1
|
Li B, Liang W, Zhang J, Wei J, Mao M, Zhang J. Preparation of Pressure-Resistant and Mechanically Durable Superhydrophobic Coatings via Non-Solvent Induced Phase Separation for Anti-Icing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406490. [PMID: 39370587 DOI: 10.1002/smll.202406490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Indexed: 10/08/2024]
Abstract
Inspired by the lotus leaf effect, superhydrophobic coatings have significant potential in various fields, However, their poor pressure resistance, weak mechanical durability, and complex preparation processes severely limit practical applications. Here, a method for preparing pressure-resistant and durable superhydrophobic coatings by simply spray-coating a phase separation suspension containing fluorinated silica nanoparticles and polyolefin adhesive onto substrates is introduced, which forms superhydrophobic coatings with a porous and hierarchical micro-/nanostructure. The resulting superhydrophobic coatings exhibit outstanding pressure resistance, maintaining a Cassie-Baxte state after 18 days of submersion in 1 m of water. Furthermore, the coatings demonstrate remarkable mechanical durability, withstanding 200 cycles of Taber abrasion, 100 cycles of tape-peeling, and 750 g of sand abrasion. The coatings also show excellent chemical stability, enduring long-term immersion in corrosive liquids and 120 d of outdoor exposure. Additionally, the coatings display excellent anti-icing properties and can be applied to various substrate surfaces. This approach improves on the limitations of conventional superhydrophobic coatings and accelerates the application of superhydrophobic coatings in real-world environments.
Collapse
Affiliation(s)
- Bucheng Li
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 287 Langongping Road, Qilihe District, Lanzhou, Gansu, 730050, China
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Weidong Liang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 287 Langongping Road, Qilihe District, Lanzhou, Gansu, 730050, China
| | - Jiaren Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Jinfei Wei
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Mingyuan Mao
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Junping Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Chengguan District, Lanzhou, Gansu, 730000, China
| |
Collapse
|
2
|
Li C, Wang P, Zhang D. Design and Strengthening of Superhydrophobic Coatings: The Influence of Intermediate Layers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23875-23887. [PMID: 36977354 DOI: 10.1021/acsami.2c22776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The employment of intermediate layer technology to improve the mechanical stability of superhydrophobic coatings (SHCs) is an acknowledged tool, but the mechanism by which intermediate layers, especially different ones, affect superhydrophobic composite coatings is not clear. In this work, a series of SHCs based on the strengthening of the intermediate layer were fabricated by employing polymers with different elastic moduli such as polydimethylsiloxane (PDMS), polyurethane (PU), epoxy (EP) resin, as well as graphite/SiO2 hydrophobic components. Following that, the effect of different elastic modulus polymers as an intermediate layer on the durability of SHCs was investigated. From the perspective of elastic buffering, the strengthening mechanism of elastic polymer-based SHCs was clarified. Furthermore, from the perspective of self-lubrication, the wear resistance mechanism of self-lubricating hydrophobic components in the SHCs was elucidated. Also, the prepared coatings exhibited excellent acid and alkali resistance, self-cleaning, anti-stain, and corrosion resistance. This work confirms that low-elastic-modulus polymers can also play the role of buffering external impact energy by elastic deformation even as an intermediate layer, and provides theoretical guidance for the development of SHCs with robustness.
