5-NH2-Coll nanodrug exhibited the most effective tumor therapy, with a tumor growth inhibition ratio of 86.1 %. The study provides excellent nanocarrier-enzyme complexes, and offers instructive theories for enhanced tumor penetration and therapy.
Collapse
Affiliation(s)
- Nan Qiu
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Qi-Yan Lv
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Chun-Ling Li
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Xiaojie Song
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Yu-Qian Wang
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Junyang Chen
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Hui-Fang Cui
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Cui Z, Huang B, Zheng J, Tian J, Zhang W. A TME-enlightened protein-binding photodynamic nanoinhibitor for highly effective oncology treatment. Proc Natl Acad Sci U S A 2024; 121:e2321545121. [PMID: 38713621 PMCID: PMC11098098 DOI: 10.1073/pnas.2321545121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.
Collapse
Affiliation(s)
- Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jiahao Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
9
|
Fu Q, Wei C, Wang M. Transition-Metal-Based Nanozymes: Synthesis, Mechanisms of Therapeutic Action, and Applications in Cancer Treatment. ACS NANO 2024; 18:12049-12095. [PMID: 38693611 DOI: 10.1021/acsnano.4c02265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Cancer, as one of the leading causes of death worldwide, drives the advancement of cutting-edge technologies for cancer treatment. Transition-metal-based nanozymes emerge as promising therapeutic nanodrugs that provide a reference for cancer therapy. In this review, we present recent breakthrough nanozymes for cancer treatment. First, we comprehensively outline the preparation strategies involved in creating transition-metal-based nanozymes, including hydrothermal method, solvothermal method, chemical reduction method, biomimetic mineralization method, and sol-gel method. Subsequently, we elucidate the catalytic mechanisms (catalase (CAT)-like activities), peroxidase (POD)-like activities), oxidase (OXD)-like activities) and superoxide dismutase (SOD)-like activities) of transition-metal-based nanozymes along with their activity regulation strategies such as morphology control, size manipulation, modulation, composition adjustment and surface modification under environmental stimulation. Furthermore, we elaborate on the diverse applications of transition-metal-based nanozymes in anticancer therapies encompassing radiotherapy (RT), chemodynamic therapy (CDT), photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy (SDT), immunotherapy, and synergistic therapy. Finally, the challenges faced by transition-metal-based nanozymes are discussed alongside future research directions. The purpose of this review is to offer scientific guidance that will enhance the clinical applications of nanozymes based on transition metals.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Chuang Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| |
Collapse
|
10
|
Sun Q, Li Y, Shen W, Shang W, Xu Y, Yang J, Chen J, Gao W, Wu Q, Xu F, Yang Y, Yin D. Breaking-Down Tumoral Physical Barrier by Remotely Unwrapping Metal-Polyphenol-Packaged Hyaluronidase for Optimizing Photothermal/Photodynamic Therapy-Induced Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310673. [PMID: 38284224 DOI: 10.1002/adma.202310673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The therapy of solid tumors is often hindered by the compact and rigid tumoral extracellular matrix (TECM). Precise reduction of TECM by hyaluronidase (HAase) in combination with nanotechnology is promising for solid tumor therapeutics, yet remains an enormous challenge. Inspired by the treatment of iron poisoning, here a remotely unwrapping strategy is proposed of metal-polyphenol-packaged HAase (named PPFH) by sequentially injecting PPFH and a clinically used iron-chelator deferoxamine (DFO). The in situ dynamic disassembly of PPFH can be triggered by the intravenously injected DFO, resulting in the release, reactivation, and deep penetration of encapsulated HAase inside tumors. Such a cost-effective HAase delivery strategy memorably improves the subsequent photothermal and photodynamic therapy (PTT/PDT)-induced intratumoral infiltration of cytotoxic T lymphocyte cells and the cross-talk between tumor and tumor-draining lymph nodes (TDLN), thereby decreasing the immunosuppression and optimizing tumoricidal immune response that can efficiently protect mice from tumor growth, metastasis, and recurrence in multiple mouse cancer models. Overall, this work presents a proof-of-concept of the dynamic disassembly of metal-polyphenol nanoparticles for extracellular drug delivery as well as the modulation of TECM and immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yunlong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230021, China
| | - Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yujing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jinming Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230021, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, China
| |
Collapse
|
11
|
Shen J, Chen J, Qian Y, Wang X, Wang D, Pan H, Wang Y. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313406. [PMID: 38319004 DOI: 10.1002/adma.202313406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuping Qian
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
12
|
Yu B, Wang W, Zhang Y, Sun Y, Li C, Liu Q, Zhen X, Jiang X, Wu W. Enhancing the tumor penetration of multiarm polymers by collagenase modification. Biomater Sci 2024; 12:2302-2311. [PMID: 38497169 DOI: 10.1039/d3bm02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tumor penetration is a critical determinant of the therapy efficacy of nanomedicines. However, the dense extracellular matrix (ECM) in tumors significantly hampers the deep penetration of nanomedicines, resulting in large drug-untouchable areas and unsatisfactory therapy efficacy. Herein, we synthesized a third-generation PAMAM-cored multiarm copolymer and modified the polymer with collagenase to enhance its tumor penetration. Each arm of the copolymer was a diblock copolymer of poly(glutamic acid)-b-poly(carboxybetaine), in which the polyglutamic acid block with abundant side groups was used to link the anticancer agent doxorubicin through the pH-sensitive acylhydrazone linkage, and the zwitterionic poly(carboxybetaine) block provided desired water solubility and anti-biofouling capability. The collagenase was conjugated to the ends of the arms via the thiol-maleimide reaction. We demonstrated that the polymer-bound collagenase could effectively catalyze the degradation of the collagen in the tumor ECM, and consequently augmented the tumor penetration and antitumor efficacy of the drug-loaded polymers.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Weijie Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Yongmin Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Ying Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Cheng Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| |
Collapse
|
13
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
14
|
Hu A, Pu Y, Xu N, Yang H, Hu X, Sun R, Jin R, Nie Y. Hierarchically decorated magnetic nanoparticles amplify the oxidative stress and promote the chemodynamic/magnetic hyperthermia/immune therapy. Acta Biomater 2024; 173:457-469. [PMID: 37984631 DOI: 10.1016/j.actbio.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Magnetic nanoparticles (MNPs) are promising in tumor treatments due to their capacity for magnetic hyperthermia therapy (MHT), chemodynamic therapy (CDT), and immuno-related therapies, but still suffer from unsatisfactory tumor inhibition in the clinic. Insufficient hydrogen peroxide supply, glutathione-induced resistance, and high-density extracellular matrix (ECM) are the barriers. Herein, we hierarchically decorated MNPs with disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx) to form a nanosystem (MNPs-SS-R-GOx). Its outer GOx layer not only enhanced the H2O2 supply to produce .OH by Fenton reaction, but also generated stronger oxidants (ONOO-) together with the interfaced R layer. The inner S-S layer consumed glutathione to interdict its reaction with oxidants, thus enhancing CDT effects. Importantly, the generated ONOO- tripled the MMP-9 expression to induce ECM degradation, enabling much deeper penetration of MNPs and benefiting CDT, MHT, and immunotherapy. Finally, the MNPs-SS-R-GOx demonstrated a remarkable 91.7% tumor inhibition in vivo. STATEMENT OF SIGNIFICANCE: Magnetic nanoparticles (MNPs) are a promising tumor therapeutic agent but with limited effectiveness. Our hierarchical MNP design features disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx), which boosts H2O2 supply for ·OH generation in Fenton reactions, produces potent ONOO-, and enhances chemodynamic therapy via glutathione consumption. Moreover, the ONOO- facilitates the upregulation of matrix metalloprotein expression beneficial for extracellular matrix degradation, which in turn enhances the penetration of MNPs and benefits the antitumor CDT/MHT/immuno-related therapy. In vivo experiments have demonstrated an impressive 91.7% inhibition of tumor growth. This hierarchical design offers groundbreaking insights for further advancements in MNP-based tumor therapy. Its implications extend to a broader audience, encompassing those interested in material science, biology, oncology, and beyond.
