1
|
Wan H, Deng K, Huang Z, Yang Y, Jing B, Feng Y, Li Y, Liu Y, Lu M, Zhao X. Pathogen-Mimicking Nanoparticles Based on Rigid Nanomaterials as an Efficient Subunit Vaccine Delivery System for Intranasal Immunization. Adv Healthc Mater 2024; 13:e2401120. [PMID: 38888501 DOI: 10.1002/adhm.202401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Despite the safety profile of subunit vaccines, the inferior immunogenicity hinders their application in the nasal cavity. This study introduces a novel antigen delivery and adjuvant system utilizing mucoadhesive chitosan-catechol (Chic) on silica spiky nanoparticles (Ssp) to enhance immunity through multiple mechanisms. The Chic functionalizes the Ssp surface and incorporates with SARS-CoV-2 spike protein receptor-binding domain (RBD) and toll-like receptor (TLR)9 agonist unmethylated cytosine-guanine (CpG) motif, forming uniform virus-like nanoparticles (Ssp-Chic-RBD-CpG) via electrostatic and covalent interactions. Ssp-Chic-RBD-CpG, mimicking the morphology and function of inactive virions, effectively prolongs the retention time of RBD in the nasal mucosa by 3.92-fold compared to RBD alone, enhances the maturation of dendritic cells (DCs), and facilitates the antigen trafficking to the draining lymph nodes, which subsequently induces a stronger mucosal immunity. Mechanistically, the enhanced chemokine chemokine (C-C motif) ligand 20 (CCL20)-driven DCs recruitment and maturation by Ssp-Chic-RBD-CpG are evidenced by a cell co-culture model. In addition, the overexpression of TLR4/9 and activation of MYD88/NF-κB signaling pathway in activation of DCs are observed. Proof of principle is obtained for RBD, but similar delivery mechanisms can be applied in other protein-based subunit vaccines as well when intranasal administration is needed.
Collapse
Affiliation(s)
- Hongping Wan
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Deng
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengqun Huang
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunhan Yang
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yumei Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Yuanfeng Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinghong Zhao
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
2
|
Deng K, Huang Z, Jing B, Zhu L, Feng Y, Jiang Q, Xu Z, Wan H, Zhao X. Mucoadhesive chitosan-catechol as an efficient vaccine delivery system for intranasal immunization. Int J Biol Macromol 2024; 273:133008. [PMID: 38852736 DOI: 10.1016/j.ijbiomac.2024.133008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The mucosal barrier and scavenging effect of the mucosal layer are two main obstacles in inducing mucosal immunization. To overcome these obstacles, we synthesized a bio-inspired mucoadhesive material, chitosan-catechol (ChiC), for surface modification of inactive porcine epidemic diarrhea virus (PEDV). Studies have revealed that PEDV particles can be facilely and mildly modified by Chi-C forming Chi-C-PEDV nanoparticles (Chic-Ps) through the covalent and electrostatic bond, which effectively prolongs the retention time of PEDV in the nasal mucosa. The cell co-culture model demonstrated that Chic-Ps exhibit enhanced recruitment of dendritic cells via the secretion of stimulating chemokine CCL20 and improving antigen permeability by disruption the distribution of ZO-1 protein in epithelial cells. Additionally, the flow cytometry (FCM) analysis revealed that Chic-Ps facilitate trafficking to lymph nodes and induce stronger cellular and humoral immune responses compared to unmodified PEDV. Notably, Chic-Ps induced a higher level of PEDV neutralizing antibody was induced by Chic-Ps in the nasal washes, as confirmed by a plaque reduction neutralization test. These results demonstrate that Chi-C is a promising nasal delivery system for vaccines. Proof of principle was obtained for inactivated PEDV, but similar delivery mechanisms could be applied in other vaccines when intranasal administration is needed.