Collapse
Affiliation(s)
- Changyang Li
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenhai Middle Road, Qingdao 266237, China
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenhai Middle Road, Qingdao 266237, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenhai Middle Road, Qingdao 266237, China
| |
Collapse
|
3
|
Wang J, Zhang Y, He Q. Durable and robust superhydrophobic fluororubber surface fabricated by template method with exceptional thermostability and mechanical stability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Qiao Z, Ren G, Chen X, Gao Y, Tuo Y, Lu C. Fabrication of Robust Waterborne Superamphiphobic Coatings with Antifouling, Heat Insulation, and Anticorrosion. ACS OMEGA 2023; 8:804-818. [PMID: 36643432 PMCID: PMC9835640 DOI: 10.1021/acsomega.2c06145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Water-based superamphiphobic coatings that are environmentally friendly have attracted tremendous attention recently, but their performances are severely limited by dispersibility and mechanical durability. Herein, a dispersion of poly(tetrafluoroethylene)/SiO2@cetyltrimethoxysilane&sodium silicate-modified aluminum tripolyphosphate (PTFE/SiO2@CTMS&Na2SiO3-ATP) superamphiphobic coatings was formed by mechanical dispersion of poly(tetrafluoroethylene) emulsion (PTFE), modified silica emulsion (SiO2@CTMS), sodium silicate (Na2SiO3), and modified aluminum tripolyphosphate (modified ATP). The four kinds of emulsions were mixed together to effectively solve the dispersity of waterborne superamphiphobic coatings. Robust waterborne superamphiphobic coatings were successfully obtained by one-step spraying and curing at 310 °C for 15 min, showing strong adhesive ability (grade 1 according to the GB/T9286), high hardness (6H), superior antifouling performance, excellent impact resistance, high-temperature resistance (<415 °C), anticorrosion (immersion of strong acid and alkali for 120 h), and heat insulation. Remarkably, the prepared coating surface showed superior wear resistance, which can undergo more than 140 abrasion cycles. Moreover, the composite coating with 35.53 wt % SiO2@CTMS possesses superamphiphobic properties, with contact angles of 160 and 156° toward water and glycerol, respectively. The preparation method of superamphiphobic coatings may be expected to present a strategy for the preparation of multifunctional waterborne superamphiphobic coatings with excellent properties and a simple method.
Collapse
Affiliation(s)
- Zeting Qiao
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin, Shaanxi 719000, P. R. China
| | - Guoyu Ren
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin, Shaanxi 719000, P. R. China
- Shaanxi
Key Laboratory of Low Metamorpcoal Clean Utilizationhic, Yulin University, Yulin, Shaanxi 719000, P. R. China
| | - Xiaodong Chen
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin, Shaanxi 719000, P. R. China
| | - Yanli Gao
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin, Shaanxi 719000, P. R. China
| | - Yun Tuo
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin, Shaanxi 719000, P. R. China
| | - Cuiying Lu
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin, Shaanxi 719000, P. R. China
- Shaanxi
Key Laboratory of Low Metamorpcoal Clean Utilizationhic, Yulin University, Yulin, Shaanxi 719000, P. R. China
| |
Collapse
|
5
|
Peng H, Yang H, Shi T, Liu Y, Li Z, Ma X, Liu X. Novel superhydrophobic polystyrene microspheres/polydimethylsiloxane coating on aluminum alloy with excellent anti-freezing and self-cleaning performances. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
He Y, Wang L, Wu T, Wu Z, Chen Y, Yin K. Facile fabrication of hierarchical textures for substrate-independent and durable superhydrophobic surfaces. NANOSCALE 2022; 14:9392-9400. [PMID: 35730522 DOI: 10.1039/d2nr02157a] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
On account of their wide range of applications in self-cleaning, anti-icing, frost suppression, etc., superhydrophobic surfaces have attracted considerate attention. However, most of the superhydrophobic surfaces can only be prepared on the surfaces of specific materials and are easily damaged in the case of friction. In this work, we propose a facile method to achieve superhydrophobicity on various substrate surfaces. By femtosecond laser direct processing, micron-level grooves and protrusions are constructed on substrates to form a protective layer. Then, the substrates covered by polytetrafluoroethylene (PTFE) were scanned to make the surfaces of the substrates superhydrophobic. Since the PTFE micro-nano-particles are evenly distributed on the grooves and protrusions, the surfaces exhibit robust superhydrophobicity with excellent anti-friction performance that is independent of the substrate properties. This work provides an efficient and environmentally friendly path for achieving robust superhydrophobic surfaces on various substrates.
Collapse
Affiliation(s)
- Yuchun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Tingni Wu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Zhipeng Wu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Yu Chen
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China.