Collapse
Affiliation(s)
- Ao Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Na Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China; Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Huan Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xueyi Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Ran Sun
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
15
|
Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the Tumor Microenvironment-Components, Functions and Therapeutics. Int J Mol Sci 2023; 24:17536. [PMID: 38139365 PMCID: PMC10743805 DOI: 10.3390/ijms242417536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Andrea Reszegi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
16
|
Peng W, Yue Y, Zhang Y, Li H, Zhang C, Wang P, Cao Y, Liu X, Dong S, Wu M, Yao C. Scheduled dosage regimen by irreversible electroporation of loaded erythrocytes for cancer treatment. APL Bioeng 2023; 7:046102. [PMID: 37854061 PMCID: PMC10581719 DOI: 10.1063/5.0174353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Precise control of cargo release is essential but still a great challenge for any drug delivery system. Irreversible electroporation (IRE), utilizing short high-voltage pulsed electric fields to destabilize the biological membrane, has been recently approved as a non-thermal technique for tumor ablation without destroying the integrity of adjacent collagenous structures. Due to the electro-permeating membrane ability, IRE might also have great potential to realize the controlled drug release in response to various input IRE parameters, which were tested in a red blood cell (RBC) model in this work. According to the mathematical simulation model of a round biconcave disc-like cell based on RBC shape and dielectric characteristics, the permeability and the pore density of the RBC membrane were found to quantitatively depend on the pulse parameters. To further provide solid experimental evidence, indocyanine green (ICG) and doxorubicin (DOX) were both loaded inside RBCs (RBC@DOX&ICG) and the drug release rates were found to be tailorable by microsecond pulsed electric field (μsPEF). In addition, μsPEF could effectively modulate the tumor stroma to augment therapy efficacy by increasing micro-vessel density and permeability, softening extracellular matrix, and alleviating tumor hypoxia. Benefiting from these advantages, this IRE-responsive RBC@DOX&ICG achieved a remarkably synergistic anti-cancer effect by the combination of μsPEF and chemotherapy in the tumor-bearing mice model, with the survival time increasing above 90 days without tumor burden. Given that IRE is easily adaptable to different plasma membrane-based vehicles for delivering diverse drugs, this approach could offer a general applicability for cancer treatment.
Collapse
Affiliation(s)
- Wencheng Peng
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yaqi Yue
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuting Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | | | | | | | | | | | - Shoulong Dong
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ming Wu
- Authors to whom correspondence should be addressed: and
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
17
|
Wang T, Chen G, Zhang S, Li D, Wei G, Zhao X, Liu Y, Ding D, Zhang X. Steerable Microneedles Enabling Deep Delivery of Photosensitizers and CRISPR/Cas9 Systems for Effective Combination Cancer Therapy. NANO LETTERS 2023; 23:7990-7999. [PMID: 37595030 DOI: 10.1021/acs.nanolett.3c01914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Although gene therapy has shown prospects in treating triple-negative breast cancer, it is insufficient to treat such a malignant tumor. Herein, nanoparticles (NPs)-embedded dissolving microneedles (IR780-PL/pFBXO44@MNs) with steerable and flectional property were developed to achieve the codelivery of FBXO44-targeted CRISPR/Cas9 plasmids (pFBXO44) and hydrophobic photosensitizers. For improved NP penetration in tumor tissue, collagenase@MNs were preapplied to degrade the tumor matrix. Under light irradiation, IR780 exhibited remarkable phototherapy, while the escape efficiency of NPs from lysosomes was improved. pFBXO44 was subsequently released in tumor cell cytoplasm via reducing the disulfide bonds of NPs, which could specifically knock out the FBXO44 gene to inhibit the migration and invasion of tumor cells. As a result, tumor cells were eradicated, and lung metastasis was effectively suppressed. This micelle-incorporated microneedle platform broadens the potential of combining gene editing and photo synergistic cancer therapy.
