1
|
Miyata R, Inoue S, Nikaido K, Nakajima K, Hasegawa T. Friction Force Mapping of Molecular Ordering and Mesoscopic Phase Transformations in Layered-Crystalline Organic Semiconductor Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39701-39707. [PMID: 39013158 DOI: 10.1021/acsami.4c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
It is critical to understand molecular ordering processes in small-molecule organic semiconductor (OSC) films in optimizing electronic device applications, although it is difficult to observe and investigate the ordering characteristics at a mesoscopic or device scale. Here, we report that friction force microscopy (FFM) allows visualizing the ordering transformation process from a thermodynamically metastable phase to a stable phase at a mesoscopic scale. We utilized 2-octyl-benzothieno[3,2-b]naphtho[2,3-b]thiophene (2-C8-BTNT) as a typical highly layered-crystalline OSC. We found that the friction force between an AFM tip and spin-coated OSC films significantly depends on whether local film states are in metastable monolayer phase or stable bilayer-type herringbone (b-LHB) phase that exhibits high carrier mobility. The formation of the stable b-LHB phase leads to lower friction than the metastable monolayer phase, clearly visualizing the molecular order. Force map (Fmap) analysis indicates that the lower friction in the b-LHB phase should be associated with the reduction of interfacial adhesion force. Notably, the observed results demonstrate that the spin-coated thin film changes from continuous film with the monolayer phase to rugged microcrystal grains with the b-LHB phase when left at ambient conditions. By contrast, an appropriate post-thermal annealing process facilitates the phase transformation without inducing such morphological changes. The technique provides a unique and effective tool for revealing the relationship between processing conditions and device performance in polycrystalline OSC films.
Collapse
Affiliation(s)
- Ryo Miyata
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoru Inoue
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kiyoshi Nikaido
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Tatsuo Hasegawa
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Ferrari E, Pandolfi L, Schweicher G, Geerts Y, Salzillo T, Masino M, Venuti E. Interlayer Sliding Phonon Drives Phase Transition in the Ph-BTBT-10 Organic Semiconductor. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:5777-5783. [PMID: 37576586 PMCID: PMC10413852 DOI: 10.1021/acs.chemmater.3c00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/11/2023] [Indexed: 08/15/2023]
Abstract
In the field of organic electronics, the semiconductor 7-decyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) has become a benchmark due to its high charge mobility and chemical stability in thin film devices. Its phase diagram is characterized by a crystal phase with a bilayer structure that at high temperature transforms into a Smectic E liquid crystal with monolayer structure. As the charge transport properties appear to depend on the phase present in the thin film, the transition has been the subject of structural and computational studies. Here such a process has been investigated by polarized low frequency Raman spectroscopy, selectively probing the intermolecular dynamics of the two phases. The spectroscopic observations demonstrate the key role played by a displacive component of the transition, with the interpenetration of the crystal bilayers driven by lattice phonon mode softening followed by the intralayer rearrangement of the molecule rigid cores into the herringbone motif of the liquid crystal. The mechanism can be related to the effectiveness of thermal annealing to restore the crystal phase in films.
Collapse
Affiliation(s)
- Elena Ferrari
- Dipartimento
di Scienze Chimiche, della Vita e della
Sostenibilità Ambientale & INSTM-UdR Parma, Parco Area delle Scienze, 17/A, Parma 43124, Italy
- IMEM-CNR, Parco Area delle Scienze, 37/A, Parma 43124, Italy
| | - Lorenzo Pandolfi
- Dipartimento
di Chimica Industriale “Toso Montanari” & INSTM-UdR
Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Guillaume Schweicher
- Laboratoire
de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, Brussels 1050, Belgium
| | - Yves Geerts
- Laboratoire
de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, Brussels 1050, Belgium
- International
Solvay Institutes of Physics and Chemistry Université Libre
de Bruxelles (ULB), Boulevard
du Triomphe, CP 206/01, Brussels 1050, Belgium
| | - Tommaso Salzillo
- Dipartimento
di Chimica Industriale “Toso Montanari” & INSTM-UdR
Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Matteo Masino
- Dipartimento
di Scienze Chimiche, della Vita e della
Sostenibilità Ambientale & INSTM-UdR Parma, Parco Area delle Scienze, 17/A, Parma 43124, Italy
| | - Elisabetta Venuti
- Dipartimento
di Chimica Industriale “Toso Montanari” & INSTM-UdR
Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
3
|