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Zhang Q, Xu P, Pang C, Cui K, Yu C, Huang L. A superhydrophobic surface with a synergistic abrasion–corrosion resistance effect prepared by femtosecond laser treatment on an FeMnSiCrNiNb shape memory alloy coating. NEW J CHEM 2022. [DOI: 10.1039/d2nj03988e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superhydrophobic coatings prepared by femtosecond laser treatment have favorable mechanical and chemical stability.
Collapse
Affiliation(s)
- Qi Zhang
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Peng Xu
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
- HanKaiSi Intelligent Technology Co., Ltd., Guiyang, 550016, China
| | - Chi Pang
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Ke Cui
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Chuan Yu
- HanKaiSi Intelligent Technology Co., Ltd., Guiyang, 550016, China
| | - Liang Huang
- Guizhou Huake Aluminium Co., Ltd., Guiyang, 550014, China
| |
Collapse
|
8
|
Fu K, Zhang G, Liu Y, Tan J, Zhang H, Zhang Q. All-organic Superhydrophobic Coating Comprising Raspberry-like Particles and Fluorinated Polyurethane Prepared via Thiol-click Reaction. Macromol Rapid Commun 2021; 43:e2100599. [PMID: 34850991 DOI: 10.1002/marc.202100599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/18/2021] [Indexed: 11/10/2022]
Abstract
Mechanically robust superhydrophobic coatings have been extensively reported using chemically susceptible inorganic fillers like SiO2, TiO2, ZnO, etc. for constructing micro-nano structures. Organic particles are good candidates for improving chemical resistance, whereas the synthesis of organic particles with well-defined and stable micro-nano structures remains exclusive. Here, an all-organic, cross-linked superhydrophobic coating comprising raspberry-like fluorinated micro particles (RLFMP) and fluorinated polyurethane (FPU) was prepared via thiol-click reaction. Benefiting from the robust micro-nano structure of RLFMP and the excellent flexibility of FPU, the coating could maintain superhydrophobic after severe alkali corrosion or mechanical damage, while the superhydrophobicity could be repaired readily by the fast recovery of micro-nano roughness and migration of branched fluoroalkyl chains to the coating surface. Our design strategy is expected to provide a good application of thiol-click chemistry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kang Fu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Guoxian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yibin Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiaojun Tan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hepeng Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, PR China
| |
Collapse
|
9
|
Bhatt S, Bagchi D. Molecular and micro-scale heterogeneities in Raman modes of a relaxing polymer glass. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:325101. [PMID: 34062521 DOI: 10.1088/1361-648x/ac06ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
We have used Raman spectroscopy to study relaxation dynamics at two different length scales, molecular level and micro-scale in order to probe the presence of cooperative rearranging regions in a polymer glass. Response to slow thermal cycles and fast quench through the glass transition temperature (Tg) is analyzed for film and unprocessed forms of polyvinyl acetate (PVAc). In PVAc film, enhanced disorder and molecular mobility lead to peak broadening by about a factor of 10 compared to unprocessed PVAc. Thermal cycles (10 K min-1) produce hysteresis in integrated Raman peak intensity (loop areaAINTI).AINTIvalues of film are two orders of magnitude more than unprocessed, indicating more configurational mosaics with higher interfacial energy dissipations. Ageing after 60 K min-1quench manifests as heterogeneous molecular dynamics of film Raman modes with significant peak-width variations, differentiating high mobility and low mobility modes. Two-dimensional mapping of film Raman modes after quench reveal micro-scale clusters of average size ≈250 molecules having fractal boundaries with fractal dimensiondf= 1.5, resemblingdfof percolation clusters below percolation threshold. During thermal cycling and relaxation after a quench, cooperative segmental dynamics with large correlations between skeletal C-C stretch and side branch modes is observed. The observations are analyzed in the context of the random first order transition theory of glasses, which attributes heterogeneous relaxations in glasses to the presence of clusters of variable configurational states.
