1
|
Zhao H, Wen R, Zhang L, Chen L, Li H, Xia F, Song Y. Magneto-Controlled Tubular Liquid Actuators with Pore Engineering for Liquid Transport and Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406325. [PMID: 39137359 PMCID: PMC11497001 DOI: 10.1002/advs.202406325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Liquid manipulation using tubular actuators finds diverse applications ranging from microfluidics, printing, liquid transfer to micro-reactors. Achieving flexible and simple regulation of manipulated liquid droplets during transport is crucial for the tubular liquid actuators to perform complex and multiple functions, yet it remains challenging. Here, a facile tubular actuator for directional transport of various liquid droplets under the control of an externally applied magnetic field is presented. The surfaces of the actuator can be engineered with submillimeter-sized through-hole pores, which enables the liquid droplet to be easily modulated in the transport process. Furthermore, the liquid actuator with featured through-hole pores is expanded to function as a switch in an integrated external electric circuit by magnetically controlling the motion of a conductive liquid droplet. This work develops a strategy for regulating liquid droplets in the tubular actuation systems, which may inspire ideas for designing functional liquid actuators with potential applications in microfluidics, microchemical reaction, liquid switch, and liquid robotics.
Collapse
Affiliation(s)
- Huan Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Ruyi Wen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Liyun Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Linfeng Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences (CAS)Beijing100190P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences (CAS)Beijing100190P. R. China
| |
Collapse
|
2
|
Tan J, Fan Z, Zhou M, Liu T, Sun S, Chen G, Song Y, Wang Z, Jiang D. Orbital Electrowetting-on-Dielectric for Droplet Manipulation on Superhydrophobic Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314346. [PMID: 38582970 DOI: 10.1002/adma.202314346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Electrowetting-on-dielectric (EWOD), recognized as the most successful electrical droplet actuation method, is essential in diverse applications, ranging from thermal management to microfluidics and water harvesting. Despite significant advances, it remains challenging to achieve repeatability, high speed, and simple circuitry in EWOD-based droplet manipulation on superhydrophobic surfaces. Moreover, its efficient operation typically requires electrode arrays and sophisticated circuit control. Here, a newly observed droplet manipulation phenomenon on superhydrophobic surfaces with orbital EWOD (OEW) is reported. Due to the asymmetric electrowetting force generated on the orbit, flexible and versatile droplet manipulation is facilitated with OEW. It is demonstrated that OEW droplet manipulation on superhydrophobic surfaces exhibits higher speed (up to 5 times faster), enhanced functionality (antigravity), and manipulation of diverse liquids (acid, base, salt, organic, e.g., methyl blue, artificial blood) without contamination, and good durability after 1000 tests. It is envisioned that this robust droplet manipulation strategy using OEW will provide a valuable platform for various processes involving droplets, spanning from microfluidic devices to controllable chemical reactions. The previously unreported droplet manipulation phenomenon and control strategy shown here can potentially upgrade EWOD-based microfluidics, antifogging, anti-icing, dust removal, and beyond.
Collapse
Affiliation(s)
- Jie Tan
- Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, 110042, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zeng Fan
- School of Physics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Mingfei Zhou
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tong Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shulan Sun
- Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, 110042, P. R. China
| | - Guijun Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Dongyue Jiang
- Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, 110042, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
3
|
Li D, Liu J, Liu Q, Yu J, Zhu J, Chen R, Lin Z, Wang J. Comparison of Anti-Icing, Antifouling, and Anticorrosion Performances of the Superhydrophobic and Lubricant-Infused Coatings Based on a Hollow-Structured Kapok Fiber. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5420-5432. [PMID: 38423092 DOI: 10.1021/acs.langmuir.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The superhydrophobic surface and slippery liquid-infused porous surface (SLIPS)/lubricant-infused surface (LIS) have attracted increasing attention owing to their multifunctionality. However, their practical applications face several problems such as complex and inefficient preparation technology, loss of lubricant, and fragile microstructures. Therefore, new strategies for preparing microstructures must be developed for constructing superhydrophobic and lubricant-infused coatings. Herein, a low-cost and high-efficiency method for developing superhydrophobic and lubricant-infused coatings based on in situ grown TiO2 on the surface of a hollow kapok fiber (KF) is reported. The anti-icing, antifouling, and anticorrosion performance of the superhydrophobic and lubricant-infused coatings are compared. The superhydrophobic coating reduces the formation and accumulation of ice. The lubricant-infused coating exhibits an extremely low ice adhesion strength and durable anti-icing properties. The superhydrophobic and lubricant-infused coatings show the outstanding antifouling property of diatom; the superhydrophobic surface exhibits superior stability over LIS without an external force field. The lubricant-infused coating shows excellent corrosion resistance and durability when immersed in a 3.5% NaCl solution. The superhydrophobic coating loses its protection as a result of the corrosion media permeating the metal substrate via the electrolytic cell and coating interface, and the lubricant-infused coating provides lasting corrosion resistance because of the lubricant filling into the interface. Although the superhydrophobic coating is fragile and the lubricant-infused coating will lose lubricant, this simple and convenient approach can be repeated to keep the coatings active. This study provides new inspiration for the fabrication of superhydrophobic surfaces and LIS based on natural products.