Shioya N, Yoshida M, Fujii M, Shimoaka T, Miura R, Maruyama S, Hasegawa T. Conformational Change of Alkyl Chains at Phase Transitions in Thin Films of an Asymmetric Benzothienothiophene Derivative. J Phys Chem Lett 2022; 13:11918-11924. [PMID: 36525547 DOI: 10.1021/acs.jpclett.2c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Among many promising organic semiconducting materials, 2-decyl-7-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C10) shows outstanding device performances for organic field-effect transistors. This compound has a highly ordered liquid crystalline state, i.e., the smectic E (SmE) phase. Although the transition from the crystalline state to the SmE phase is believed to accompany melting of the alkyl chains, no spectroscopic evidence has been found so far. In this study, the conformational change of the decyl chains in Ph-BTBT-C10 films across the phase transition is analyzed by temperature-dependent measurements in situ using infrared spectroscopy. The spectral analysis reveals that the polycrystalline film has latent conformational disorder (the gauche conformer), the rate of which becomes more pronounced with the heat treatment. As expected, melting of the decyl chains is observed above the transition temperature to the SmE phase. This study also highlights the discovery of some key bands sensitive to the phase transitions in liquid crystalline organic semiconductors.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mariko Yoshida
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masamichi Fujii
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takafumi Shimoaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Riku Miura
- Department of Applied Chemistry, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Department of Applied Chemistry, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
4
|
Hemmi Y, Ikeda Y, Sporea RA, Takeda Y, Tokito S, Matsui H. N-Type Printed Organic Source-Gated Transistors with High Intrinsic Gain. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4441. [PMID: 36558295 PMCID: PMC9785666 DOI: 10.3390/nano12244441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Source-gated transistors (SGTs) are emerging devices enabling high-gain single-stage amplifiers with low complexity. To date, the p-type printed organic SGT (OSGT) has been developed and showed high gain and low power consumption. However, complementary OSGT circuits remained impossible because of the lack of n-type OSGTs. Here, we show the first n-type OSGTs, which are printed and have a high intrinsic gain over 40. A Schottky source contact is intentionally formed between an n-type organic semiconductor, poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (N2200), and the silver electrode. In addition, a blocking layer at the edge of the source electrode plays an important role to improve the saturation characteristics and increase the intrinsic gain. Such n-type printed OSGTs and complementary circuits based on them are promising for flexible and wearable electronic devices such as for physiological and biochemical health monitoring.
Collapse
Affiliation(s)
- Yudai Hemmi
- Research Center for Organic Electronics (ROEL), Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Yuji Ikeda
- Research Center for Organic Electronics (ROEL), Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Radu A. Sporea
- Advanced Technology Institute, School of Computer Science and Electronic Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Yasunori Takeda
- Research Center for Organic Electronics (ROEL), Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (ROEL), Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
5
|
Highly Efficient Contact Doping for High-Performance Organic UV-Sensitive Phototransistors. CRYSTALS 2022. [DOI: 10.3390/cryst12050651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Organic ultraviolet (UV) phototransistors are promising for diverse applications. However, wide-bandgap organic semiconductors (OSCs) with intense UV absorption tend to exhibit large contact resistance (Rc) because of an energy-level mismatch with metal electrodes. Herein, we discovered that the molecular dopant of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) was more efficient than the transition metal oxide dopant of MoO3 in doping a wide-bandgap OSC, although the former showed smaller electron affinity (EA). By efficient contact doping, a low Rc of 889 Ω·cm and a high mobility of 13.89 cm2V−1s−1 were achieved. As a result, UV-sensitive phototransistors showed high photosensitivity and responsivity.
Collapse
|
6
|
Hofer S, Hofer A, Simbrunner J, Ramsey M, Sterrer M, Sanzone A, Beverina L, Geerts Y, Resel R. Phase Transition toward a Thermodynamically Less Stable Phase: Cross-Nucleation due to Thin Film Growth of a Benzothieno-benzothiophene Derivative. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:28039-28047. [PMID: 35003483 PMCID: PMC8724801 DOI: 10.1021/acs.jpcc.1c06610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The molecule 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene is an organic semiconductor, with outstanding properties in terms of molecular packing and its use in organic electronics. The asymmetric shape of the molecule causes a double layer crystal structure at room temperature. In this work we report its thin film growth by physical vapor deposition starting from the monolayer regime up to thick films. The films are studied in terms of their morphology, crystallographic properties, and thermal stability by atomic force microscopy and X-ray diffraction methods. It is found that the bulk molecular packing of the bilayer is formed at the initial thin film growth stage. After a thickness of one double layer, a transition into a new polymorph is observed which is of metastable character. The new phase represents a single layer phase; the crystal structure could be solved by a combination of X-ray diffraction and molecular dynamics simulations. The observed thin film growth is outstanding in terms of surface crystallization: the formation of a metastable phase is not associated with the initial thin film growth, since the first growth stage represents rather the bulk crystal structure of this molecule. Its formation is associated with cross-nucleation of one polymorph by another, which explains why a metastable phase can be formed on top of a thermodynamically more stable phase.