Collapse
Affiliation(s)
- Kai Deng
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengqun Huang
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yumei Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Qin Jiang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Wan
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinghong Zhao
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Deng J, Wei R, Qiu H, Wu X, Yang Y, Huang Z, Miao J, Liu A, Chai H, Cen X, Wang R. Biomimetic zwitterionic copolymerized chitosan as an articular lubricant. Carbohydr Polym 2024; 330:121821. [PMID: 38368102 DOI: 10.1016/j.carbpol.2024.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
Restoration of the lubrication functions of articular cartilage is an effective treatment to alleviate the progression of osteoarthritis (OA). Herein, we fabricated chitosan-block-poly(sulfobetaine methacrylate) (CS-b-pSBMA) copolymer via a free radical polymerization of sulfobetaine methacrylate onto activated chitosan segment, structurally mimicking the lubricating biomolecules on cartilage. The successful copolymerization of CS-b-pSBMA was verified by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and 1H nuclear magnetic resonance. Friction test confirmed that the CS-b-pSBMA copolymer could achieve an excellent lubrication effect on artificial joint materials such as Ti6Al4V alloy with a coefficient of friction as low as 0.008, and on OA-simulated cartilage, better than the conventional lubricant hyaluronic acid, and the adsorption effect of lubricant on cartilage surface was proved by a fluorescence labeling experiment. In addition, CS-b-pSBMA lubricant possessed an outstanding stability, which can withstand enzymatic degradation and even a long-term storage up to 4 weeks. In vitro studies showed that CS-b-pSBMA lubricant had a favorable antibacterial activity and good biocompatibility. In vivo studies confirmed that the CS-b-pSBMA lubricant was stable and could alleviate the degradation process of cartilage in OA mice. This biomimetic lubricant is a promising articular joint lubricant for the treatment of OA and cartilage restoration.
Collapse
Affiliation(s)
- Junjie Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Rufang Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Haofeng Qiu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China; School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital; Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Yanyu Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jiru Miao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ashuang Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Haiyang Chai
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, PR China; Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, PR China.
| | - Rong Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| |
Collapse
|
4
|
Urbaniak T, Piszko P, Kubies D, Podgórniak Z, Pop-Georgievski O, Riedel T, Szustakiewicz K, Musiał W. Layer-by-layer assembly of poly-l-lysine/hyaluronic acid protein reservoirs on poly(glycerol sebacate) surfaces. Eur J Pharm Biopharm 2023; 193:274-284. [PMID: 37924853 DOI: 10.1016/j.ejpb.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
The modification of biomaterial surfaces has become increasingly relevant in the context of ongoing advancements in tissue engineering applications and the development of tissue-mimicking polymer materials. In this study, we investigated the layer-by-layer (LbL) deposition of polyelectrolyte multilayer protein reservoirs consisting of poly-l-lysine (PLL) and hyaluronic acid (HA) on the hydrophobic surface of poly(glycerol sebacate) (PGS) elastomer. Using the methods of isothermal titration calorimetry and surface plasmon resonance, we systematically investigated the interactions between the polyelectrolytes and evaluated the deposition process in real time, providing insight into the phenomena associated with film assembly. PLL/HA LbL films deposited on PGS showed an exceptional ability to incorporate bone morphogenetic protein-2 (BMP-2) compared to other growth factors tested, thus highlighting the potential of PLL/HA LbL films for osteoregenerative applications. The concentration of HA solution used for film assembly did not affect the thickness and topography of the (PLL/HA)10 films, but had a notable impact on the hydrophilicity of the PGS surface and the BMP-2 release kinetics. The release kinetics were successfully described using the Weibull model and hyperbolic tangent function, underscoring the potential of these less frequently used models to compare the protein release from LbL protein reservoirs.
Collapse
Affiliation(s)
- Tomasz Urbaniak
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wrocław Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Paweł Piszko
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dana Kubies
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Zuzanna Podgórniak
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wrocław Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wrocław Medical University, Borowska 211, 50-556 Wrocław, Poland.
