1
|
Lienemann S, Boda U, Mohammadi M, Zhou T, Petsagkourakis I, Kim N, Tybrandt K. Exploring the Elastomer Influence on the Electromechanical Performance of Stretchable Conductors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38365-38376. [PMID: 38981059 DOI: 10.1021/acsami.4c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Stretchable electronics has received major attention in recent years due to the prospects of integrating electronics onto and into the human body. While many studies investigate how different conductive fillers perform in stretchable composites, the effect of different elastomers on composite performance, and the related fundamental understanding of what is causing the performance differences, is poorly understood. Here, we perform a systematic investigation of the elastomer influence on the electromechanical performance of gold nanowire-based stretchable conductors based on five chemically different elastomers of similar Young's modulus. The choice of elastomer has a huge impact on the electromechanical performance of the conductors under cyclic strain, as some composites perform well, while others fail rapidly at 100% strain cycling. The lack of macroscopic crack formation in the failing composites indicates that the key aspect for good electromechanical performance is not homogeneous films on the macroscale but rather beneficial interactions on the nanoscale. Based on the comprehensive characterization, we propose a failure mechanism related to the mechanical properties of the elastomers. By improving our understanding of elastomer influence on the mechanisms of electrical failure, we can move toward rational material design, which could greatly benefit the field of stretchable electronics.
Collapse
Affiliation(s)
- Samuel Lienemann
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Ulrika Boda
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Bio- and Organic Electronics Unit, RISE, Research Institutes of Sweden, 602 33 Norrköping, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Tunhe Zhou
- Stockholm University Brain Imaging Centre (SUBIC), Stockholm University, 106 91 Stockholm, Sweden
| | - Ioannis Petsagkourakis
- Bio- and Organic Electronics Unit, RISE, Research Institutes of Sweden, 602 33 Norrköping, Sweden
| | - Nara Kim
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
2
|
Ding S, Yin T, Zhang S, Yang D, Zhou H, Guo S, Li Q, Wang Y, Yang Y, Peng B, Yang R, Jiang Z. Fast-speed, Highly Sensitive, Flexible Humidity Sensors Based on a Printable Composite of Carbon Nanotubes and Hydrophilic Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1474-1481. [PMID: 36641772 DOI: 10.1021/acs.langmuir.2c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon nanotubes (CNTs) are a promising material for humidity sensors and wearable electronics due to their solution capability, good flexibility, and high conductivity. However, the performance of CNT-based humidity sensors is limited by their low sensitivity and slow response. Herein CNTs and hydrophilic polymers were mixed to form a composite. The hydrophilicity of the polymers and the network structure of the CNTs empowered the humidity sensors with a high response of 171% and a fast response/recovery time of 23 s/10 s. Owing to the sticky and flexible polymers, the humidity sensors showed strong adhesion to the PET substrate and exhibited outstanding bending durability. Furthermore, the flexible humidity sensor was applied to monitor human breathing and detect finger movements and handshaking.
Collapse
Affiliation(s)
- Su Ding
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Tong Yin
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Shucheng Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Dingyi Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Houlin Zhou
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Shouchen Guo
- School of Electronic Engineering, Xidian University, Xi'an 710126, China
| | - Qikun Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Yong Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Guangzhou 572000, China
| | - Biaolin Peng
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Zhi Jiang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
3
|
Ding S, Zhang S, Yin T, Zhang H, Wang C, Wang Y, Li Q, Zhou N, Su F, Jiang Z, Tan D, Yang R. Room-temperature nanojoining of silver nanowires by graphene oxide for highly conductive flexible transparent electrodes. NANOTECHNOLOGY 2022; 34:045201. [PMID: 36265462 DOI: 10.1088/1361-6528/ac9c09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Flexible transparent electrodes for touch panels, solar cells, and wearable electronics are in great demand in recent years, and the silver nanowire (AgNW) flexible transparent electrode (FTE) is among the top candidates due to its excellent light transmittance and flexibility and the highest conductivity of silver among all metals. However, the conductivity of an AgNWs network has long been limited by the large contact resistance. Here we show a room-temperature solution process to tackle the challenge by nanojoining AgNWs with two-dimensional graphene oxide (GO). The conductivity of the AgNWs network is improved 18 times due to the enhanced junctions between AgNWs by the coated GOs, and the AgNW-GO FTE exhibits a low sheet resistance of 23 Ohm sq-1and 88% light transmittance. It is stable under high temperature and current and their flexibility is intact after 1000 cycles of bending. Measurements of a bifunctional electrochromic device shows the high performance of the AgNW-GO FTE as a FTE.
