1
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Shen Y, Jin D, Li T, Yang X, Ma X. Magnetically Responsive Gallium-Based Liquid Metal: Preparation, Property and Application. ACS NANO 2024. [PMID: 39073895 DOI: 10.1021/acsnano.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Magnetically responsive soft smart materials have garnered significant academic attention due to their flexibility, remote controllability, and reconfigurability. However, traditional soft materials used in the construction of these magnetically responsive systems typically exhibit low density and poor thermal and electrical conductivities. These limitations result in suboptimal performance in applications such as medical radiography, high-performance electronic devices, and thermal management. To address these challenges, magnetically responsive gallium-based liquid metals have emerged as promising alternatives. In this review, we summarize the methodologies for achieving magnetically responsive liquid metals, including the integration of magnetic agents into the liquid metal matrix and the utilization of induced Lorentz forces. We then provide a comprehensive discussion of the key physicochemical properties of these materials and the factors influencing them. Additionally, we explore the advanced and potential applications of magnetically responsive liquid metals. Finally, we discuss the current challenges in this field and present an outlook on future developments and research directions.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
3
|
Ye J, Xiang W, Cheng C, Bao W, Zhang Q. Principles and methods of liquid metal actuators. SOFT MATTER 2024; 20:2196-2211. [PMID: 38372963 DOI: 10.1039/d3sm01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
As a promising material, liquid metals (LMs) have gained considerable interest in the field of soft robotics due to their ability to move as designed routines or change their shape dramatically under external stimuli. Inspired by the science fiction film Terminator, tremendous efforts have been devoted to liquid robots with high compliance and intelligence. How to manipulate LM droplets is crucial to achieving this goal. Accordingly, this review is dedicated to presenting the principles driving LMs and summarizing the potential methods to develop LM actuators of high maneuverability. Moreover, the recent progress of LM robots based on these methods is overviewed. The challenges and prospects of implementing autonomous robots have been proposed.
Collapse
Affiliation(s)
- Jiao Ye
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Wentao Xiang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Cheng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendi Bao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Abstract
Magnetic control has gained popularity recently due to its ability to enhance soft robots with reconfigurability and untethered maneuverability, among other capabilities. Several advancements in the fabrication and application of reconfigurable magnetic soft robots have been reported. This review summarizes novel fabrication techniques for designing magnetic soft robots, including chemical and physical methods. Mechanisms of reconfigurability and deformation properties are discussed in detail. The maneuverability of magnetic soft robots is then briefly discussed. Finally, the present challenges and possible future work in designing reconfigurable magnetic soft robots for biomedical applications are identified.
Collapse
Affiliation(s)
- Linxiaohai Ning
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Chayabhan Limpabandhu
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Zion Tsz Ho Tse
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Liao J, Majidi C, Sitti M. Liquid Metal Actuators: A Comparative Analysis of Surface Tension Controlled Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300560. [PMID: 37358049 DOI: 10.1002/adma.202300560] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Liquid metals, with their unique combination of electrical and mechanical properties, offer great opportunities for actuation based on surface tension modulation. Thanks to the scaling laws of surface tension, which can be electrochemically controlled at low voltages, liquid metal actuators stand out from other soft actuators for their remarkable characteristics such as high contractile strain rates and higher work densities at smaller length scales. This review summarizes the principles of liquid metal actuators and discusses their performance as well as theoretical pathways toward higher performances. The objective is to provide a comparative analysis of the ongoing development of liquid metal actuators. The design principles of the liquid metal actuators are analyzed, including low-level elemental principles (kinematics and electrochemistry), mid-level structural principles (reversibility, integrity, and scalability), and high-level functionalities. A wide range of practical use cases of liquid metal actuators from robotic locomotion and object manipulation to logic and computation is reviewed. From an energy perspective, strategies are compared for coupling the liquid metal actuators with an energy source toward fully untethered robots. The review concludes by offering a roadmap of future research directions of liquid metal actuators.