Collapse
Affiliation(s)
- Sebastian Hofer
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Andreas Hofer
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Josef Simbrunner
- Division
of Neuroradiology, Vascular and Interventional Radiology, Medical University Graz, 8010 Graz, Austria
| | - Michael Ramsey
- Institute
of Physics, Karl-Franzens University Graz, 8010 Graz, Austria
| | - Martin Sterrer
- Institute
of Physics, Karl-Franzens University Graz, 8010 Graz, Austria
| | - Alessandro Sanzone
- Department
of Materials Science, University of Milano-Bicocca, 20126 Milano, Italy
| | - Luca Beverina
- Department
of Materials Science, University of Milano-Bicocca, 20126 Milano, Italy
| | - Yves Geerts
- Laboratoire
de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, CP 206/01, 1050 Bruxelles, Belgium
- International
Solvay Institutes for Physics and Chemistry, Université Libre
de Bruxelles, Boulevard
du Triomphe, CP 231, 1050 Bruxelles, Belgium
| | - Roland Resel
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| |
Collapse
|
7
|
Hofer S, Unterkofler J, Kaltenegger M, Schweicher G, Ruzié C, Tamayo A, Salzillo T, Mas-Torrent M, Sanzone A, Beverina L, Geerts YH, Resel R. Molecular Disorder in Crystalline Thin Films of an Asymmetric BTBT Derivative. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:1455-1461. [PMID: 33642680 PMCID: PMC7905871 DOI: 10.1021/acs.chemmater.0c04725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Indexed: 06/02/2023]
Abstract
The molecule 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) is an organic semiconductor with outstanding performance in thin-film transistors. The asymmetric shape of the molecule causes an unusual phase behavior, which is a result of a distinct difference in the molecular arrangement between the head-to-head stacking of the molecules versus head-to-tail stacking. Thin films are prepared at elevated temperatures by crystallization from melt under controlled cooling rates, thermal-gradient crystallization, and bar coating at elevated temperatures. The films are investigated using X-ray diffraction techniques. Unusual peak-broadening effects are found, which cannot be explained using standard models. The modeling of the diffraction patterns with a statistic variation of the molecules reveal that a specific type of molecular disorder is responsible for the observed peak-broadening phenomena: the known head-to-head stacking within the crystalline phase is disturbed by the statistic integration of reversed (or flipped) molecules. It is found that 7-15% of the molecules are integrated in a reversed way, and these fractions are correlated with cooling rates during the sample preparation procedure. Temperature-dependent in situ experiments reveal that the defects can be healed by approaching the transition from the crystalline state to the smectic E state at a temperature of 145 °C. This work identifies and quantifies a specific crystalline defect type within thin films of an asymmetric rodlike conjugated molecule, which is caused by the crystallization kinetics.
Collapse
Affiliation(s)
- Sebastian Hofer
- Institute
of Solid State Physics, Graz University of Technology, Petersgasse 16, Graz 8010, Austria
| | - Johanna Unterkofler
- Institute
of Solid State Physics, Graz University of Technology, Petersgasse 16, Graz 8010, Austria
| | - Martin Kaltenegger
- Institute
of Solid State Physics, Graz University of Technology, Petersgasse 16, Graz 8010, Austria
- Laboratoire
de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, CP206/01 - Boulevard
du, Triomphe, Bruxelles 1050, Belgium
| | - Guillaume Schweicher
- Laboratoire
de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, CP206/01 - Boulevard
du, Triomphe, Bruxelles 1050, Belgium
| | - Christian Ruzié
- Laboratoire
de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, CP206/01 - Boulevard
du, Triomphe, Bruxelles 1050, Belgium
| | - Adrián Tamayo
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain
| | - Tommaso Salzillo
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain
| | - Marta Mas-Torrent
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain
| | - Alessandro Sanzone
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi, 55, Milano 20125, Italy
| | - Luca Beverina
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi, 55, Milano 20125, Italy
| | - Yves Henry Geerts
- Laboratoire
de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, CP206/01 - Boulevard
du, Triomphe, Bruxelles 1050, Belgium
- Laboratoire
de Chimie des Polymères, Faculté des Sciences, International
Solvay Institutes of Physics and Chemistry, Université Libre de Bruxelles, Campus Plaine, CP206/01 - Boulevard du Triomphe, Brussels 1050, Belgium
| | - Roland Resel
- Institute
of Solid State Physics, Graz University of Technology, Petersgasse 16, Graz 8010, Austria
| |
Collapse
|