Collapse
Affiliation(s)
- Tong Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Gang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Shuangshuang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province 213003, China
| | - Guanjun Wei
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xiaomei Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Yang Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xuenong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
18
|
Wang X, Zhang H, Chen X, Wu C, Ding K, Sun G, Luo Y, Xiang D. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery. Acta Biomater 2023; 166:42-68. [PMID: 37257574 DOI: 10.1016/j.actbio.2023.05.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
In order to achieve targeted delivery of anticancer drugs, efficacy improvement, and side effect reduction, various types of nanoparticles are employed. However, their therapeutic effects are not ideal. This phenomenon is caused by tumor microenvironment abnormalities such as abnormal blood vessels, elevated interstitial fluid pressure, and dense extracellular matrix that affect nanoparticle penetration into the tumor's interstitium. Furthermore, nanoparticle properties including size, charge, and shape affect nanoparticle transport into tumors. This review comprehensively goes over the factors hindering nanoparticle penetration into tumors and describes methods for improving nanoparticle distribution by remodeling the tumor microenvironment and optimizing nanoparticle physicochemical properties. Finally, a critical analysis of future development of nanodrug delivery in oncology is further discussed. STATEMENT OF SIGNIFICANCE: This article reviews the factors that hinder the distribution of nanoparticles in tumors, and describes existing methods and approaches for improving the tumor accumulation from the aspects of remodeling the tumor microenvironment and optimizing the properties of nanoparticles. The description of the existing methods and approaches is followed by highlighting their advantages and disadvantages and put forward possible directions for the future researches. At last, the challenges of improving tumor accumulation in nanomedicines design were also discussed. This review will be of great interest to the broad readers who are committed to delivering nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Ke Ding
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Guiyin Sun
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| |
Collapse
|
19
|
Li J, Gong C, Chen X, Guo H, Tai Z, Ding N, Gao S, Gao Y. Biomimetic liposomal nanozymes improve breast cancer chemotherapy with enhanced penetration and alleviated hypoxia. J Nanobiotechnology 2023; 21:123. [PMID: 37038165 PMCID: PMC10084658 DOI: 10.1186/s12951-023-01874-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/26/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Doxorubicin (Dox) has been recommended in clinical guidelines for the standard-of-care treatment of breast cancer. However, Dox therapy faces challenges such as hypoxia, acidosis, H2O2-rich conditions and condensed extracellular matrix in TME as well as low targeted ability. METHODS We developed a nanosystem H-MnO2-Dox-Col NPs based on mesoporous manganese dioxide (H-MnO2) in which Dox was loaded in the core and collagenase (Col) was wrapped in the surface. Further the H-MnO2-Dox-Col NPs were covered by a fusion membrane (MP) of inflammation-targeted RAW264.7 cell membrane and pH-sensitive liposomes to form biomimetic MP@H-MnO2-Dox-Col for in vitro and in vivo study. RESULTS Our results shows that MP@H-MnO2-Dox-Col can increase the Dox effect with low cardiotoxicity based on multi-functions of effective penetration in tumor tissue, alleviating hypoxia in TME, pH sensitive drug release as well as targeted delivery of Dox. CONCLUSIONS This multifunctional biomimetic nanodelivery system exhibited antitumor efficacy in vivo and in vitro, thus having potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Juanjuan Li
- School of Pharmacy & Zhong Shan Hospital, Fudan University, Shanghai, 201206, China
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, P. R. China
| | - Xinlu Chen
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Huanhuan Guo
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Nan Ding
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shen Gao
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yuan Gao
- School of Pharmacy & Zhong Shan Hospital, Fudan University, Shanghai, 201206, China.
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Peng H, Yao F, Zhao J, Zhang W, Chen L, Wang X, Yang P, Tang J, Chi Y. Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20220115. [PMID: 37324035 PMCID: PMC10191003 DOI: 10.1002/exp.20220115] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Functional subcellular organelle mitochondria are emerging as a crucial player and driver of cancer. For maintaining the sites of cellular respiration, mitochondria experience production, and accumulation of reactive oxygen species (ROS) underlying oxidative damage in electron transport chain carriers. Precision medicine targeting mitochondria can change nutrient availability and redox homeostasis in cancer cells, which might represent a promising strategy for suppressing tumor growth. Herein, this review highlights how the modification capable of manipulating nanomaterials for ROS generation strategies can influence or compensate the state of mitochondrial redox homeostasis. We propose foresight to guide research and innovation with an overview of seminal work and discuss future challenges and our perspective on the commercialization of novel mitochondria-targeting agents.
Collapse
Affiliation(s)
- Haibao Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Feibai Yao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Jiaxu Zhao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Wei Zhang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Xin Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Peng Yang
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology Xidian University Xi'an Shaanxi China
| | - Jing Tang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Yudan Chi
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| |
Collapse
|
21
|
Duan S, Sun F, Qiao P, Zhu Z, Geng M, Gong X, Li Y, Yao H. Detachable Dual-Targeting Nanoparticles for Improving the Antitumor Effect by Extracellular Matrix Depletion. ACS Biomater Sci Eng 2023; 9:1437-1449. [PMID: 36795746 DOI: 10.1021/acsbiomaterials.2c01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In the tumor microenvironment (TME), the extracellular matrix (ECM) produced by cancer-associated fibroblasts (CAFs) forms a dense barrier that prevents nanodrugs from penetrating into deep tumor sites, leading to unsatisfactory therapeutic effects. Recently, it has been found that ECM depletion and using small-sized nanoparticles are effective strategies. Herein, we reported a detachable dual-targeting nanoparticle (HA-DOX@GNPs-Met@HFn) based on reducing ECM for enhancing penetration. When these nanoparticles reached the tumor site, the nanoparticles were divided into two parts in response to matrix metalloproteinase-2 overexpressed in TME, causing a decrease in the nanoparticle size from about 124 to 36 nm. One part was Met@HFn, which was detached from the surface of gelatin nanoparticles (GNPs), which effectively targeted tumor cells and released metformin (Met) under acidic conditions. Then, Met downregulated the expression of the transforming growth factor β by the adenosine monophosphate-activated protein kinase pathway to inhibit the activity of CAFs, thereby suppressing the production of ECM including α-smooth muscle actin and collagen I. The other was the small-sized hyaluronic acid-modified doxorubicin prodrug with autonomous targeting ability, which was gradually released from GNPs and internalized into deeper tumor cells. Intracellular hyaluronidases triggered the release of doxorubicin (DOX), which killed tumor cells by inhibiting DNA synthesis. The combination of size transformation and ECM depletion enhanced the penetration and accumulation of DOX in solid tumors. Therefore, the tumor chemotherapy effect was greatly improved.