Collapse
Affiliation(s)
- Jiahe Liao
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Carmel Majidi
- Robotics Institute, Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Medicine, College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
6
|
Mousavi M, Ghasemian MB, Baharfar M, Tajik M, Chi Y, Mao G, Kalantar-Zadeh K, Tang J. Liquid Metal Interface for Two-Precursor Autogenous Deposition of Metal Telluride-Tellurium Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47394-47404. [PMID: 37755698 DOI: 10.1021/acsami.3c10049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Liquid metal-electrolyte can offer electrochemically reducing interfaces for the self-deposition of low-dimensional nanomaterials. We show that implementing such interfaces from multiprecursors is a promising pathway for achieving nanostructured films with combinatory properties and functionalities. Here, we explored the liquid metal-driven interfacial growth of metal tellurides using eutectic gallium-indium (EGaIn) as the liquid metal and the cation pairs Ag+-HTeO2+ and Cu2+-HTeO2+ as the precursors. At the EGaIn-electrolyte interface, the precursors were reduced and self-deposited autogenously to form interconnected nanoparticle networks. The deposited materials consisted of metal telluride and tellurium with their relative abundance depending on the metal ion type (Ag+ and Cu2+) and the metal-to-tellurium ion ratios. When used as electrode modifiers, the synthesized materials increased the electroactive surface area of unmodified electrodes by over 10 times and demonstrated remarkable activity for model electrochemical reactions, including HexRu(III) responses and dopamine sensing. Our work reveals the promising potential of the liquid metal-templated deposition method for synthesizing complex material systems for electrochemical applications.
Collapse
Affiliation(s)
- Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney (USYD), Darlington, New South Wales 2008, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Mohammad Tajik
- School of Chemistry, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Yuan Chi
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney (USYD), Darlington, New South Wales 2008, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| |
Collapse
|
7
|
Xu Y, Zhu J, Chen H, Yong H, Wu Z. A Soft Reconfigurable Circulator Enabled by Magnetic Liquid Metal Droplet for Multifunctional Control of Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300935. [PMID: 37311235 PMCID: PMC10427373 DOI: 10.1002/advs.202300935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Integrated control circuits with multiple computation functions are essential for soft robots to achieve diverse complex real tasks. However, designing compliant yet simple circuits to embed multiple computation functions in soft electronic systems above the centimeter scale is still a tough challenge. Herein, utilizing smooth cyclic motions of magnetic liquid metal droplets (MLMD) in specially designed and surface-modified circulating channels, a soft reconfigurable circulator (SRC) consisting of three simple and reconfigurable basic modules is described. Through these modules, MLMD can utilize their conductivity and extreme deformation capabilities to transfer their simple cyclic motions as input signals to programmable electrical output signals carrying computing information. The obtained SRCs make it possible for soft robots to perform complex computing tasks, such as logic, programming, and self-adaptive control (a combination of programming and feedback control). Following, a digital logic-based grasping function diagnosis, a locomotion reprogrammable soft car, and a self-adaptive control-based soft sorting gripper are demonstrated to verify SRCs' capabilities. The unique attributes of MLMD allow complex computations based on simple configurations and inputs, which provide new ways to enhance soft robots' computing capabilities.
Collapse
Affiliation(s)
- Yi Xu
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jiaqi Zhu
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Han Chen
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Haochen Yong
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Zhigang Wu
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
8
|
Harischandra PAD, Välisalmi T, Cenev ZM, Linder MB, Zhou Q. Shaping Liquid Droplets on an Active Air-Ferrofluid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37224278 DOI: 10.1021/acs.langmuir.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An air-liquid interface is important in many biological and industrial applications, where the manipulation of liquids on the air-liquid interface can have a significant impact. However, current manipulation techniques on the interface are mostly limited to transportation and trapping. Here, we report a magnetic liquid shaping method that can squeeze, rotate, and shape nonmagnetic liquids on an air-ferrofluid interface with programmable deformation. We can control the aspect ratio of the ellipse and generate repeatable quasi-static shapes of a hexadecane oil droplet. We can rotate droplets and stir liquids into spiral-like structures. We can also shape phase-changing liquids and fabricate shape-programmed thin films at the air-ferrofluid interface. The proposed method may potentially open up new possibilities for film fabrication, tissue engineering, and biological experiments that can be carried out at an air-liquid interface.