Collapse
Affiliation(s)
- Dandan Li
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiahui Zhu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zaiwen Lin
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
4
|
Wu J, Li X, Lin T, Zhuang L, Tang B, Liu F, Zhou G. Electric-Field-Induced Selective Directed Transport of Diverse Droplets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4126-4137. [PMID: 38191293 DOI: 10.1021/acsami.3c13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Droplet directional transport is one of the central topics in microfluidics and lab-on-a-chip applications. Selective transport of diverse droplets, particularly in another liquid phase environment with controlled directions, is still challenging. In this work, we propose an electric-field gradient-driven droplet directional transport platform facilitated by a robust lubricant surface. On the platform, we clearly demonstrated a liquid-inherent critical frequency-dominated selective transport of diverse droplets and a driving mechanism transition from electrowetting to liquid dielectrophoresis. Enlightened by the Kelvin-Helmholtz theory, we first realize the directional droplet transport in another liquid phase whenever a permittivity difference exists. Co-transport of multiple droplets and various combinations of droplet types, as well as multifunctional droplet transport modes, are realized based on the presented powerful electric-field gradient-driven platform, overcoming the limitations of the surrounding environment, liquid conductivity, and intrinsic solid-liquid wetting property existing in traditional droplet transport strategies. This work may inspire new applications in liquid separation, multiphase microfluidic manipulation, chemical reagent selection, and so on.
Collapse
Affiliation(s)
- Junjun Wu
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Xinyu Li
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Tao Lin
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Lei Zhuang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Biao Tang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Feilong Liu
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Shenzhen 518110, P. R. China
| |
Collapse
|
5
|
Li M, Hao J, Bai H, Wang X, Li Z, Cao M. On-Chip Liquid Manipulation via a Flexible Dual-Layered Channel Possessing Hydrophilic/Hydrophobic Dichotomy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19773-19782. [PMID: 36999662 DOI: 10.1021/acsami.3c03275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The hydrophilic/hydrophobic cooperative interface provides a smart platform to control liquid distribution and delivery. Through the fusion of flexibility and complex structure, we present a manipulable, open, and dual-layered liquid channel (MODLC) for on-demand mechanical control of fluid delivery. Driven by anisotropic Laplace pressure, the mechano-controllable asymmetric channel of MODLC can propel the directional slipping of liquid located between the paired tracks. Upon a single press, the longest transport distance can reach 10 cm with an average speed of ∼3 cm/s. The liquid on the MODLC can be immediately manipulated by pressing or dragging processes, and versatile liquid-manipulating processes on hierarchical MODLC chips have been achieved, including remote droplet magneto-control, continuous liquid distributor, and gas-producing chip. The flexible hydrophilic/hydrophobic interface and its assembly can extend the function and applications of the wettability-patterned interface, which should update our understanding of complex systems for sophisticated liquid transport.