Collapse
Affiliation(s)
- Songchao Duan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Fangfang Sun
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Pan Qiao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Meilin Geng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Xiaobao Gong
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Ying Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Hanchun Yao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, 100 Science Road, Zhengzhou 450001, China
| |
Collapse
|
22
|
Kolarikova M, Hosikova B, Dilenko H, Barton-Tomankova K, Valkova L, Bajgar R, Malina L, Kolarova H. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Med Res Rev 2023. [PMID: 36757198 DOI: 10.1002/med.21935] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023]
Abstract
Photodynamic therapy is an alternative treatment mainly for cancer but also for bacterial infections. This treatment dates back to 1900 when a German medical school graduate Oscar Raab found a photodynamic effect while doing research for his doctoral dissertation with Professor Hermann von Tappeiner. Unexpectedly, Raab revealed that the toxicity of acridine on paramecium depends on the intensity of light in his laboratory. Photodynamic therapy is therefore based on the administration of a photosensitizer with subsequent light irradiation within the absorption maxima of this substance followed by reactive oxygen species formation and finally cell death. Although this treatment is not a novelty, there is an endeavor for various modifications to the therapy. For example, selectivity and efficiency of the photosensitizer, as well as irradiation with various types of light sources are still being modified to improve final results of the photodynamic therapy. The main aim of this review is to summarize anticancer and antibacterial modifications, namely various compounds, approaches, and techniques, to enhance the effectiveness of photodynamic therapy.
Collapse
Affiliation(s)
- Marketa Kolarikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hosikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Barton-Tomankova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Valkova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukas Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
23
|
Zhu Y, Zhu Y, Cao T, Liu X, Liu X, Yan Y, Shi Y, Wang JC. Ferritin-based nanomedicine for disease treatment. MEDICAL REVIEW (2021) 2023; 3:49-74. [PMID: 37724111 PMCID: PMC10471093 DOI: 10.1515/mr-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 09/20/2023]
Abstract
Ferritin is an endogenous protein which is self-assembled by 24 subunits into a highly uniform nanocage structure. Due to the drug-encapsulating ability in the hollow inner cavity and abundant modification sites on the outer surface, ferritin nanocage has been demonstrated great potential to become a multi-functional nanomedicine platform. Its good biocompatibility, low toxicity and immunogenicity, intrinsic tumor-targeting ability, high stability, low cost and massive production, together make ferritin nanocage stand out from other nanocarriers. In this review, we summarized ferritin-based nanomedicine in field of disease diagnosis, treatment and prevention. The different types of drugs to be loaded in ferritin, as well as drug-loading methods were classified. The strategies for site-specific and non-specific functional modification of ferritin were investigated, then the application of ferritin for disease imaging, drug delivery and vaccine development were discussed. Finally, the challenges restricting the clinical translation of ferritin-based nanomedicines were analyzed.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuefeng Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tianmiao Cao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Laboratory of Innovative Formulations and Pharmaceutical Excipients, Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|
24
|
Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Mater Today Bio 2022; 16:100364. [PMID: 35875197 PMCID: PMC9305626 DOI: 10.1016/j.mtbio.2022.100364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Nanomedicines have shown a promising strategy for cancer therapy because of their higher safety and efficiency relative to small-molecule drugs, while the dense extracellular matrix (ECM) in tumors often acts as a physical barrier to hamper the accumulation and diffusion of nanoparticles, thus compromising the anticancer efficacy. To address this issue, two major strategies including degrading ECM components and inhibiting ECM formation have been adopted to enhance the therapeutic efficacies of nanomedicines. In this review, we summarize the recent progresses of tumor ECM modulating strategies for enhanced antitumor therapy of nanomedicines. Through degrading ECM components or inhibiting ECM formation, the accumulation and diffusion of nanoparticles in tumors can be facilitated, leading to enhanced efficacies of chemotherapy and phototherapy. Moreover, the ECM degradation can improve the infiltration of immune cells into tumor tissues, thus achieving strong immune response to reject tumors. The adoptions of these two ECM modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are discussed in detail. A conclusion, current challenges and outlook are then given. Extracellular matrix modulating strategies have been adopted to enhance the therapeutic efficacies of nanomedicines. Degrading extracellular matrix components or inhibiting extracellular matrix formation can improve the accumulation and diffusion of nanoparticles in tumors and the infiltration of immune cells into tumor tissues. The adoptions of two extracellular matrix modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are summarized.
Collapse
|
25
|
Cheng Y, Zheng X, Zhang L, Zhao J, Hu L, Wang S. Enhanced photothermal and chemotherapy of pancreatic tumors by degrading the extracellular matrix. Colloids Surf B Biointerfaces 2022; 221:113010. [PMID: 36375292 DOI: 10.1016/j.colsurfb.2022.113010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
|
26
|
Ramachandran M, Ma Z, Lin K, De Souza C, Li Y. Transformable nanoparticles to bypass biological barriers in cancer treatment. NANOSCALE ADVANCES 2022; 4:4470-4480. [PMID: 36341301 PMCID: PMC9595105 DOI: 10.1039/d2na00485b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/03/2022] [Indexed: 06/02/2023]
Abstract
Nanomedicine based drug delivery platforms provide an interesting avenue to explore for the future of cancer treatment. Here we discuss the barriers for drug delivery in cancer therapeutics and how nanomaterials have been designed to bypass these blockades through stimuli responsive transformation in the most recent update. Nanomaterials that address the challenges of each step provide a promising solution for new cancer therapeutics.
Collapse
Affiliation(s)
- Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, University of California-Davis USA
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong China
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China Qingdao China
| | | | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, University of California-Davis USA
| |
Collapse
|
27
|
Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022; 189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines overcome the pharmacokinetic limitations of traditional drug formulations and have promising prospect in cancer treatment. However, nanomedicine delivery in vivo is still facing challenges from the complex physiological environment. For the purpose of effective tumor therapy, they should be designed to guarantee the five features principle, including long blood circulation, efficient tumor accumulation, deep matrix penetration, enhanced cell internalization and accurate drug release. To ensure the excellent performance of the designed nanomedicine, it would be better to monitor the drug delivery process as well as the therapeutic effects by real-time imaging. In this review, we summarize strategies in developing nanomedicines for efficiently meeting the five features of drug delivery, and the role of several imaging modalities (fluorescent imaging (FL), magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic imaging (PAI), positron emission tomography (PET), and electron microscopy) in tracing drug delivery and therapeutic effect in vivo based on five features principle.