Collapse
Affiliation(s)
- P A Diluka Harischandra
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
| | - Teemu Välisalmi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| | - Zoran M Cenev
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| | - Quan Zhou
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
9
|
Zhao P, Qu F, Fu H, Zhao J, Guo J, Xu J, Ho YP, Chan MK, Bian L. Water-Immiscible Coacervate as a Liquid Magnetic Robot for Intravascular Navigation. J Am Chem Soc 2023; 145:3312-3317. [PMID: 36728932 DOI: 10.1021/jacs.2c13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Developing magnetic ultrasoft robots to navigate through extraordinarily narrow and confined spaces like capillaries in vivo requires synthesizing materials with excessive deformability, responsive actuation, and rapid adaptability, which are difficult to achieve with the current soft polymeric materials, such as elastomers and hydrogels. We report a magnetically actuatable and water-immiscible (MAWI) coacervate based on the assembled magnetic core-shell nanoparticles to function as a liquid robot. The degradable and biocompatible millimeter-sized MAWI coacervate liquid robot can remain stable under changing pH and salt concentrations, release loaded cargoes on demand, squeeze through an artificial capillary network within seconds, and realize intravascular targeting in vivo guided by an external magnetic field. We believe the proposed "coacervate-based liquid robot" can implement demanding tasks beyond the capability of conventional elastomer or hydrogel-based soft robots in the field of biomedicine and represents a distinct design strategy for high-performance ultrasoft robots.
Collapse
Affiliation(s)
- Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China.,Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Fuyang Qu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Hao Fu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China
| | - Jianyang Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China
| | - Jiaxin Guo
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Jiankun Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China.,Department of Orthopaedics, The First Affiliated Hospital, Shantou University, Shantou 515041, P. R. China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Michael K Chan
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P. R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Yang B, Yang Z, Tang L. Recent progress in fiber-based soft electronics enabled by liquid metal. Front Bioeng Biotechnol 2023; 11:1178995. [PMID: 37187888 PMCID: PMC10175636 DOI: 10.3389/fbioe.2023.1178995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Soft electronics can seamlessly integrate with the human skin which will greatly improve the quality of life in the fields of healthcare monitoring, disease treatment, virtual reality, and human-machine interfaces. Currently, the stretchability of most soft electronics is achieved by incorporating stretchable conductors with elastic substrates. Among stretchable conductors, liquid metals stand out for their metal-grade conductivity, liquid-grade deformability, and relatively low cost. However, the elastic substrates usually composed of silicone rubber, polyurethane, and hydrogels have poor air permeability, and long-term exposure can cause skin redness and irritation. The substrates composed of fibers usually have excellent air permeability due to their high porosity, making them ideal substrates for soft electronics in long-term applications. Fibers can be woven directly into various shapes, or formed into various shapes on the mold by spinning techniques such as electrospinning. Here, we provide an overview of fiber-based soft electronics enabled by liquid metals. An introduction to the spinning technology is provided. Typical applications and patterning strategies of liquid metal are presented. We review the latest progress in the design and fabrication of representative liquid metal fibers and their application in soft electronics such as conductors, sensors, and energy harvesting. Finally, we discuss the challenges of fiber-based soft electronics and provide an outlook on future prospects.