Collapse
Affiliation(s)
- Muqian Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jingpeng Hao
- Department of Anorectal Surgery, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Haoyu Bai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Zhe Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China
| |
Collapse
|
6
|
Liang H, Chen L, Zhang H, Liu X. Simple Method to Generate Droplets Spontaneously by a Superhydrophobic Double-Layer Split Nozzle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4730-4738. [PMID: 36961251 DOI: 10.1021/acs.langmuir.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Given the problems of traditional droplet generation devices, such as the complex structure and processing technology, difficulty in droplet separation, and low transfer accuracy, we propose a low-adhesion superhydrophobic double-layer split nozzle (SDSN). It realizes spontaneous droplet generation by using an interfacial tension force inside the micro-hole to drive the droplet snap-off. It successfully achieves stable and highly consistent droplets on the micrometer-scale circular micro-hole. Droplets with a volume in the range of 0.65-1.75 ± 0.007 μL can be precisely achieved by adjusting the hole size of the SDSN from 100 to 500 μm. The SDSN is prepared by conventional mechanical drilling, chemical etching, and low surface energy modification. Compared with traditional droplet generation devices, no photolithography process is required, and the cost is lower. Moreover, the droplets can be obtained directly without any post-processing, avoiding the problem of separating droplets from another solution. The stability of SDSN is good, and the droplet volume is not affected by the fluctuation of external conditions. The rate of droplet generation can be freely adjusted by adjusting the speed of the electronic microinjection pump without affecting the droplet volume. It enables efficient droplet transfer without liquid residue, which improves the transfer accuracy and helps to save the use of expensive reagents. This simple but effective structure will be of great help to make breakthroughs in next-generation spontaneous droplet generation, liquid transport, and digital microfluidic devices.
Collapse
Affiliation(s)
- Hao Liang
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Liang Chen
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Haifeng Zhang
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowei Liu
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource & Environment (Harbin Institute of Technology), Harbin 150001, China
| |
Collapse
|
7
|
Wang R, Jin F, Li Y, Yu X, Lai H, Liu Y, Cheng Z. Slippery Shape Memory Tube for Smart Droplet Transportation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57399-57407. [PMID: 36524943 DOI: 10.1021/acsami.2c17848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, research about controllable droplet transportation in tubes has aroused increased interest. However, existing strategies mainly depend on the elastic tube's shape variation that needs constant external stimuli. Meanwhile, these reported tubes are only suitable for wetting liquids. To achieve the transportation of diverse liquids, different coatings are needed to modify the tube's inner surface to realize complete wetting of different liquids. Herein, we advance a design principle by combining a shape memory polymer (SMP) tube and Nepenthes pitcher plant-inspired slippery surface, which can solve the above-mentioned problems. The SMP offers a tunable tube shape owing to its shape memory effect (SME); the slippery surface reduces the adhesion and expands the applicable range of liquids. Transportation of both water and oils in a wide range of surface tension values can be smartly controlled. The results show that not only the transportation speed and direction can be adjusted but also diverse modes including round-trip transportation, segmented transportation, and antigravity transportation can be achieved. Moreover, applications of the tube in batch inspection of different droplets and step-by-step control of multiple microreactions are also displayed. This work reports a strategy for droplet transportation control based on the tube's SME, which initiates some fresh ideas for designing new superwetting materials toward smart liquid transportation.
Collapse
Affiliation(s)
- Ruijie Wang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150090, P. R. China
| | - Fan Jin
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150090, P. R. China
| | - Yufen Li
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150090, P. R. China
| | - Xiaoyan Yu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150090, P. R. China
| | - Hua Lai
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150090, P. R. China
| | - Yuyan Liu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150090, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150090, P. R. China
| |
Collapse
|
8
|
Wang L, Yin K, Deng Q, Huang Q, He J, Duan J. Wetting Ridge-Guided Directional Water Self-Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204891. [PMID: 36253156 PMCID: PMC9731720 DOI: 10.1002/advs.202204891] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Indexed: 05/12/2023]
Abstract
Directional water self-transport plays a crucial role in diverse applications such as biosensing and water harvesting. Despite extensive progress, current strategies for directional water self-transport are restricted to a short self-driving distance, single function, and complicated fabrication methods. Here, a lubricant-infused heterogeneous superwettability surface (LIHSS) for directional water self-transport is proposed on polyimide (PI) film through femtosecond laser direct writing and lubricant infusion. By tuning the parameters of the femtosecond laser, the wettability of PI film can be transformed into superhydrophobic or superhydrophilic. After trapping water droplets on the superhydrophilic surface and depositing excess lubricant, the asymmetrical wetting ridge drives water droplets by an attractive capillary force on the LIHSS. Notably, the maximum droplet self-driving distance can approach ≈3 mm, which is nearly twice as long as the previously reported strategies for direction water self-transport. Significantly, it is demonstrated that this strategy makes it possible to achieve water self-transport, anti-gravity pumping, and chemical microreaction on a tilted LIHSS. This work provides an efficient method to fabricate a promising platform for realizing directional water self-transport.