Collapse
Affiliation(s)
- Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
28
|
Hollow Mesoporous CeO2-Based Nanoenzymes Fabrication for Effective Synergistic Eradication of Malignant Breast Cancer via Photothermal–Chemodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14081717. [PMID: 36015343 PMCID: PMC9415169 DOI: 10.3390/pharmaceutics14081717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
CeO2-based nanoenzymes present a very promising paradigm in cancerous therapy, as H2O2 can be effectively decomposed under the electron transmit between Ce3+ and Ce4+. However, the limitations of endogenous H2O2 and intracellular low Fenton-like reaction rate lead to single unsatisfied chemodynamic therapy (CDT) efficacy. Other therapeutic modalities combined with chemodynamic therapy are generally used to enhance the tumor eradiation efficacy. Here, we have synthesized a novel hollow pH-sensitive CeO2 nanoenzyme after a cavity is loaded with indocyanine green (ICG), as well as with surface modification of tumor targeting peptides, Arg-Gly-Asp (denoted as HCeO2@ICG-RGD), to successfully target tumor cells via αvβ3 recognition. Importantly, in comparison with single chemodynamic therapy, a large amount of reactive oxygen species in cytoplasm were induced by enhanced chemodynamic therapy with photothermal therapy (PTT). Furthermore, tumor cells were efficiently killed by a combination of photothermal and chemodynamic therapy, revealing that synergistic therapy was successfully constructed. This is mainly due to the precise delivery of ICG and release after HCeO2 decomposition in cytoplasm, in which effective hyperthermia generation was found under 808 nm laser irradiation. Meanwhile, our HCeO2@ICG-RGD can act as a fluorescent imaging contrast agent for an evaluation of tumor tissue targeting capability in vivo. Finally, we found that almost all tumors in HCeO2@ICG-RGD+laser groups were completely eradicated in breast cancer bearing mice, further proving the effective synergistic effect in vivo. Therefore, our novel CeO2-based PTT agents provide a proof-of-concept argumentation of tumor-precise multi-mode therapies in preclinical applications.
Collapse
|
29
|
Zhu X, Xu N, Zhang L, Wang D, Zhang P. Novel design of multifunctional nanozymes based on tumor microenvironment for diagnosis and therapy. Eur J Med Chem 2022; 238:114456. [DOI: 10.1016/j.ejmech.2022.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022]
|
30
|
Zhang X, Jiang J, Yu Q, Zhou P, Yang S, Xia J, Deng T, Yu C. ZIF-based carbon dots with lysosome-Golgi transport property as visualization platform for deep tumour therapy via hierarchical size/charge dual-transform and transcytosis. NANOSCALE 2022; 14:8510-8524. [PMID: 35660835 DOI: 10.1039/d2nr02134j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The poor penetration of nanomaterials in solid tumours and difficulty in monitoring their penetration depth are major obstacles in their application for the treatment of solid tumours. Herein, pH-responsive carbon dots (ZCD) based on a zeolitic imidazolate framework (ZIF-8) were fabricated to achieve the deep delivery of the chemotherapeutic doxorubicin (DOX) via a hierarchical size/charge dual-transformation and transcytosis. The as-prepared ZCD accumulated in the solid tumour and the acidic tumour microenvironment further triggered its decomposition. Firstly, ZCD was decomposed by the weakly acidic extracellular microenvironment of the solid tumour, enabling it to transform into small and neutrally charged particles. Subsequently, these particles were endocytosed by lysosomes, and further disintegrated into smaller and positively charged particles, which could target the Golgi apparatus. Consequently, ZCD delivered DOX deep into the solid tumour via a size-shrinking strategy and Golgi-mediated transcytosis, thus significantly improving its antitumour efficacy. In addition, carbonization endowed ZCD with superior fluorescence property, which was enhanced in the acidic microenvironment, thus improving the sensitivity and accuracy of ex vivo monitoring of the penetration depth of the nanomedicine in real time. Collectively, our results confirmed that the carbon dots obtained via the direct carbonization of ZIF-8 simultaneously exhibited enhanced deep penetration into solid tumours and fluorescence, which could be monitored, and that the carbonization of functional materials is effective to enhance their fluorescence, and further broaden their applications.
Collapse
Affiliation(s)
- Xianming Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
| | - Junhao Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Qinghua Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Ping Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Shiyu Yang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Jiashan Xia
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Tao Deng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| |
Collapse
|
31
|
Jiao J, He J, Li M, Yang J, Yang H, Wang X, Yang S. A porphyrin-based metallacage for enhanced photodynamic therapy. NANOSCALE 2022; 14:6373-6383. [PMID: 35411893 DOI: 10.1039/d1nr08293k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we designed an effective nanoplatform to improve the photodynamic therapy (PDT) of porphyrins. Combining a porphyrin-based metallacage (PM), hyaluronidase (HAase) and DSPE-mPEG2000 together, the nanoparticle (PM@HAase-mPEG) showed enhanced PDT efficacy. The PM improved the stability of the porphyrin, avoided its aggregation and provided cavities to concentrate oxygen molecules, which was beneficial for enhancing PDT. HAase degraded HA to increase the intracellular accumulation of nanoparticles, normalized blood vessels and relieved hypoxia in tumors. PM@HAase-mPEG inhibited the growth of tumors in a 4T1 mouse model by the generated singlet oxygen with excellent PDT efficacy. This study resolved the problems of the instability of PSs, less cellular accumulation of drugs, and tumor hypoxia that limited the anti-tumor application of PDT.
Collapse
Affiliation(s)
- Jingjing Jiao
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Jing He
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Mengmeng Li
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Jingxia Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaoqing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
32
|
Bidan N, Lores S, Vanhecke A, Nicolas V, Domenichini S, López R, de la Fuente M, Mura S. Before in vivo studies: In vitro screening of sphingomyelin nanosystems using a relevant 3D multicellular pancreatic tumor spheroid model. Int J Pharm 2022; 617:121577. [PMID: 35167901 DOI: 10.1016/j.ijpharm.2022.121577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Sphingomyelin nanosystems have already shown to be promising carriers for efficient delivery of anticancer drugs. For further application in the treatment of pancreatic tumor, the investigation on relevant in vitro models able to reproduce its physio-pathological complexity, is mandatory. Accordingly, a 3D heterotype spheroid model of pancreatic tumor has been herein constructed to investigate the potential of bare and polyethylene glycol-modified lipids nanosystems in terms of their ability to penetrate the tumor mass and deliver drugs. Regardless of their surface properties, the lipid nanosystems successfully diffused through the spheroid without inducing toxicity, showing a clear safety profile. Loading of the bare nanosystems with a lipid prodrug of gemcitabine was used to evaluate their therapeutic potential. While the nanosystems were more effective than the free drug on 2D cell monocultures, this advantage, despite their efficient penetration capacity, was lost in the 3D tumor model. The latter, being able to mimic the tumor and its microenvironment, was capable to provide a more realistic information on the cell sensitivity to treatments. These results highlight the importance of using appropriate 3D tumour models as tools for proper in vitro evaluation of nanomedicine efficacy and their timely optimisation, so as to identify the best candidates for later in vivo evaluation.