| |
Collapse
|
5
|
Kotla NG, Mohd Isa IL, Larrañaga A, Maddiboyina B, Swamy SK, Sivaraman G, Vemula PK. Hyaluronic Acid-Based Bioconjugate Systems, Scaffolds, and Their Therapeutic Potential. Adv Healthc Mater 2023; 12:e2203104. [PMID: 36972409 DOI: 10.1002/adhm.202203104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/04/2023] [Indexed: 03/29/2023]
Abstract
In recent years, the development of hyaluronic acid or hyaluronan (HA) based scaffolds, medical devices, bioconjugate systems have expanded into a broad range of research and clinical applications. Research findings over the last two decades suggest that the abundance of HA in most mammalian tissues with distinctive biological roles and chemical simplicity for modifications have made it an attractive material with a rapidly growing global market. Besides its use as native forms, HA has received much interest on so-called "HA-bioconjugates" and "modified-HA systems". In this review, the importance of chemical modifications of HA, underlying rationale approaches, and various advancements of bioconjugate derivatives with their potential physicochemical, and pharmacological advantages are summarized. This review also highlights the current and emerging HA-based conjugates of small molecules, macromolecules, crosslinked systems, and surface coating strategies with their biological implications, including their potentials and key challenges discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
| | - Balaji Maddiboyina
- Department of Medical Writing, Freyr Solutions, Hyderabad, Telangana, 500081, India
| | - Samantha K Swamy
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, 9037, Norway
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, 624302, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| |
Collapse
|
6
|
Manivong S, Cullier A, Audigié F, Banquy X, Moldovan F, Demoor M, Roullin VG. New trends for osteoarthritis: Biomaterials, models and modeling. Drug Discov Today 2023; 28:103488. [PMID: 36623796 DOI: 10.1016/j.drudis.2023.103488] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The burden of osteoarthritis (OA), one of the major causes of functional disabilities in humans and animals, continues to increase worldwide while no disease-modifying OA drugs (DMOADs) that either slow down or reverse disease progression have been made available. Here, we provide a brief overview of recent advances in: designing new OA drug delivery approaches, focusing on lubrication-based biomaterials and drug delivery systems, such as hydrogels, liposomes, dendrimers, micro- and nanoparticles; using either large (horse) or small (zebrafish) relevant animal models to evaluate new therapeutic strategies; and OA in vitro modeling, focusing on 3D (organoid) models of cartilage regarding the Replace, Reduce and Refine (3R) principle of animal experimentation.
Collapse
Affiliation(s)
- Seng Manivong
- Faculty of Pharmacy, Faculty of Dentistry, and CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada
| | | | - Fabrice Audigié
- Center of Imaging and Research in Locomotor Affections on Equines, Veterinary School of Alfort, Goustranville, France
| | - Xavier Banquy
- Faculty of Pharmacy, Faculty of Dentistry, and CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada
| | - Florina Moldovan
- Faculty of Pharmacy, Faculty of Dentistry, and CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France.
| | - V Gaëlle Roullin
- Faculty of Pharmacy, Faculty of Dentistry, and CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
7
|
Wang Z, Gu X, Li B, Li J, Wang F, Sun J, Zhang H, Liu K, Guo W. Molecularly Engineered Protein Glues with Superior Adhesion Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204590. [PMID: 36006846 DOI: 10.1002/adma.202204590] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Naturally inspired proteins are investigated for the development of bioglues that combine adhesion performance and biocompatibility for biomedical applications. However, engineering such adhesives by rational design of the proteins at the molecular level is rarely reported. Herein, it is shown that a new generation of protein-based glues is generated by supramolecular assembly through de novo designed structural proteins in which arginine triggers robust liquid-liquid phase separation. The encoded arginine moieties significantly strengthen multiple molecular interactions in the complex, leading to ultrastrong adhesion on various surfaces, outperforming many chemically reacted and biomimetic glues. Such adhesive materials enable quick visceral hemostasis in 10 s and outstanding tissue regeneration due to their robust adhesion, good biocompatibility, and superior antibacterial capacity. Remarkably, their minimum inhibitory concentrations are orders of magnitude lower than clinical antibiotics. These advances offer insights into molecular engineering of de novo designed protein glues and outline a general strategy to fabricate mechanically strong protein-based materials for surgical applications.