Collapse
Affiliation(s)
- Lingxiao Wang
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
- The State Key Laboratory of High Performance and Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Qiaoqiao Huang
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Ji‐An Duan
- The State Key Laboratory of High Performance and Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083P. R. China
| |
Collapse
|
9
|
Wei Z, Zhang S, Chang L, Liu H, Jiang L. Superwetting membrane-based strategy for high-flux enrichment of ethanol from ethanol/water mixture. Front Chem 2022; 10:1037828. [PMID: 36247667 PMCID: PMC9561090 DOI: 10.3389/fchem.2022.1037828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Ethanol, which can be scalable produced from fermented plant materials, is a promising candidate to gasoline as the next-generation liquid fuel. As an energy-efficient alternative to distillation, membrane-based strategies including pervaporation and reverse osmosis have been developed to recover ethanol from fermentation broths. However, these approaches suffer the drawback of low separation flux. Herein, we report a superwetting membrane system to enrich ethanol from water in a high-flux manner. By synergistically regulating surface energy of the solid porous membrane and hydration between an additive inorganic potassium salt and water, concentrated ethanol can rapidly wetting and permeate the porous membrane, with the salt solution being blocked. Using this newly developed superwetting membrane system, we can achieve fast enrichment of ethanol from water, with flux of two orders magnitude higher than that of pervaporation and reverse osmosis membranes.
Collapse
Affiliation(s)
- Zhongwei Wei
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoqing Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Li Chang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Hongliang Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
- *Correspondence: Hongliang Liu,
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| |
Collapse
|
10
|
Hu D, Lai H, Liu Y, Luo X, Song Y, Zhang D, Fan Z, Xie Z, Cheng Z. Self-Transportation of Superparamagnetic Droplets on a Magnetic Gradient Slippery Surface with On/Off Sliding Controllability. Chemphyschem 2022; 23:e202200321. [PMID: 36047977 DOI: 10.1002/cphc.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Indexed: 11/06/2022]
Abstract
Recently, research about droplet self-transportation on slippery surfaces has become a hotspot. However, to achieve on/off sliding control during the self-transportation process is still difficult. Herein, we report a magnetic slippery surface, and demonstrate on/off sliding control during the self-transportation of superparamagnetic droplets. The surface is prepared through integrating a substrate that has a gradient magnetic region with a layer of paraffin infused hydrophobic SiO2 nanoparticles. On the surface, a superparamagnetic droplet is pinned at room temperature (about 25 °C), while it can self-transport directionally as the temperature is increased to about 70 °C. When the temperature is cooled down again, the droplet would return to the pinned state, indicating that on/off sliding control during the self-transportation process can be achieved. Furthermore, based on the excellent controllability, controllable coalescence of two droplets from opposite direction is displayed, demonstrating its potential application in numerous areas.
Collapse
Affiliation(s)
- Dongdong Hu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hua Lai
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuyan Liu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Luo
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yingbin Song
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Dongjie Zhang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhimin Fan
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
11
|
Gulfam R, Chen Y. Recent Growth of Wettability Gradient Surfaces: A Review. Research (Wash D C) 2022; 2022:9873075. [PMID: 35935132 PMCID: PMC9327586 DOI: 10.34133/2022/9873075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
This review reports the recent progress and future prospects of wettability gradient surfaces (WGSs), particularly focusing on the governing principles, fabrication methods, classification, characterization, and applications. While transforming the inherent wettability into artificial wettability via bioinspiration, topographic micro/nanostructures are produced with changed surface energy, resulting in new droplet wetting regimes and droplet dynamic regimes. WGSs have been mainly classified in dry and wet surfaces, depending on the apparent surface states. Wettability gradient has long been documented as a surface phenomenon inducing the droplet mobility in the direction of decreasing wettability. However, it is herein critically emphasized that the wettability gradient does not always result in droplet mobility. Indeed, the sticky and slippery dynamic regimes exist in WGSs, prohibiting or allowing the droplet mobility, respectively. Lastly, the stringent bottlenecks encountered by WGSs are highlighted along with solution-oriented recommendations, and furthermore, phase change materials are strongly anticipated as a new class in WGSs. In all, WGSs intend to open up new technological insights for applications, encompassing water harvesting, droplet and bubble manipulation, controllable microfluidic systems, and condensation heat transfer, among others.