Collapse
Affiliation(s)
- Nadege Bidan
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F92296 Châtenay-Malabry cedex, France
| | - Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain
| | - Aure Vanhecke
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F92296 Châtenay-Malabry cedex, France
| | - Valérie Nicolas
- UMS-IPSIT MIPSIT Microscopy facility, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 92296, Châtenay-Malabry, France
| | - Severine Domenichini
- UMS-IPSIT MIPSIT Microscopy facility, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 92296, Châtenay-Malabry, France
| | - Rafael López
- Translational Medical Oncology group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain.
| | - Simona Mura
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F92296 Châtenay-Malabry cedex, France.
| |
Collapse
|
33
|
Chi Y, Sun P, Gao Y, Zhang J, Wang L. Ion Interference Therapy of Tumors Based on Inorganic Nanoparticles. BIOSENSORS 2022; 12:100. [PMID: 35200360 PMCID: PMC8870137 DOI: 10.3390/bios12020100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
As an essential substance for cell life activities, ions play an important role in controlling cell osmotic pressure balance, intracellular acid-base balance, signal transmission, biocatalysis and so on. The imbalance of ion homeostasis in cells will seriously affect the activities of cells, cause irreversible damage to cells or induce cell death. Therefore, artificially interfering with the ion homeostasis in tumor cells has become a new means to inhibit the proliferation of tumor cells. This treatment is called ion interference therapy (IIT). Although some molecular carriers of ions have been developed for intracellular ion delivery, inorganic nanoparticles are widely used in ion interference therapy because of their higher ion delivery ability and higher biocompatibility compared with molecular carriers. This article reviewed the recent development of IIT based on inorganic nanoparticles and summarized the advantages and disadvantages of this treatment and the challenges of future development, hoping to provide a reference for future research.
Collapse
Affiliation(s)
- Yongjie Chi
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Sun
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Gao
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jing Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lianyan Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
34
|
Ding M, Zhang Y, Li J, Pu K. Bioenzyme-based nanomedicines for enhanced cancer therapy. NANO CONVERGENCE 2022; 9:7. [PMID: 35119544 PMCID: PMC8816986 DOI: 10.1186/s40580-022-00297-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/04/2022] [Indexed: 05/09/2023]
Abstract
Bioenzymes that catalyze reactions within living systems show a great promise for cancer therapy, particularly when they are integrated with nanoparticles to improve their accumulation into tumor sites. Nanomedicines can deliver toxic bioenzymes into cancer cells to directly cause their death for cancer treatment. By modulating the tumor microenvironment, such as pH, glucose concentration, hypoxia, redox levels and heat shock protein expression, bioenzyme-based nanomedicines play crucial roles in improving the therapeutic efficacy of treatments. Moreover, bioenzyme-mediated degradation of the major components in tumor extracellular matrix greatly increases the penetration and retention of nanoparticles in deep tumors and infiltration of immune cells into tumor tissues, thus enhancing the efficacies of chemotherapy, phototherapy and immunotherapy. In this review, we summarize the recent progresses of bioenzyme-based nanomedicines for enhanced cancer therapy. The design and working mechanisms of the bioenzyme-based nanomedicines to achieve enhanced chemotherapy, photothermal therapy, photodynamic therapy, chemodynamic therapy, radiotherapy and immunotherapy are introduced in detail. At the end of this review, a conclusion and current challenges and perspectives in this field are given.
Collapse
Affiliation(s)
- Mengbin Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yijing Zhang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| |
Collapse
|
35
|
Xu X, Wu Y, Qian X, Wang Y, Wang J, Li J, Li Y, Zhang Z. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Adv Healthc Mater 2022; 11:e2101428. [PMID: 34706400 DOI: 10.1002/adhm.202101428] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Indexed: 01/04/2023]
Abstract
The dense and heterogeneous physical network of the extracellular matrix (ECM) in tumors represents a formidable barrier that limits intratumor drug delivery and the therapeutic efficacy of many anticancer therapies. Here, the two major nanomedicine strategies to circumvent intratumor ECM barriers: regulating the physiochemical properties of nanomedicines and remodeling the components and structure of the ECM are summarized. Nanomedicines can be rationally regulated by optimizing physiochemical properties or designed with biomimetic features to promote ECM permeation capability. Meanwhile, they can also be designed to remodel the ECM by modulating signaling pathways or destroying the components and architecture of the ECM via chemical, biological, or physical treatments. These efforts produce profound improvements in intratumor drug delivery and anticancer efficacy. Moreover, to aid in their anticancer efficacy, feasible approaches for improving ECM-circumventing nanomedicines are proposed.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Yao Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Xindi Qian
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Yuqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
36
|
Chung SW, Xie Y, Suk JS. Overcoming physical stromal barriers to cancer immunotherapy. Drug Deliv Transl Res 2021; 11:2430-2447. [PMID: 34351575 PMCID: PMC8571040 DOI: 10.1007/s13346-021-01036-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy has emerged as an unprecedented hope for the treatment of notoriously refractory cancers. Numerous investigational drugs and immunotherapy-including combination regimens are under preclinical and clinical investigation. However, only a small patient subpopulation across different types of cancer responds to the therapy due to the presence of several mechanisms of resistance. There have been extensive efforts to overcome this limitation and to expand the patient population that could be benefited by this state-of-the-art therapeutic modality. Among various causes of the resistance, we here focus on physical stromal barriers that impede the access of immunotherapeutic drug molecules and/or native and engineered immune cells to cancer tissues and cells. Two primary stromal barriers that contribute to the resistance include aberrant tumor vasculatures and excessive extracellular matrix build-ups that restrict extravasation and infiltration, respectively, of molecular and cellular immunotherapeutic agents into tumor tissues. Here, we review the features of these barriers that limit the efficacy of immunotherapy and discuss recent advances that could potentially help immunotherapy overcome the barriers and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Seung Woo Chung
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 602921231, USA
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yunxuan Xie
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 602921231, USA
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, 21218, USA
| | - Jung Soo Suk
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 602921231, USA.