Collapse
Affiliation(s)
- Zili Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200062, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weisheng Guo
- State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| |
Collapse
|
8
|
Lin C, Huang Z, Wu T, Zhou X, Zhao R, Xu Z. A chitosan and hyaluronic acid-modified layer-by-layer lubrication coating for cardiovascular catheter. Colloids Surf B Biointerfaces 2022; 217:112687. [DOI: 10.1016/j.colsurfb.2022.112687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
|
9
|
Ren K, Wan H, Kaper HJ, Sharma PK. Dopamine-conjugated hyaluronic acid delivered via intra-articular injection provides articular cartilage lubrication and protection. J Colloid Interface Sci 2022; 619:207-218. [PMID: 35397456 DOI: 10.1016/j.jcis.2022.03.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Due to its high molecular weight and viscosity, hyaluronic acid (HA) is widely used for viscosupplementation to provide joint pain relief in osteoarthritis. However, this benefit is temporary due to poor adhesion of HA on articular surfaces. In this study, we therefore conjugated HA with dopamine to form HADN, which made the HA adhesive while retaining its viscosity enhancement capacity. We hypothesized that HADN could enhance cartilage lubrication through adsorption onto the exposed collagen type II network and repair the lamina splendens. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine. Analysis of Magnetic Resonance (NMR) and Ultraviolet spectrophotometry (Uv-vis) showed that HADN was successfully synthesized. Adsorption of HADN on collagen was demonstrated using Quartz crystal microbalance with dissipation (QCM-D). Ex vivo tribological tests including measurement of coefficient of friction (COF), dynamic creep, in stance (40 N) and swing (4 N) phases of gait cycle indicated adequate protection of cartilage by HADN with higher lubrication compared to HA alone. HADN solution at the cartilage-glass sliding interface not only retains the same viscosity as HA and provides fluid film lubrication, but also ensures better boundary lubrication through adsorption. To confirm the cartilage surface protection of HADN, we visualized cartilage wear using optical coherence tomography (OCT) and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Ke Ren
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hongping Wan
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; College of Veterinary Medicine, Sichuan Agricultural University, Department of Animal and Plant Quarantine, Chengdu 611130, China
| | - Hans J Kaper
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Prashant K Sharma
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
10
|
Li Y, Yuan Z, Yang H, Zhong H, Peng W, Xie R. Recent Advances in Understanding the Role of Cartilage Lubrication in Osteoarthritis. Molecules 2021; 26:6122. [PMID: 34684706 PMCID: PMC8540456 DOI: 10.3390/molecules26206122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
The remarkable lubrication properties of normal articular cartilage play an essential role in daily life, providing almost frictionless movements of joints. Alterations of cartilage surface or degradation of biomacromolecules within synovial fluid increase the wear and tear of the cartilage and hence determining the onset of the most common joint disease, osteoarthritis (OA). The irreversible and progressive degradation of articular cartilage is the hallmark of OA. Considering the absence of effective options to treat OA, the mechanosensitivity of chondrocytes has captured attention. As the only embedded cells in cartilage, the metabolism of chondrocytes is essential in maintaining homeostasis of cartilage, which triggers motivations to understand what is behind the low friction of cartilage and develop biolubrication-based strategies to postpone or even possibly heal OA. This review firstly focuses on the mechanism of cartilage lubrication, particularly on boundary lubrication. Then the mechanotransduction (especially shear stress) of chondrocytes is discussed. The following summarizes the recent development of cartilage-inspired biolubricants to highlight the correlation between cartilage lubrication and OA. One might expect that the restoration of cartilage lubrication at the early stage of OA could potentially promote the regeneration of cartilage and reverse its pathology to cure OA.