Collapse
Affiliation(s)
- Raza Gulfam
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yongping Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
12
|
Sun X, Kong D, Liang C, Hu Y, Duan JA. Flexible and Precise Droplet Manipulation by a Laser-Induced Shape Temperature Field on a Lubricant-Infused Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6731-6740. [PMID: 35587878 DOI: 10.1021/acs.langmuir.2c00680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Light actuation on a lubricant-infused surface (LIS) has attracted great attention because of its flexibility and remote control of droplet motion. However, to actuate a droplet on a LIS flexibly and precisely by light, the key issue is to control two degrees of freedom of the droplet motion in real time. In this paper, we propose a C-shape temperature field (CSTF) induced by rapid and selective laser irradiation on a LIS. The CSTF could not only manipulate a single droplet precisely and flexibly but also process multiple droplets automatically and orderly in real time. The mechanism showed that the droplet was confined by the Marangoni force in two orthogonal directions. For single droplet manipulation, the CSTF had the capability of correcting the off-track droplet motion. Moreover, the droplet motion, including rectilinear motion and curvilinear motion, could be precisely and flexibly controlled by the motion of the CSTF. For manipulation of multiple droplets, coalescence of multiple droplets was successfully achieved by triple rotating CSTFs. Such a method was applied in the detection of 5 μL of bovine serum albumin (BSA) by triggering chromogenic reactions automatically and orderly, which improved the efficiency of the whole process. We believe that this method is a significant candidate for intelligent droplet manipulation.
Collapse
Affiliation(s)
- Xiaoyan Sun
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Dejian Kong
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Chang Liang
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Youwang Hu
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
- Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, Guangzhou 510610, China
| | - Ji-An Duan
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
13
|
Huang T, Zhang L, Lao J, Luo K, Liu X, Sui K, Gao J, Jiang L. Reliable and Low Temperature Actuation of Water and Oil Slugs in Janus Photothermal Slippery Tube. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17968-17974. [PMID: 35394739 DOI: 10.1021/acsami.2c01205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While actuating liquid with external stimuli on open surfaces has been extensively studied, the actuation in tubes or channels is much more challenging due to the lower accessibility and higher complexity in material/device design, despite its crucial importance for microfluidic applications. Of various potential actuation methods, optical ones are particularly interesting because they can be remotely controlled with high spatial/temporal resolution. Yet, previous optical methods relied on the physical deformation of tubes, raising the concern of material fatigue and compromising reliability. Here we develop a low temperature photothermal method to actuate various liquids including water and oil in a tube. The tube has Janus configuration, with the upper part allowing light transmission and lower part imparted with high photothermal property. Combining with experiments and calculation, we show that the photothermal effect induces a wettability gradient to drive the liquid transport. Compared with the methods based on physical deformation, our method is more robust and can repeatedly function for at least 20 times. Thanks to the slippery surface, the actuation can be initiated at a moderate temperature of ∼40 °C, mitigating the risk of biomolecule degradation. We therefore expect our work to pave the way toward practical biomedical microfluidic applications.