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, 21218, USA.
| |
Collapse
|
37
|
Wan Y, Fu LH, Li C, Lin J, Huang P. Conquering the Hypoxia Limitation for Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103978. [PMID: 34580926 DOI: 10.1002/adma.202103978] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) has aroused great research interest in recent years owing to its high spatiotemporal selectivity, minimal invasiveness, and low systemic toxicity. However, due to the hypoxic nature characteristic of many solid tumors, PDT is frequently limited in therapeutic effect. Moreover, the consumption of O2 during PDT may further aggravate the tumor hypoxic condition, which promotes tumor proliferation, metastasis, and invasion resulting in poor prognosis of treatment. Therefore, numerous efforts have been made to increase the O2 content in tumor with the goal of enhancing PDT efficacy. Herein, these strategies developed in past decade are comprehensively reviewed to alleviate tumor hypoxia, including 1) delivering exogenous O2 to tumor directly, 2) generating O2 in situ, 3) reducing tumor cellular O2 consumption by inhibiting respiration, 4) regulating the TME, (e.g., normalizing tumor vasculature or disrupting tumor extracellular matrix), and 5) inhibiting the hypoxia-inducible factor 1 (HIF-1) signaling pathway to relieve tumor hypoxia. Additionally, the O2 -independent Type-I PDT is also discussed as an alternative strategy. By reviewing recent progress, it is hoped that this review will provide innovative perspectives in new nanomaterials designed to combat hypoxia and avoid the associated limitation of PDT.
Collapse
Affiliation(s)
- Yilin Wan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chunying Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
38
|
Tang L, Mei Y, Shen Y, He S, Xiao Q, Yin Y, Xu Y, Shao J, Wang W, Cai Z. Nanoparticle-Mediated Targeted Drug Delivery to Remodel Tumor Microenvironment for Cancer Therapy. Int J Nanomedicine 2021; 16:5811-5829. [PMID: 34471353 PMCID: PMC8403563 DOI: 10.2147/ijn.s321416] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022] Open
Abstract
Advanced research has revealed the crucial role of tumor microenvironment (TME) in tumorigenesis. TME consists of a complicated network with a variety of cell types including endothelial cells, pericytes, immune cells, cancer-associated fibroblasts (CAFs), cancer stem cells (CSCs) as well as the extracellular matrix (ECM). The TME-constituting cells interact with the cancerous cells through plenty of signaling mechanisms and pathways in a dynamical way, participating in tumor initiation, progression, metastasis, and response to therapies. Hence, TME is becoming an attractive therapeutic target in cancer treatment, exhibiting potential research interest and clinical benefits. Presently, the novel nanotechnology applied in TME regulation has made huge progress. The nanoparticles (NPs) can be designed as demand to precisely target TME components and to inhibit tumor progression through TME modulation. Moreover, nanotechnology-mediated drug delivery possesses many advantages including prolonged circulation time, enhanced bioavailability and decreased toxicity over traditional therapeutic modality. In this review, update information on TME remodeling through NPs-based targeted drug delivery strategies for anticancer therapy is summarized.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yonggang Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zihao Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
39
|
Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021; 175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The complexity and diversity of the biochemical processes that occur during tumorigenesis and metastasis are frequently over-simplified in the traditional in vitro cell cultures. Two-dimensional cultures limit researchers' experimental observations and frequently give rise to misleading and contradictory results. Therefore, in order to overcome the limitations of in vitro studies and bridge the translational gap to in vivo applications, 3D models of cancer were developed in the last decades. The three dimensions of the tumor, including its cellular and extracellular microenvironment, are recreated by combining co-cultures of cancer and stromal cells in 3D hydrogel-based growth factors-inclusive scaffolds. More complex 3D cultures, containing functional blood vasculature, can integrate in the system external stimuli (e.g. oxygen and nutrient deprivation, cytokines, growth factors) along with drugs, or other therapeutic compounds. In this scenario, cell signaling pathways, metastatic cascade steps, cell differentiation and self-renewal, tumor-microenvironment interactions, and precision and personalized medicine, are among the wide range of biological applications that can be studied. Here, we discuss a broad variety of strategies exploited by scientists to create in vitro 3D cancer models that resemble as much as possible the biology and patho-physiology of in vivo tumors and predict faithfully the treatment outcome.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Sahar Israeli Dangoor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rodriguez Ajamil
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lena Neufeld
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniella Vaskovich-Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pradip Dey
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noa Reisman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
40
|
Zhao Q, Zheng X, Xing L, Tang Y, Zhou X, Hu L, Yao W, Yan Z. 2D Co 3O 4 stabilizing Rh nano composites developed for visual sensing bioactive urea and toxic p-aminophenol in practice by synergetic-reinforcing oxidase activity. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:125019. [PMID: 33421875 DOI: 10.1016/j.jhazmat.2020.125019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
To enlarge the perspective of nanozyme, 2-dimensional Co3O4 stabilizing Rh nano composite (2D Co3O4@Rh NC) was identified and developed first by one-pot surfactant-aided oxido-reduction. By virtue of the synergetic-reinforcing oxidase activity between 2D Co3O4 substrate and Rh nano particles, the obtained 2D Co3O4@Rh NC could catalyze the oxidation of chromogenic substrate 3,3',5,5,'-tetramethylbenzidine (TMB) to blue oxTMB with quite a low Michaelis-Menten constant (Km) of 0.018 mM and a quick vmax of 6.45 × 10-8 M s-1, expressing superior oxidase-like catalysis with a wide temperature range from 20 to 60 °C. Importantly, either bioactive urea or toxic p-aminophenol (p-Ap) could exclusively alter the existed state of oxTMB with differentiable color changes. Under the optimized conditions, 2D Co3O4@Rh NC was successfully applied for ratiometric colorimetric sensing urea and p-Ap in environmental water, soil and urine samples with low detection limits (1.1 μM for urea and 0.68 μM for p-Ap) and satisfactory recoveries (96.0-105.8%). The synergetic enhanced oxidase-like activity of 2D Co3O4@Rh NC and the different reaction mechanisms of the 2D Co3O4@Rh NC-TMB system to urea and p-Ap were investigated. Not only does the work provide an efficient way for sensing organic pollution of p-Ap, it will offer an efficient potential for diagnosing urea-related diseases on clinical medical testing in future.