Collapse
Affiliation(s)
- Shipra Bhatt
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India
| | - Debjani Bagchi
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India
| |
Collapse
|
10
|
Melendez-Rodriguez B, Torres-Giner S, Angulo I, Pardo-Figuerez M, Hilliou L, Escuin JM, Cabedo L, Nevo Y, Prieto C, Lagaron JM. High-Oxygen-Barrier Multilayer Films Based on Polyhydroxyalkanoates and Cellulose Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1443. [PMID: 34070946 PMCID: PMC8226675 DOI: 10.3390/nano11061443] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
This study reports on the development and characterization of organic recyclable high-oxygen-barrier multilayer films based on different commercial polyhydroxyalkanoate (PHA) materials, including a blend with commercial poly(butylene adipate-co-terephthalate) (PBAT), which contained an inner layer of cellulose nanocrystals (CNCs) and an electrospun hot-tack adhesive layer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey (CW). As a result, the full multilayer structures were made from bio-based and/or compostable materials. A characterization of the produced films was carried out in terms of morphological, optical, mechanical, and barrier properties with respect to water vapor, limonene, and oxygen. Results indicate that the multilayer films exhibited a good interlayer adhesion and contact transparency. The stiffness of the multilayers was generally improved upon incorporation of the CNC interlayer, whereas the enhanced elasticity of the blend was reduced to some extent in the multilayer with CNCs, but this was still much higher than for the neat PHAs. In terms of barrier properties, it was found that 1 µm of the CNC interlayer was able to reduce the oxygen permeance between 71% and 86%, while retaining the moisture and aroma barrier of the control materials.
Collapse
Affiliation(s)
- Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
| | - Inmaculada Angulo
- Gaiker Technology Centre, Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, edificio 202, 48170 Zamudio, Bizkaia, Spain;
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
- Bioinicia R&D, Bioinicia S.L., 46980 Valencia, Spain
| | - Loïc Hilliou
- IPC/I3N, Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, 4800-058 Braga, Portugal;
| | - Jose Manuel Escuin
- Tecnopackaging S.L., Poligono Industrial Empresarium, 50720 Zaragoza, Spain;
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), 12071 Castellón, Spain;
| | - Yuval Nevo
- Melodea Bio-Based Solutions, Faculty of Agriculture-Hebrew University, Rehovot 76100, Israel;
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
| | - Jose Maria Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
| |
Collapse
|
11
|
Wang S, Wang Y, Zou Y, Chen G, Ouyang J, Jia D, Zhou Y. Biologically Inspired Scalable-Manufactured Dual-layer Coating with a Hierarchical Micropattern for Highly Efficient Passive Radiative Cooling and Robust Superhydrophobicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21888-21897. [PMID: 33909403 DOI: 10.1021/acsami.1c05651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioinspired materials for temperature regulation have proven to be promising for passive radiation cooling, and super water repellency is also a main feature of biological evolution. However, the scalable production of artificial passive radiative cooling materials with self-adjusting structures, high-efficiency, strong applicability, and low cost, along with achieving superhydrophobicity simultaneously remains a challenge. Here, a biologically inspired passive radiative cooling dual-layer coating (Bio-PRC) is synthesized by a facile but efficient strategy, after the discovery of long-horned beetles' thermoregulatory behavior with multiscale fluffs, where an adjustable polymer-like layer with a hierarchical micropattern is constructed in various ceramic bottom skeletons, integrating multifunctional components with interlaced "ridge-like" architectures. The Bio-PRC coating reflects above 88% of solar irradiance and demonstrates an infrared emissivity >0.92, which makes the temperature drop by up to 3.6 °C under direct sunlight. Moreover, the hierarchical micro-/nanostructures also endow it with a superhydrophobic surface that has enticing damage resistance, thermal stability, and weatherability. Notably, we demonstrate that the Bio-PRC coatings can be potentially applied in the insulated gate bipolar transistor radiator, for effective temperature conditioning. Meanwhile, the coverage of the dense, super water-repellent top polymer-like layer can prevent the transport of corrosive liquids, ions, and electron transition, illustrating the excellent interdisciplinary applicability of our coatings. This work paves a new way to design next-generation thermal regulation coatings with great potential for applications.
