1
|
Yuan Y, Wu XQ, Yin X, Ruan HY, Wu YP, Li S, Hai G, Zhang G, Sun S, Li DS. Dilute Pd-Ni Alloy through Low-temperature Pyrolysis for Enhanced Electrocatalytic Hydrogen Oxidation. Angew Chem Int Ed Engl 2024:e202412680. [PMID: 39166757 DOI: 10.1002/anie.202412680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Designing highly active and cost-effective electrocatalysts for the alkaline hydrogen oxidation reaction (HOR) is critical for advancing anion-exchange membrane fuel cells (AEMFCs). While dilute metal alloys have demonstrated substantial potential in enhancing alkaline HOR performance, there has been limited exploration in terms of rational design, controllable synthesis, and mechanism study. Herein, we developed a series of dilute Pd-Ni alloys, denoted as x% Pd-Ni, based on a trace-Pd decorated Ni-based coordination polymer through a facile low-temperature pyrolysis approach. The x% Pd-Ni alloys exhibit efficient electrocatalytic activity for HOR in alkaline media. Notably, the optimal 0.5 % Pd-Ni catalyst demonstrates high intrinsic activity with an exchange current density of 0.055 mA cm-2, surpassing that of many other alkaline HOR catalysts. The mechanism study reveals that the strong synergy between Pd single atoms (SAs)/Pd dimer and Ni substrate can modulate the binding strength of proton (H)/hydroxyl (OH), thereby significantly reducing the activation energy barrier of a decisive reaction step. This work offers new insights into designing advanced dilute metal or single-atom-alloys (SAAs) for alkaline HOR and potentially other energy conversion processes.
Collapse
Affiliation(s)
- Yi Yuan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xue-Qian Wu
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xi Yin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Heng-Yu Ruan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Shuang Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montréal, Québec H3C 1K3, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Center Energy, Materials and Telecommunications, Varennes, Québec J3X 1P7, Canada
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
2
|
Liu H, Sun F, Yang L, Chen M, Wang H. Gaining insight into the impact of electronic property and interface electrostatic field on ORR kinetics in alloy engineering via theoretical prognostication and experimental validation. J Colloid Interface Sci 2023; 652:890-900. [PMID: 37634362 DOI: 10.1016/j.jcis.2023.08.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Alloy engineering has been utilized as a potent strategy to modulate the oxygen reduction reaction (ORR) activity. However, the regulatory mechanism underpinning the ORR kinetics by means of alloy engineering is still shrouded in ambiguity. This work places emphasis on the kinetics of the ORR concerning Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) catalysts, and integrates theoretical prognostication and experimental validation to illuminate the fundamental principles of alloy engineering. The ORR kinetic activity, as prognosticated by theory, shows significant agreement with experimental results, provided that the rate-determining step (RDS) accounts for a dominant role in the potential-independent kinetic mechanism. In essence, alloy engineering manipulates electronic properties through electron transfer to modulate intermediate adsorption and adjusts the interface electric field (Efield) to regulate hydrogen atom transport, ultimately influencing kinetics. The Efield holds greater significance in ORR kinetics compared to the intermediate adsorption (EadsO), the corresponding degrees of correlation with free energy barriers (Ea) of RDS are -0.89, and 0.75, respectively. This work highlights the nature of alloy engineering for ORR kinetics modulation and assists in the design of efficient catalysts.
Collapse
Affiliation(s)
- Haijun Liu
- Harbin Institute of Technology, Harbin 150001, China; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
| | - Fengman Sun
- Harbin Institute of Technology, Harbin 150001, China; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
| | - Lin Yang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ming Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China.
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China.