Collapse
Affiliation(s)
- Bowen Yang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zihan Yang
- Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| | - Lixue Tang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| |
Collapse
|
11
|
Tao Y, Shi C, Han F, Yang R, Xue R, Ge Z, Guo W, Liu W, Ren Y. Liquid metal droplet motion transferred from an alkaline solution by a robot arm. LAB ON A CHIP 2022; 22:4621-4631. [PMID: 36326042 DOI: 10.1039/d2lc00712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The excellent motion performance of gallium-based liquid metals (LMs) upon the application of a modest electric field has provided a new opportunity for the development of autonomous soft robots. However, the locomotion of LMs often appears in an alkaline solution, which hampers the application under other different conditions. In this work, a novel robot arm is designed to transfer the motion of the LM from an alkaline solution in a synchronous drive mode. The liquid metal droplet (LMD) at the bottom of the robot arm is actuated using a DC voltage to provide the driving force for the system. By introducing an end effector at the center of the robot arm, the synchronous motion of the system is replicated and can be applied to different situations. The theoretical understanding of continuous electrowetting (CEW) at the LM interface is explained, and then the motion performance of the robot arm against the function of the applied voltage and driving direction is investigated. Moreover, several applications using this robot arm, such as pattern drawing, cargo transportation, and drug concentration detection, are demonstrated. The presented robot arm has the potential to observably expand the application fields of the LM.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Changrui Shi
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Feiyang Han
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ruizhe Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Weiyu Liu
- Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710000, China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
12
|
Xing Y, Hussain D, Hu C. Optimized Dynamic Motion Performance for a 5-DoF Electromagnetic Manipulation. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3187501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Xing
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology and with Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| | - Danish Hussain
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology and with Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology and with Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Chen Z, Lu W, Li Y, Liu P, Yang Y, Jiang L. Solid-Liquid State Transformable Magnetorheological Millirobot. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30007-30020. [PMID: 35727886 DOI: 10.1021/acsami.2c05251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetically actuated soft millirobots (magneto-robot) capable of accomplishing on-demand tasks in a remote-control manner using noninvasive magnetic fields are of great interest in biomedical settings. However, the solid magneto-robots are usually restricted by the limited deformability due to the predesigned shape, while the liquid magneto-robots are capable of in situ shape reconfiguration but limited by the low stiffness and geometric instability due to the fluidity. Herein, we propose a magneto-active solid-liquid state transformable millirobot (named MRF-Robot) made from a magnetorheological fluid (MRF). The MRF-Robot can transform freely and rapidly between the Newtonian fluid in the liquid state upon a weak magnetic field (∼0 mT) and the Bingham plasticity in the solid state upon a strong magnetic field (∼100 mT). The MRF-Robot in the liquid state can realize diverse behaviors of large deformation, smooth navigation, in situ splitting, merging, and gradient pulling actuated by a weak magnetic field with a high gradient. The MRF-Robot in the solid state is distinguished for the controllable locomotion with reconfigured shapes and versatile object manipulations (including pull, push, and rotate the objects) driven by a strong magnetic field with a high gradient. Moreover, the MRF-Robot could continuously maneuver to accomplish diverse tasks in the comprehensive scenes and achieve liquid-drug delivery, thrombus clearance, and fluid-flow blockage in the phantom vascular model under magnetic actuation.
Collapse
Affiliation(s)
- Zhipeng Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Weibin Lu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Pengfei Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yawen Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
14
|
Zhang Y, Jiang S, Hu Y, Wu T, Zhang Y, Li H, Li A, Zhang Y, Wu H, Ding Y, Li E, Li J, Wu D, Song Y, Chu J. Reconfigurable Magnetic Liquid Metal Robot for High-Performance Droplet Manipulation. NANO LETTERS 2022; 22:2923-2933. [PMID: 35333539 DOI: 10.1021/acs.nanolett.2c00100] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Droplet manipulation is crucial for diverse applications ranging from bioassay to medical diagnosis. Current magnetic-field-driven manipulation strategies are mainly based on fixed or partially tunable structures, which limits their flexibility and versatility. Here, a reconfigurable magnetic liquid metal robot (MLMR) is proposed to address these challenges. Diverse droplet manipulation behaviors including steady transport, oscillatory transport, and release can be achieved by the MLMR, and their underlying physical mechanisms are revealed. Moreover, benefiting from the magnetic-field-induced active deformability and temperature-induced phase transition characteristics, its droplet-loading capacity and shape-locking/unlocking switching can be flexibly adjusted. Because of the fluidity-based adaptive deformability, MLMR can manipulate droplets in challenging confined environments. Significantly, MLMR can accomplish cooperative manipulation of multiple droplets efficiently through on-demand self-splitting and merging. The high-performance droplet manipulation using the reconfigurable and multifunctional MLMR unfolds new potential in microfluidics, biochemistry, and other interdisciplinary fields.