Collapse
Affiliation(s)
- Shuqi Wang
- Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yaming Wang
- Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yongchun Zou
- Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Guoliang Chen
- Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jiahu Ouyang
- Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Dechang Jia
- Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Zhou
- Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
12
|
Advanced Side-Impermeability Characteristics of Fluorinated Organic-Inorganic Nanohybrid Materials for Thin Film Encapsulation. Macromol Res 2021. [DOI: 10.1007/s13233-021-9035-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
The preparation of cotton fabric with super‐hydrophobicity and antibacterial properties by the modification of the stearic acid. J Appl Polym Sci 2021. [DOI: 10.1002/app.50717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Lin D, Zhang X, Yuan S, Li Y, Xu F, Wang X, Li C, Wang H. Robust Waterborne Superhydrophobic Coatings with Reinforced Composite Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48216-48224. [PMID: 32993286 DOI: 10.1021/acsami.0c14471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Waterborne superhydrophobic coatings have attracted tremendous attention recently, but their practical applications are severely limited by hydrophobic instability and poor mechanical durability. Herein, a novel robust waterborne PTFE-CP&MgO-AOP superhydrophobic coating was successfully fabricated by reinforcing composite interfaces. Combined with the self-polymerization of dopamine and the in situ grown MgO, CNTs-polydopamine&MgO (CP&MgO) particles with improved interfacial compatibility were obtained. Through the cross-linking and hydrogen bonding interactions, phosphate networks (CP&MgO-AOP) with the aluminum orthophosphate (AOP) binder were formed during dehydration polymerization. The phosphate networks not only enhanced the interfacial interaction among CP&MgO to form coral-like structures but also strengthened the interfacial binding force between the waterborne polytetrafluoroethylene (PTFE) coating and the substrate. With the enhanced composite interfacial strength, the waterborne PTFE-CP&MgO-AOP coating exhibited excellent wear-resistance, which can withstand more than 1.27 × 105 abrasion cycles. Moreover, the chemical bonding between the functional groups of phosphate networks and metal substrate improved the adhesion strength from grade 5 to 1. Furthermore, the prepared coating surface with the reticular/coral-like composite structures can lock the stable gas layer to maintain excellent hydrophobic stability, even under the conditions of strong acidic/alkaline, high-temperature, xenon lamp irradiation, and mechanical wear. Thus, this study is expected to open new insights into interfacial enhancement of robust waterborne superhydrophobic coatings.
Collapse
Affiliation(s)
- Dan Lin
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xiguang Zhang
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Sicheng Yuan
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Yuan Li
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Fei Xu
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xiao Wang
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Cheng Li
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Huaiyuan Wang
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
15
|
Han X, Peng J, Jiang S, Xiong J, Song Y, Gong X. Robust Superamphiphobic Coatings Based on Raspberry-like Hollow SnO 2 Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11044-11053. [PMID: 32856920 DOI: 10.1021/acs.langmuir.0c01923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Good mechanical and chemical stabilities are the key factors for the wide application of superhydrophobic surfaces. In this work, we first prepared raspberry-like hollow structured SnO2 nanoparticles using a simple hydrothermal method, followed by an annealing step. Then, the intrinsic raspberry-like hollow SnO2 nanoparticles were combined with hydrophilic SiO2 nanoparticles to construct rough surfaces with suitable hierarchical structures, and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS-17) was used as a hydrophobic modifier of SnO2, while epoxy resin was used as an adhesive to prepare a superamphiphobic coating with good stability and durability. Such a coating can be applied on various substrates using a simple spray-coating or drop-coating method. The water contact angle and diiodomethane contact angle of the coating could reach up to ∼165 and ∼151°, respectively. After various chemical and mechanical stability tests including hot water treatment, salt water corrosion, strong adhesive tape peeling, and kneading, the coatings still remained amphiphobic. The facile fabrication of the robust superhydrophobic coating has great potential for applications in real life and industrial production.
Collapse
Affiliation(s)
- Xinting Han
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Junyan Peng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Xiong
- Xianning CSG Energy Conservation Glass Co., Ltd., Xianning 437000, China
| | - Yu Song
- Xianning CSG Energy Conservation Glass Co., Ltd., Xianning 437000, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|