| |
Collapse
|
3
|
N-Doped Carbon-Coupled Nickel Nitride Species/Ni2P Heterostructure for Enhancing Electrochemical Overall Water Splitting Performance. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Montserrat-Sisó G, Wickman B. PdNi thin films for hydrogen oxidation reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Liu H, Chen M, Sun F, Zaman S, Wang M, Wang H. Elucidating the Correlation between ORR Polarization Curves and Kinetics at Metal-Electrolyte Interfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13891-13903. [PMID: 35274947 DOI: 10.1021/acsami.1c24153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The metal-vacuum models used to analyze the thermodynamics of the oxygen reduction reaction (ORR) completely overlook the role of electrolytes in the electrochemical process and thus cannot reflect the actual kinetic process occurring at the metal-electrolyte interface. Therefore, based on the real experimental process, the current work elucidates the chemical interactions between the electrolyte and the chemical species for the ORR via a novel metal-electrolyte model for the first time by effectively elucidating the correlation between ORR kinetics and polarization curves. Our simulation model analysis comprises the study of all possible ORR mechanisms on different Pt surfaces (Pt(111), Pt(110), and Pt(100)) and PtNi alloys with different compositions (Pt3Ni(111), Pt2Ni2(111), and PtNi3(111)). The obtained results demonstrate that the hydrogenation of adsorbed oxygen to form adsorbed hydroxyl (R8), whose immense control weight is reflected by a coverage of adsorbed oxygen (θO*) of about 1, is the rate-determining step (RDS) in the four-electron-dominated ORR process. A direct correlation has been established by the great fitting of polarization curves from theoretical ORR kinetics obtained via both the metal-electrolyte model and experimental measurement. This study reveals that among the different Pt surfaces and PtNi alloys, Pt3Ni(111) exhibits the highest ORR activity with the lowest free energy barrier of Ea (0.74 eV), the smallest value of |ΔGO* - 2.46| (0.80 eV), the highest reaction rate r (9.98 × 105 s-1 per site), and a more positive half-wave potential U1/2 (0.93 V). In contrast to previous model studies, this work provides a more accurate theoretical system for catalyst screening, which will help researchers to better understand the experimental phenomena and will be a guiding piece of work for catalyst design and development.
Collapse
Affiliation(s)
- Haijun Liu
- Harbin Institute of Technology, Harbin, 150001, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fengman Sun
- Harbin Institute of Technology, Harbin, 150001, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shahid Zaman
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Min Wang
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Zhao L, Han X, Kong W, Tong Y, Ding Y, Wang J, Li B, Liu Y, Xu J, Xing W. Graphene supported single metal atom catalysts for the efficient hydrogen oxidation reaction in alkaline media. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01959g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single Pt and Ni atoms anchored on the divacancy graphene exhibit both high activity and superior antioxidant capacity for the hydrogen oxidation reaction in alkaline fuel cells.
Collapse
Affiliation(s)
- Lianming Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Xiaonan Han
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Weichao Kong
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yanfu Tong
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yanping Ding
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Jiajun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Bingyu Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yonghui Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Jing Xu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Wei Xing
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| |
Collapse
|
8
|
Sequeira CAC. Editorial for the Special Issue on "Nanoalloy Electrocatalysts for Electrochemical Devices". NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:132. [PMID: 35010083 PMCID: PMC8746522 DOI: 10.3390/nano12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022]
Abstract
Nanoscale science and technology dealing with materials synthesis, nanofabrication, nanoprobes, nanostructures, nanoelectronics, nano-optics, nanomechanics, nanodevices, nanobiotechnology, and nanomedicine is an exciting field of research and development in Europe, the United States, and other countries around the world [...].
Collapse
Affiliation(s)
- César A C Sequeira
- Materials Electrochemistry Group, CeFEMA, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| |
Collapse
|
9
|
Zhang B, Zhao G, Zhang B, Xia L, Jiang Y, Ma T, Gao M, Sun W, Pan H. Lattice-Confined Ir Clusters on Pd Nanosheets with Charge Redistribution for the Hydrogen Oxidation Reaction under Alkaline Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105400. [PMID: 34545978 DOI: 10.1002/adma.202105400] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalysts with high activity and long-term stability for the hydrogen oxidation reaction (HOR) under alkaline conditions is still a major challenge for anion exchange membrane fuel cells (AEMFCs). Herein, a heterostructured Ir@Pd electrocatalyst with ultrasmall Ir nanoclusters (NCs) epitaxially confined on Pd nanosheets (NSs) for catalyzing the sluggish alkaline HOR is reported. Apparent charge redistribution occurs across the heterointerface, and both experimental and theoretical results suggest that the electrons transfer from Pd to Ir, which consequently greatly weakens the hydrogen binding on Pd. More interestingly, the interfacial epitaxy results in the formation of Ir/IrO2 Janus nanostructures, where the partially oxidized Ir species away from the interface further optimize the hydroxyl adsorption behavior. The unique Ir@Pd heterostructure eventually shows an optimal balance between hydrogen and hydroxyl adsorption, and hence exhibits impressive HOR activity with an exchange current density of up to 7.18 mA cm-2 in 0.1 m KOH solution. In addition, the Ir@Pd electrocatalyst exhibits negligible activity degradation owing to the confinement effect of the unique epitaxial interface.