Collapse
Affiliation(s)
- Yuxuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Shaojun Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Tao Wu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - An Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Hao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yinlong Ding
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Erqiang Li
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Li X, Cao L, Xiao B, Li F, Yang J, Hu J, Cole T, Zhang Y, Zhang M, Zheng J, Zhang S, Li W, Sun L, Chen X, Tang S. Superelongation of Liquid Metal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105289. [PMID: 35128845 PMCID: PMC9008437 DOI: 10.1002/advs.202105289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Indexed: 05/29/2023]
Abstract
The ability to control interfacial tension electrochemically is uniquely available for liquid metals (LMs), in particular gallium-based LM alloys. This imparts them with excellent locomotion and deformation capabilities and enables diverse applications. However, electrochemical oxidation of LM is a highly dynamic process, which often induces Marangoni instabilities that make it almost impossible to elongate LM and manipulate its morphology directly and precisely on a 2D plane without the assistance of other patterning methods. To overcome these limitations, this study investigates the use of an LM-iron (Fe) particle mixture that is capable of suppressing instabilities during the electrochemical oxidation process, thereby allowing for superelongation of the LM core of the mixture to form a thin wire that is tens of times of its original length. More importantly, the elongated LM core can be manipulated freely on a 2D plane to form complex patterns. Eliminating Marangoni instabilities also allows for the effective spreading and filling of the LM-Fe mixture into molds with complex structures and small features. Harnessing these excellent abilities, a channel-less patterning method for fabricating elastomeric wearable sensors is demonstrated to detect motions. This study shows the potential for developing functional and flexible structures of LM with superior performance.
Collapse
Affiliation(s)
- Xiangpeng Li
- College of Mechanical and Electrical EngineeringSoochow UniversitySuzhou215000China
| | - Lu Cao
- National Innovation Institute of Defense TechnologyBeijing100071China
| | - Bing Xiao
- School of AutomationNorthwestern Polytechnical UniversityXi'an710072China
| | - Fangxia Li
- College of Mechanical and Electrical EngineeringSoochow UniversitySuzhou215000China
| | - Junhui Yang
- College of Mechanical and Electrical EngineeringSoochow UniversitySuzhou215000China
| | - Jie Hu
- College of Mechanical and Electrical EngineeringSoochow UniversitySuzhou215000China
| | - Tim Cole
- Department of Electronic, Electrical and Systems EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Mingkui Zhang
- College of Mechanical and Electrical EngineeringSoochow UniversitySuzhou215000China
| | - Jiahao Zheng
- Department of Electronic, Electrical and Systems EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Shiwu Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230026China
| | - Weihua Li
- School of MechanicalMaterialsMechatronic and Biomedical EngineeringUniversity of WollongongWollongongNSW2522Australia
| | - Lining Sun
- College of Mechanical and Electrical EngineeringSoochow UniversitySuzhou215000China
| | - Xiaoqian Chen
- National Innovation Institute of Defense TechnologyBeijing100071China
| | - Shi‐Yang Tang
- Department of Electronic, Electrical and Systems EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
16
|
Ge Z, Guo W, Tao Y, Liu W, Xue R, Song C, Jiang H, Ren Y. Desktop-level small automatic guided vehicle driven by a liquid metal droplet. LAB ON A CHIP 2022; 22:826-835. [PMID: 35080564 DOI: 10.1039/d1lc01019k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gallium-based liquid metals (LMs) are a new type of intelligent material, and their ability to move under the action of an electric field provides new opportunities for the design of small flexible vehicles. However, due to the extremely high fluidity of LMs and the poor automatic control ability of LM vehicles, it's still a huge challenge to control the movement of LMs flexibly and accurately. Therefore, in this paper, a small traction vehicle is designed by putting the flexible LM in rigid armor to make the movement more controllable. Moreover, a desktop-level small automatic guided vehicle (sAGV) system is built by using an external control circuit to follow a predetermined trajectory. Firstly, the basic characteristics of the vehicles driven by a LM droplet are simulated and analyzed. Then the effects of different factors on the movement velocity of the vehicles are measured by experiment. Finally, as a preliminary application test, the sAGV system is used to control the vehicles following a specific trajectory and realize the targeted transportation of cargos. The sAGV system designed in this paper can realize the automatic and precise control of the movement of the small vehicle. The current findings will inspire the further construction of complex small operating systems and the realization of accurate control.