Collapse
Affiliation(s)
- Yumei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China;
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Hui Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Haijian Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
11
|
Henn KA, Forsman N, Zou T, Österberg M. Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34793-34806. [PMID: 34261310 PMCID: PMC8397241 DOI: 10.1021/acsami.1c06087] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
There is a need for safe and sustainable alternatives in the coating industry. Bio-based coatings are interesting in this perspective. Although various oils and waxes have been used as traditional wood coatings, they often lack sufficient durability. Lignin is an abundant natural polyphenol that can be used to cure epoxies, but its poor water solubility has impeded the use of unmodified lignin in coatings in the past. To address this issue, water-dispersible colloidal lignin particles (CLPs) and an epoxy compound, glycerol diglycidyl ether (GDE), were used to prepare multiprotective bio-based surface coatings. With the GDE/CLP ratios of 0.65 and 0.52 g/g, the cured CLP-GDE films became highly resistant to abrasion and heat. When applied as a coating on wooden substrates, the particulate morphology enabled effective protection against water, stains, and sunlight with very thin layers (less than half the weight of commercial coatings) while retaining the wood's breathability excellently. Optimal hydrophobicity was reached with a coat weight of 6.9 g(CLP)/m2, resulting in water contact angle values of up to 120°. Due to their spherical shape and chemical structure, the CLPs acted as both a hardener and a particulate component in the coating, which removed the need for an underlying binding polymer matrix. Light interferometry measurements showed that while commercial polymeric film-forming coatings smoothened the substrate noticeably, the particulate morphology retained the substrate's roughness in lightweight coatings, allowing for a high water contact angle. This work presents new strategies for lignin applications in durable particulate coatings and their advantages compared to both currently used synthetic and bio-based coatings.
Collapse
|
12
|
Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021; 9:661802. [PMID: 34327197 PMCID: PMC8313827 DOI: 10.3389/fcell.2021.661802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Knee menisci are structurally complex components that preserve appropriate biomechanics of the knee. Meniscal tissue is susceptible to injury and cannot heal spontaneously from most pathologies, especially considering the limited regenerative capacity of the inner avascular region. Conventional clinical treatments span from conservative therapy to meniscus implantation, all with limitations. There have been advances in meniscal tissue engineering and regenerative medicine in terms of potential combinations of polymeric biomaterials, endogenous cells and stimuli, resulting in innovative strategies. Recently, polymeric scaffolds have provided researchers with a powerful instrument to rationally support the requirements for meniscal tissue regeneration, ranging from an ideal architecture to biocompatibility and bioactivity. However, multiple challenges involving the anisotropic structure, sophisticated regenerative process, and challenging healing environment of the meniscus still create barriers to clinical application. Advances in scaffold manufacturing technology, temporal regulation of molecular signaling and investigation of host immunoresponses to scaffolds in tissue engineering provide alternative strategies, and studies have shed light on this field. Accordingly, this review aims to summarize the current polymers used to fabricate meniscal scaffolds and their applications in vivo and in vitro to evaluate their potential utility in meniscal tissue engineering. Recent progress on combinations of two or more types of polymers is described, with a focus on advanced strategies associated with technologies and immune compatibility and tunability. Finally, we discuss the current challenges and future prospects for regenerating injured meniscal tissues.
Collapse
Affiliation(s)
- Hao Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Pinxue Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Cangjian Gao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Liwei Fu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiyao Liao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Tianyuan Zhao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Fuyang Cao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Wei Chen
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Sui
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
14
|
Cartilage lamina splendens inspired nanostructured coating for biomaterial lubrication. J Colloid Interface Sci 2021; 594:435-445. [PMID: 33774399 DOI: 10.1016/j.jcis.2021.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022]
Abstract
Biomaterials that are used in biological systems, such as polycarbonate urethane (PCU) knee joint implants and contact lenses, generally lack lubrication. This limits their integration with the body and impedes their function. Here, we propose a nanostructured film based on hydrophilic polysaccharide hyaluronic acid conjugated with dopamine (HADN) and zwitterionic reduced glutathione (Glu), which forms a composite coating (HADN-Glu) to enhance the lubrication between cartilage and PCU. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine and deposited on PCU surface under mild oxidative conditions. Then, zwitterionic peptide-reduced glutathione was bioconjugated to HADN, forming a lubrication film. Analysis based on X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and wettability indicated that HADN and Glu had grafted successfully onto the PCU surface. Measurements of the coefficient of friction (COF), friction energy dissipation and cartilage roughness indicated that cartilage was effectively protected by the high lubrication of HADN-Glu. Both at low and high applied loads, this effect was likely due to the enhanced boundary lubrication enabled by HADN-Glu on the PCU surface. Moreover, HADN-Glu is highly biocompatible with chondrocyte cells, suggesting that this film will benefit the design of implants where lubrication is needed.
Collapse
|