Collapse
Affiliation(s)
- Baohua Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guoqiang Zhao
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lixue Xia
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Mingxia Gao
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| |
Collapse
|
10
|
Zhang Y, Li G, Zhao Z, Han L, Feng Y, Liu S, Xu B, Liao H, Lu G, Xin HL, Huang X. Atomically Isolated Rh Sites within Highly Branched Rh 2 Sb Nanostructures Enhance Bifunctional Hydrogen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105049. [PMID: 34510587 DOI: 10.1002/adma.202105049] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Breaking the bottleneck of hydrogen oxidation/evolution reactions (HOR/HER) in alkaline media is of tremendous importance for the development of anion exchange membrane fuel cells/water electrolyzers. Atomically dispersed active sites are known to exhibit excellent activity and selectivity toward diverse catalytic reactions. Here, a class of unique Rh2 Sb nanocrystals with multiple nanobranches (denoted as Rh2 Sb NBs) and atomically dispersed Rh sites are reported as promising electrocatalysts for alkaline HOR/HER. Rh2 Sb NBs/C exhibits superior HER performance with a low overpotential and a small Tafel slope, outperforming both Rh NBs/C and commercial Pt/C. Significantly, Rh2 Sb NBs show outstanding HOR performance of which the HOR specific activity and mass activity are about 9.9 and 10.1 times to those of Rh NBs/C, and about 4.2 and 3.7 times to those of Pt/C, respectively. Strikingly, Rh2 Sb NBs can also exhibit excellent CO tolerance during HOR, whose activity can be largely maintained even at 100 ppm CO impurity. Density functional theory calculations reveal that the unsaturated Rh sites on Rh2 Sb NBs surface are crucial for the enhanced alkaline HER and HOR activities. This work provides a unique catalyst design for efficient hydrogen electrocatalysis, which is critical for the development of alkaline fuel cells and beyond.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Gen Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Lili Han
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Yonggang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bingyan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honggang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University, Northridge, CA, 91330, USA
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
11
|
Chen N, Jin Y, Liu H, Hu C, Wu B, Xu S, Li H, Fan J, Lee YM. Insight into the Alkaline Stability of N‐Heterocyclic Ammonium Groups for Anion‐Exchange Polyelectrolytes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Yiqi Jin
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Haijun Liu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Chuan Hu
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Bo Wu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Shaoyi Xu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
- Academy for Advanced Interdisciplinary Studies of SUSTech Southern University of Science and Technology Shenzhen 1088 Guangdong China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Shenzhen 518055 Guangdong China
| | - Hui Li
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Shenzhen 518055 Guangdong China
| | - Jiantao Fan
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
- Academy for Advanced Interdisciplinary Studies of SUSTech Southern University of Science and Technology Shenzhen 1088 Guangdong China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Shenzhen 518055 Guangdong China
| | - Young Moo Lee
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| |
Collapse
|
12
|
Chen N, Jin Y, Liu H, Hu C, Wu B, Xu S, Li H, Fan J, Lee YM. Insight into the Alkaline Stability of N-Heterocyclic Ammonium Groups for Anion-Exchange Polyelectrolytes. Angew Chem Int Ed Engl 2021; 60:19272-19280. [PMID: 34164897 DOI: 10.1002/anie.202105231] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Indexed: 11/06/2022]
Abstract
The alkaline stability of N-heterocyclic ammonium (NHA) groups is a critical topic in anion-exchange membranes (AEMs) and AEM fuel cells (AEMFCs). Here, we report a systematic study on the alkaline stability of 24 representative NHA groups at different hydration numbers (λ) at 80 °C. The results elucidate that γ-substituted NHAs containing electron-donating groups display superior alkaline stability, while electron-withdrawing substituents are detrimental to durable NHAs. Density-functional-theory calculations and experimental results suggest that nucleophilic substitution is the dominant degradation pathway in NHAs, while Hofmann elimination is the primary degradation pathway for NHA-based AEMs. Different degradation pathways determine the alkaline stability of NHAs or NHA-based AEMs. AEMFC durability (from 1 A cm-2 to 3 A cm-2 ) suggests that NHA-based AEMs are mainly subjected to Hofmann elimination under 1 A cm-2 current density for 1000 h, providing insights into the relationship between current density, λ value, and durability of NHA-based AEMs.
Collapse
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yiqi Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Haijun Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bo Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Shaoyi Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Academy for Advanced Interdisciplinary Studies of SUSTech, Southern University of Science and Technology, Shenzhen, 1088, Guangdong, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen, 518055, Guangdong, China
| | - Hui Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen, 518055, Guangdong, China
| | - Jiantao Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Academy for Advanced Interdisciplinary Studies of SUSTech, Southern University of Science and Technology, Shenzhen, 1088, Guangdong, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen, 518055, Guangdong, China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
13
|
Sahoo S, Dekel DR, Maric R, Alpay SP. Atomistic Insights into the Hydrogen Oxidation Reaction of Palladium-Ceria Bifunctional Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04646] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sanjubala Sahoo
- Department of Materials Science & Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Dario R. Dekel
- The Wolfson Department of Chemical Engineering, Nancy and Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Radenka Maric
- Department of Materials Science & Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - S. Pamir Alpay
- Department of Materials Science & Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|