Collapse
Affiliation(s)
- Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
- School of Engineering and Applied Sciences and Department of Physics Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA.
| | - Weiyu Liu
- Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710000, China
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Chunlei Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, People's Republic of China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
17
|
Ren H, Jin H, Shu J, Xie J, Wang E, Ge DA, Tang SY, Li X, Li W, Zhang S. Light-controlled versatile manipulation of liquid metal droplets: a gateway to future liquid robots. MATERIALS HORIZONS 2021; 8:3063-3071. [PMID: 34747959 DOI: 10.1039/d1mh00647a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The controlled actuation of liquid metal (LM) droplets has recently shown great potential in developing smart actuating systems for applications in robotics. However, there is a lack of a simple approach for the precise manipulation of multiple LM droplets in a 2D plane, which hinders the development of complex control over droplets for realizing useful robotic applications. To overcome this challenge, here, a versatile and powerful light-induced manipulation of LM droplets is presented. The key principle is to selectively activate phototransistors in an electrolyte using infrared laser beams to electrically control LM droplets via Marangoni forces. This approach shows the ability of inducing concurrent motion, splitting, and merging of multiple LM droplets simply using light without complex and bulky systems. Parameters affecting the manipulation of LM droplets are thoroughly investigated. Moreover, a vehicle carrier driven by wheels composed of multiple LM droplets for making a light-controlled relay is demonstrated. We believe such a light-induced control method for manipulating LM droplets has the potential for advancing the development of future field-programmable robotics and droplet-based soft collaborative robots.
Collapse
Affiliation(s)
- Hongtai Ren
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Hu Jin
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Jian Shu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Jie Xie
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Erlong Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Du-An Ge
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, School of Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Xiangpeng Li
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, NSW 2522, Australia
| | - Shiwu Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
18
|
Ye J, Tan SC, Wang L, Liu J. A new hydrodynamic interpretation of liquid metal droplet motion induced by an electrocapillary phenomenon. SOFT MATTER 2021; 17:7835-7843. [PMID: 34612351 DOI: 10.1039/d1sm00873k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Marangoni effect, induced by the surface tension gradient resulting from the gradient of temperature, concentration, or electric potential gradient along a surface, is commonly utilized to manipulate a droplet. It is also the reason for unique behaviors of liquid metal such as moving, breathing, and large-scale deformation under an electric field, which have aroused tremendous interest in academics. However, liquid metal droplets are usually treated as solid marbles, which neglect their fluidic features and can hardly explain some unusual phenomena, such as a droplet under a stationary electric field that moves in the opposite direction in different solutions. To better clarify these discrepancies, this study reveals that the movement of liquid metal is directly driven by viscous forces of solution rather than interfacial tension. This mechanism was determined by analyzing flow characteristics on a liquid metal surface. Additionally, experiments with liquid metal free falling in solution, liquid metal droplet movement experiments on substrates with different roughness, and liquid metal droplet movement experiments under high current density were additionally conducted to verify the theoretical interpretation. This research is instrumental for a greater understanding of the movement of liquid metal under an electric field and lays the foundation for the applications of liquid metal droplets in pumping, fluid mixing, and many other microfluidic fields.
Collapse
Affiliation(s)
- Jiao Ye
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | | | | | | |
Collapse
|
19
|
Liu C, Sun Y, Huanng J, Guo Z, Liu W. External-field-induced directional droplet transport: A review. Adv Colloid Interface Sci 2021; 295:102502. [PMID: 34390884 DOI: 10.1016/j.cis.2021.102502] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Directional transport of fluids is crucial for vital activities of organisms and numerous industrial applications. This process has garnered widespread research attention due to the wide breadth of flexible applications such as medical diagnostics, drug delivery, and digital microfluidics. The rational design of functional surfaces that can achieve the subtle control of liquid behavior. Previous studies were mainly dependent on the special asymmetric structures, which inevitably have the problem of slow transport speed and short distance. To improve controllability, researchers have attempted to use external fields, such as thermal, light, electric fields, and magnetic fields, to achieve controllable droplet transport. On the fundamental side, much of their widespread applicably is due to the degree of control over droplet transport. This review provides an overview of recent progress in the last three years toward the transport of droplets with different mechanisms induced by various external stimuli, including light, electric, thermal, and magnetic field. First, the relevant basic theory and typical induced gradient for directional liquid transport are illustrated. We will then review the latest advances in the external-field-induced directional transport. Moreover, the most emerging applications such as digital microfluidics, harvesting of energy and water, heat transfer, and oil/water separation are also presented. Finally, we will outline possible future perspectives to attract more researchers interest and promote the development of this field.