Collapse
Affiliation(s)
- Qi Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaoyu Zheng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lin Xing
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yulian Tang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuemei Zhou
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenli Yao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
41
|
Shao Y, Wang Z, Hao Y, Zhang X, Wang N, Chen K, Chang J, Feng Q, Zhang Z. Cascade Catalytic Nanoplatform Based on "Butterfly Effect" for Enhanced Immunotherapy. Adv Healthc Mater 2021; 10:e2002171. [PMID: 33448146 DOI: 10.1002/adhm.202002171] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 12/11/2022]
Abstract
The unique tumor microenvironment (TME) characteristics such as immunosuppression impeded traditional cancer treatments. In contrast, developing cascade catalytic nanoplatforms by fully making use of substances in TME for cancer therapy may deserve full credit. Herein, a cascade catalytic nanoplatform based on glucose oxidase (GOD) modified mesoporous iron oxide nanoparticles (IONP) loaded with Artemisinin (ART) is developed, which is designed as IONP-GOD@ART. GOD can catalyze the oxidization of glucose into gluconic acid and H2 O2 , which not only realizes tumor starvation therapy, but also provides H2 O2 for IONP mediated Fenton reaction. Simultaneously, mesoporous IONP releases Fe2+ and Fe3+ ions in acidic TME. On the one hand, iron ions undergo Fenton reaction to generate hydroxyl radicals for chemodynamic therapy. On the other hand, the endoperoxide bridge in ART is broken in presence of Fe2+ and further generates reactive oxygen species (ROS) to achieve therapeutic purpose. In this sense, IONP-GOD@ART manipulates TME characteristics and leads to "butterfly effect", which brings out a large amount of ROS for eliciting immunogenic cell death, inducing M1-TAMs polarization, and further reprogramming immunosuppressive TME for enhanced immunotherapy. By this delicate design, the cascade catalytic nanoplatform of IONP-GOD@ART realizes potent cancer immunotherapy for tumor regression and metastasis prevention.
Collapse
Affiliation(s)
- Yanjiang Shao
- School of Pharmaceutical Sciences Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Henan Province Zhengzhou 450001 China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Henan Province Zhengzhou 450001 China
| | - Zeying Wang
- School of Pharmaceutical Sciences Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 P. R. China
| | - Yutong Hao
- School of Pharmaceutical Sciences Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 P. R. China
| | - Xueli Zhang
- School of Pharmaceutical Sciences Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 P. R. China
| | - Ning Wang
- School of Pharmaceutical Sciences Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 P. R. China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital of Zhengzhou University No 1 Jianshe East Road Zhengzhou 450052 China
| | - Junbiao Chang
- School of Chemistry and Molecular Engineering Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 China
| | - Qianhua Feng
- School of Pharmaceutical Sciences Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Henan Province Zhengzhou 450001 China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Henan Province Zhengzhou 450001 China
- School of Chemistry and Molecular Engineering Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Henan Province Zhengzhou 450001 China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Henan Province Zhengzhou 450001 China
| |
Collapse
|
42
|
Ma Y, Dong Y, Li X, Wang F, Zhang Y. Tumor-Penetrating Peptide-Functionalized Ferritin Enhances Antitumor Activity of Paclitaxel. ACS APPLIED BIO MATERIALS 2021; 4:2654-2663. [DOI: 10.1021/acsabm.0c01613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yuanmeng Ma
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yixin Dong
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xun Li
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fei Wang
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yu Zhang
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
43
|
Sun Z, Wang X, Liu J, Wang Z, Wang W, Kong D, Leng X. ICG/l-Arginine Encapsulated PLGA Nanoparticle-Thermosensitive Hydrogel Hybrid Delivery System for Cascade Cancer Photodynamic-NO Therapy with Promoted Collagen Depletion in Tumor Tissues. Mol Pharm 2021; 18:928-939. [PMID: 33427470 DOI: 10.1021/acs.molpharmaceut.0c00937] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is promising for clinical cancer therapy; however, the efficacy was limited as an individual treatment regimen. Here, an approach synergistically combining PDT and nitric oxide (NO) gas therapy along with destruction of the tumor extracellular matrix (ECM) was presented to eliminate cancer. Specifically, the NO donor l-arginine (l-Arg) and the photosensitizer indocyanine green (ICG) were co-encapsulated in poly(lactic-glycolic acid) (PLGA) nanoparticles and then loaded into the poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) hydrogel to develop an injectable, thermosensitive dual drug delivery system (PLGA@ICG@l-Arg/Gel). Significantly, reactive oxygen species (ROS) produced by PLGA@ICG@l-Arg/Gel under near-infrared (NIR) light irradiation could not only result in the apoptosis of cancer cells but also oxidize l-Arg to generate NO, which could suppress the proliferation of cancer cells. Moreover, ROS could further oxidize NO to generate peroxynitrite anions (ONOO-). ONOO- could activate matrix metalloproteinases (MMPs), which notably degraded collagen in ECM so as to damage the tumor microenvironment. PLGA@ICG@l-Arg/Gel significantly increased the antitumor efficacy against highly malignant 4T1 tumors in mice. Taken together, PLGA@ICG@l-Arg/Gel is a multifunctional platform that provides a novel strategy for cancer treatment with cascade amplification of the ROS oxidation effect, which holds great potential in clinical translation.
Collapse
Affiliation(s)
- Zhiting Sun
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxiao Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.,Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
44
|
Yang H, Tong Z, Sun S, Mao Z. Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers. J Control Release 2020; 328:28-44. [PMID: 32858072 DOI: 10.1016/j.jconrel.2020.08.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Nanomedicines for antitumour therapy have been widely studied in recent decades, but only a few have been used in clinical applications. One of the most important reasons is the poor tumour permeability of the nanomedicines. In this three-part review, intravascular, transvascular and extravascular transport were introduced one by one according to their roles in the overall process of nanomedicine transport into tumours. Transportation obstacles, such as elevated interstitial fluid pressure (IFP), abnormal blood vessels, dense tumour extracellular matrix (ECM) and binding site barriers (BSB), were each discussed in the context of the respective transport processes. Furthermore, homologous resolution strategies were summarized on the basis of each transportation obstacle, such as the normalization of blood vessels, regulation of the tumour microenvironment (TME) and application of transformable nanoparticles. At the end of this review, we propose holistic, concrete, and innovative views for better tumour penetration of nanomedicines.
Collapse
Affiliation(s)
- Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shichao Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
45
|
Li Y, Liu Y, Du B, Cheng G. Reshaping Tumor Blood Vessels to Enhance Drug Penetration with a Multistrategy Synergistic Nanosystem. Mol Pharm 2020; 17:3151-3164. [PMID: 32787273 DOI: 10.1021/acs.molpharmaceut.0c00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Genyang Cheng
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|