Collapse
Affiliation(s)
- Su Ding
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Shucheng Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Tong Yin
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - He Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Chenxi Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yong Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Qikun Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Nan Zhou
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Zhi Jiang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering Nanyang Technological University, 639798, Singapore
| | - Dan Tan
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| |
Collapse
|
4
|
Yang Y, Duan S, Zhao H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. NANOSCALE 2022; 14:11484-11511. [PMID: 35912705 DOI: 10.1039/d2nr02475f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With their soaring technological demand, flexible and stretchable electronics have attracted many researchers' attention for a variety of applications. The challenge which was identified a decade ago and still remains, however, is that the conventional electrodes based on indium tin oxide (ITO) are not suitable for ultra-flexible electronic devices. The main reason is that ITO is brittle and expensive, limiting device performance and application. Thus, it is crucial to develop new materials and processes to construct flexible and stretchable electrodes with superior quality for next-generation soft devices. Herein, various types of conductive nanomaterials as candidates for flexible and stretchable electrodes are briefly reviewed. Among them, silver nanowire (AgNW) is selected as the focus of this review, on account of its excellent conductivity, superior flexibility, high technological maturity, and significant presence in the research community. To fabricate a reliable AgNW-based conductive network for electrodes, different processing technologies are introduced, and the corresponding characteristics are compared and discussed. Furthermore, this review summarizes strategies and the latest progress in enhancing the conductive pathway. Finally, we showcase some exemplary applications and provide some perspectives about the remaining technical challenges for future research.
Collapse
Affiliation(s)
- Yuanhang Yang
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Shun Duan
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhao
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
5
|
Guo X, Li J, Wang F, Zhang J, Zhang J, Shi Y, Pan L. Application of conductive polymer hydrogels in flexible electronics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Fanyu Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jia‐Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| |
Collapse
|
6
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
7
|
Ervasti H, Järvinen T, Pitkänen O, Bozó É, Hiitola-Keinänen J, Huttunen OH, Hiltunen J, Kordas K. Inkjet-Deposited Single-Wall Carbon Nanotube Micropatterns on Stretchable PDMS-Ag Substrate-Electrode Structures for Piezoresistive Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27284-27294. [PMID: 34075741 PMCID: PMC8289179 DOI: 10.1021/acsami.1c04397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Printed piezoresistive strain sensors based on stretchable roll-to-roll screen-printed silver electrodes on polydimethylsiloxane substrates and inkjet-deposited single-wall carbon nanotube micropatterns are demonstrated in this work. With the optimization of surface wetting and inkjet printing parameters, well-defined microscopic line patterns of the nanotubes with a sheet resistance of <100 Ω/□ could be deposited between stretchable Ag electrodes on the plasma-treated substrate. The developed stretchable devices are highly sensitive to tensile strain with a gauge factor of up to 400 and a pressure sensitivity of ∼0.09 Pa-1, respond to bending down to a radius of 1.5 mm, and are suitable for mounting on the skin to monitor and resolve various movements of the human body such as cardiac cycle, breathing, and finger flexing. This study indicates that inkjet deposition of nanomaterials can complement well other printing technologies to produce flexible and stretchable devices in a versatile manner.
Collapse
Affiliation(s)
- Henri Ervasti
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| | - Topias Järvinen
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| | - Olli Pitkänen
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| | - Éva Bozó
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| | | | | | - Jussi Hiltunen
- VTT
Technical Research Centre of Finland, Kaitoväylä 1, FIN-90590 Oulu, Finland
| | - Krisztian Kordas
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| |
Collapse
|
8
|
Marciano JS, Ferreira RR, de Souza AG, Barbosa RFS, de Moura Junior AJ, Rosa DS. Biodegradable gelatin composite hydrogels filled with cellulose for chromium (VI) adsorption from contaminated water. Int J Biol Macromol 2021; 181:112-124. [PMID: 33771541 DOI: 10.1016/j.ijbiomac.2021.03.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
Biopolymers are promising materials for water treatment applications due to their abundance, low cost, expandability, and chemical structure. In this work, gelatin hydrogels filled with cellulose in the form of pristine eucalyptus residues (PER) or treated eucalyptus residues (TER) were prepared for adsorption and chromium removal in contaminated water. PER is a lignocellulosic compound, with cellulose, hemicellulose, and lignin, while TER has cellulose as a major component. FT-Raman Spectroscopy and FTIR analysis confirmed the crosslink reaction with glutaraldehyde and indicated that fillers altered the gelatin molecular vibrations and formed new hydrogen bonds, impacting the hydrogels' crystalline structure. The hydrogen bond energy was altered by the cellulosic fillers' addition and resulted in higher thermal stability (~10 °C). Hydrogels presented a Fickian diffusion, where gelatin hydrogel showed the highest swelling ability (466%), and composites showed lower values with the filler content increase. The chromium adsorption capacity presented values between 12 and 13 mg/g, i.e., featuring an excellent removal capacity which is related with hydrogel crosslinked structure and fibers surface hydroxyl groups, highlighting gelatin hydrogel TER 5% with better removal capacity. The developed hydrogels were produced from biomacromolecules with low-cost and potential application in contaminated water.
Collapse
Affiliation(s)
- Jéssica S Marciano
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rafaela R Ferreira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Alana G de Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rennan F S Barbosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | | | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil.
| |
Collapse
|
9
|
Wang C, Yokota T, Someya T. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chem Rev 2021; 121:2109-2146. [DOI: 10.1021/acs.chemrev.0c00897] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chunya Wang
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Cui C, Fu Q, Meng L, Hao S, Dai R, Yang J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS APPLIED BIO MATERIALS 2020; 4:85-121. [DOI: 10.1021/acsabm.0c00807] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chen Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qingjin Fu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Lei Meng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sanwei Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Rengang Dai
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|