Collapse
|
20
|
Hong K, Choe M, Kim S, Lee HM, Kim BJ, Park S. An Ultrastretchable Electrical Switch Fiber with a Magnetic Liquid Metal Core for Remote Magnetic Actuation. Polymers (Basel) 2021; 13:2407. [PMID: 34372010 PMCID: PMC8348917 DOI: 10.3390/polym13152407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
In this work we describe a soft and ultrastretchable fiber with a magnetic liquid metal (MLM) core for electrical switches used in remote magnetic actuation. MLM was prepared by removing the oxide layer on the liquid metal and subsequent mixing with magnetic iron particles. We used SEBS (poly[styrene-b-(ethylene-co-butylene)-b-styrene]) and silicone to prepare stretchable elastic fibers. Once hollow elastic fibers form, MLM was injected into the core of the fiber at ambient pressure. The fibers are soft (Young's modulus of 1.6~4.4 MPa) and ultrastretchable (elongation at break of 600~5000%) while maintaining electrical conductivity and magnetic property due to the fluidic nature of the core. Magnetic strength of the fibers was characterized by measuring the maximum effective distance between the magnet and the fiber as a function of iron particle concentration in the MLM core and the polymeric shell. The MLM core facilitates the use of the fiber in electrical switches for remote magnetic actuation. This ultrastretchable and elastic fiber with MLM core can be used in soft robotics, and wearable and conformal electronics.
Collapse
Affiliation(s)
- Kyeongmin Hong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering Jeonbuk National University, Jeonju 54896, Korea; (K.H.); (M.C.); (S.K.)
| | - Minjae Choe
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering Jeonbuk National University, Jeonju 54896, Korea; (K.H.); (M.C.); (S.K.)
| | - Seoyeon Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering Jeonbuk National University, Jeonju 54896, Korea; (K.H.); (M.C.); (S.K.)
| | - Hye-Min Lee
- R&D Division, Korea Institute of Carbon Convergence Technology, Jeonju 54853, Korea;
| | - Byung-Joo Kim
- Department of Carbon-Nanomaterials Engineering, Jeonju University, 303 Cheonjam-ro, Jeonju 55069, Korea;
| | - Sungjune Park
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering Jeonbuk National University, Jeonju 54896, Korea; (K.H.); (M.C.); (S.K.)
| |
Collapse
|
21
|
Ma B, Xu C, Cui L, Zhao C, Liu H. Magnetic Printing of Liquid Metal for Perceptive Soft Actuators with Embodied Intelligence. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5574-5582. [PMID: 33472372 DOI: 10.1021/acsami.0c20418] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soft actuators with perception capability are essential for robots to intelligently interact with humans and the environment. However, existing perceptive soft actuators require complex integration and coupling between the discrete functional units to achieve autonomy. Here, we report entirely soft actuators with embodied sensing, actuation, and control at the single-unit level. This is achieved by synergistically harnessing the mechanosensing and electrothermal properties of liquid metal (LM) to actuate the thermally responsive liquid crystal elastomer (LCE). We create multifunctional LM circuits on the LCE surface using a simple and facile methodology based on magnetic printing. The fluidic LM circuit can not only be utilized as a conformable resistive heater but also as a sensory skin to perceive its own deformation. Moreover, the rational design of the LM circuits makes it possible to achieve biomimetic autonomous actuation in response to mechanical stimuli such as pressure or strain. In addition, the intrinsic stretchability of LM allows us to create 3D spring-like actuators via a simple prestretch step, and complex helical motions can be obtained upon mechanical stimulation. This work provides a unique and simple design for autonomous soft robotics with embodied intelligence.
Collapse
Affiliation(s)
- Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chengtao Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lishan Cui
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|