Collapse
Affiliation(s)
- Tao Huang
- College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Li Zhang
- College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Junchao Lao
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kuiguang Luo
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Xueli Liu
- College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Kunyan Sui
- College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Wang X, Huang J, Guo Z. Overview of the development of slippery surfaces: Lubricants from presence to absence. Adv Colloid Interface Sci 2022; 301:102602. [PMID: 35085985 DOI: 10.1016/j.cis.2022.102602] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
The superhydrophobic surfaces inspired by the lotus have excellent performances and are known for their low contact angle hysteresis and smooth surfaces. However, there are still some problems, such as the unstable structure, poor durability, high product cost and so on that need to be improved. Those issues can be avoided via liquid-infused surfaces(LIS), which are inspired by Nepenthes and consist of a mico-nano structured substrate and a smooth continuous atomic-grade lubricant. Compared with superhydrophobic surfaces, LIS not only achieves the same hydrophobic properties but also has smaller contact angle hysteresis, smoother surface, more stable structure and lower preparation cost. Although the existence of a lubricant layer improves the performance of the material, it also leaves a hidden danger, which is easy to lose and leads to the deterioration of the durability of the material. Therefore, the lubricant-free slipper materials have attracted more and more attention in recent years due to their low volatility, good durability and excellent lubrication performance. In this review, the types of LIS lubricants and their physicochemical properties were summarized at the beginning and then the applications of LIS in various fields were introduced. At the end of this paper, some solid lubricants and their applications were described, and the future development prospects of LIS lubricants also were expected.
Collapse
Affiliation(s)
- Xiaobo Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
15
|
Wang F, Sun Y, Zong G, Liang W, Yang B, Guo F, Yangou C, Wang Y, Zhang Z. Electrothermally Assisted Surface Charge Density Gradient Printing to Drive Droplet Transport. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3526-3535. [PMID: 34990109 DOI: 10.1021/acsami.1c21452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface 2019, surface charge density (SCD) gradient printing-driven droplet transport, has attracted considerable attention as a novel and effective approach, which adopts the water droplet impacting a nonwetting surface to create a reprintable SCD gradient pathway conveniently and realizes the high-velocity and long-distance transport of droplets. In the present work, we further investigated the effects of electrothermal behavior on SCD gradient printing on hydrophobic surfaces by considering the droplet impact dynamics. After the electrothermal function was activated, the wettability of the hydrophobic surface improved in terms of the spreading factor history and the infiltration depth, which increased the probability of solid/liquid contact electrification to generate a more favorable SCD gradient. Since the hydrophobic surface was negatively charged by droplet impact, polarized droplets rolled forward along the preprinted SCD gradient pathway due to opposite charge attraction. Based on these results, we designed a SCD gradient printer with an electrothermal function for hydrophobic surfaces. Subsequently, the kinematic parameters of rolling droplets on hydrophobic surfaces were observed and quantified to evaluate the improvements resulting from the electrothermal function.
Collapse
Affiliation(s)
- Fangxin Wang
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yongyang Sun
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Guanggong Zong
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Wenyan Liang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Bin Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, PR China
| | - Fuzheng Guo
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chenyan Yangou
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yubo Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Zhichao Zhang
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| |
Collapse
|
16
|
Bi H, An C, Mulligan CN, Wang Z, Zhang B, Lee K. Exploring the use of alginate hydrogel coating as a new initiative for emergent shoreline oiling prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149234. [PMID: 34346356 DOI: 10.1016/j.scitotenv.2021.149234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Marine oil spills are often reported as a result of activities associated with oil exploration, production and transportation. The spilled oil may reach the shoreline, and then the stranded oil can persist for a long time, exerting many negative effects on coastal ecosystems. Conventional shoreline cleanup methods cannot effectively remove the oil residues from affected areas and are very expensive. Therefore, the use of alginate hydrogel coatings was proposed as a new initiative for emergent shoreline oiling prevention. The alginate hydrogel-coated gravels showed high surface roughness, as well as remarkable water wetting and low-oil-adhesion properties. There was a low oil adhesion on the coated gravels in the continuous test with oil/water emulsion flow, indicating the excellent oil-repellent properties of the coated substrate. The results of batch oil-repellent tests showed that independent of the kind or weathering degree of the oil used, oil can be easily washed out from the coated gravels. The coated gravels had good environmental stability and the slightly partial de-crosslinking of alginate structure would not reduce the oil repellence performance. Moreover, the performance of the alginate hydrogel-coated gravel was further proved with a laboratory shoreline tank simulator, in which more stranded oil floated to the water surface and less oil remained on gravels and entered into subsurface. This proposed oiling prevention method can be used not only for shorelines but also for coastal piers, seaports, and solid manmade shorelines. The coating material is derived from the biomass in the ocean and can be degraded under natural conditions. This study may provide a unique direction for the future development of green oil spill control strategy.
Collapse
Affiliation(s)
- Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| |
Collapse
|