1
|
Xu J, Li H. Innovative determination of Let-7a for lung cancer diagnosis using a duplex specific nuclease (DSN)-based electrochemical biosensor. Anal Biochem 2025; 700:115770. [PMID: 39814251 DOI: 10.1016/j.ab.2025.115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/17/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
In this study, we emphasize the importance of identifying Let-7a, a microRNA that is key in diagnosing and predicting lung cancer outcomes. Let-7a's function as a biomarker is essential, as it affects tumor suppression and controls cell differentiation and growth. We developed a novel device, an electrochemical biosensor based on Duplex Specific Nuclease (DSN), that is designed for the accurate detection of Let-7a. This biosensor has a very low detection limit of 3.9 aM, showing its high sensitivity. The design is easy to use, requiring little training to operate. Its small size and portability enable the possibility of bedside and home use, which is a significant improvement for personalized healthcare. This versatility of the biosensor is very promising, as it can be applied to other disease biomarkers besides lung cancer. We expect this technology to improve disease diagnosis and patient recovery tracking, playing an important role in the future of medical diagnostics. The use of such sensitive and specific biosensors can transform the way diseases are managed, providing timely and precise information on disease progression and treatment effectiveness. The potential for this technology to help advance personalized medicine and patient care is huge, creating new opportunities in medical diagnostics and therapy monitoring.
Collapse
Affiliation(s)
- Jianhao Xu
- Jianhu Clinical Medical College of Yangzhou University, Jianhu, Jiangsu, 224700, China
| | - Haifeng Li
- Jianhu Clinical Medical College of Yangzhou University, Jianhu, Jiangsu, 224700, China.
| |
Collapse
|
2
|
Ran C, Zhang JL, He X, Luo C, Zhang Q, Shen Y, Yin L. Recent development of gold nanochips in biosensing and biodiagnosis sensibilization strategies in vitro based on SPR, SERS and FRET optical properties. Talanta 2025; 282:126936. [PMID: 39362039 DOI: 10.1016/j.talanta.2024.126936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Gold nanomaterials have become attractive nanomaterials for biomedical research due to their unique physical and chemical properties, and nanochips are designed to manufacture high-quality substrates for loading gold nanoparticles (GNPs) to achieve specific and selective detection. By utilizing multiple optical properties of different gold nanostructures, the sensitivity, specificity, speed, contrast, resolution, and other performance of biosensing and biological diagnosis can be significantly improved. This paper summarized the sensitivity enhancement strategies of optical biosensing techniques based on the three main optical properties of gold nanomaterials: surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET). The aim is to comprehensively review the development direction of in vitro diagnostics (IVDs) from two aspects: detection strategies and modification of gold nanomaterials. In addition, some opportunities and challenges that gold-based IVDs may encounter at present or in the future are also mentioned in this paper. In summary, this paper can enlighten readers with feasible strategies for manufacturing potential gold-based nanobiosensors.
Collapse
Affiliation(s)
- Chuanjiang Ran
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Jin-Lin Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China; Jiangsu Institute for Food and Drug Control, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Xinyue He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Changyou Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Qingjie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Krsek A, Baticic L, Braut T, Sotosek V. The Next Chapter in Cancer Diagnostics: Advances in HPV-Positive Head and Neck Cancer. Biomolecules 2024; 14:925. [PMID: 39199313 PMCID: PMC11352962 DOI: 10.3390/biom14080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), is an increasingly prevalent pathology worldwide, especially in developed countries. For diagnosing HPV in HNSCC, the combination of p16 immunohistochemistry (IHC) and polymerase chain reaction (PCR) offers high sensitivity and specificity, with p16 IHC being a reliable initial screen and PCR confirming HPV presence. Advanced techniques like next-generation sequencing (NGS) and RNA-based assays provide detailed insights but are primarily used in research settings. Regardless of HPV status, standard oncological treatments currently include surgery, radiation, and/or chemotherapy. This conventional approach does not account for the typically better prognosis of HPV-positive HNSCC patients, leading to increased chemo/radiation-induced secondary morbidities and reduced quality of life. Therefore, it is crucial to identify and detect HPV positivity and other molecular characteristics of HNSCC to personalize treatment strategies. This comprehensive review aims to summarize current knowledge on various HPV detection techniques and evaluate their advantages and disadvantages, with a focus on developing methodologies to identify new biomarkers in HPV-positive HNSCC. The review discusses direct and indirect HPV examination in tumor tissue, DNA- and RNA-based detection techniques, protein-based markers, liquid biopsy potentials, immune-related markers, epigenetic markers, novel biomarkers, and emerging technologies, providing an overall insight into the current state of knowledge.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Tamara Braut
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| | - Vlatka Sotosek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
4
|
Fu Q, Xie Y, Gao F, Singh R, Zhou X, Zhang B, Kumar S. Four-core fiber-based multi-tapered WaveFlex biosensor for rapid detection of Vibrio parahaemolyticus using nanoparticles-enhanced probes. OPTICS EXPRESS 2024; 32:25772-25788. [PMID: 39538459 DOI: 10.1364/oe.530225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 11/16/2024]
Abstract
Infections caused by Vibrio parahaemolyticus (V. parahaemolyticus) can be highly fatal, making rapid and sensitive detection of them is essential. A new optical fiber biosensor based on localized surface plasmon resonance (LSPR) phenomenon is developed in this paper. A tapered-in-tapered fiber structure based on MFM is constructed by using four-core fiber (FCF) and multi-mode fiber (MMF) to qualitatively detect different concentrations of V. parahaemolyticus. The sensor successfully excites the LSPR phenomenon and increases the attachment point of biomolecules on the probe surface by fixing gold nanoparticles (AuNPs), molybdenum disulfide nanoparticles (MoS2-NPs) and cerium dioxide nanorods (CeO2-NRs). The functionalization of polyclonal antibodies on the probe surface can improve the specificity of the sensor. The linear detection range of the developed sensor was 1 × 100-1 × 107 CFU/mL, the sensitivity was 1.61 nm/[CFU/mL], and the detection limit was 0.14 CFU/mL. In addition, the reusability, reproducibility, stability, and selectivity of the sensor probe are also tested, which shows that the sensor has great application prospects.
Collapse
|
5
|
Li X, Liu B, Liu L, Yuan H, Li Y, Zhou B, Sun J, Li C, Xue Q. Large-scale assembly of geometrically diverse metal nanoparticles-based 3D plasmonic DNA nanostructures for SERS detection of PNK in cancer cells. Talanta 2024; 266:124958. [PMID: 37499360 DOI: 10.1016/j.talanta.2023.124958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
The organization of geometrically diverse metal nanoparticles into a core/satellite structure at a large scale is a promising strategy for improve SERS performance due to hot spots localized enrichment and signal increase. However, due to the lack of extensional frames and strong electrostatic repulsion between plasma NPs, the fabrication of such 3D architectures with a high-density periodic hotspot in the focus volume has proven exceedingly difficult. Herein, we demonstrate a facile large-scale assembly of geometrically diverse metal nanoparticles strategy for constructing spatially extended 3D plasmonic nanostructures resembling "signal towers" based on RCA-mediated periodic organization of gold nanospheres (GNS) surrounding gold nanorods (GNRs). Using cancer cell T4 PNK as a model, a padlock probe with 5'- hydroxyl (P-circle) was designed as the T4 PNK substrate. The center Au nanorod was coated with P1 and served as a "pedestal" to allow substantial loading of P-circle after target phosphorylation to initiate the rolling ring amplification reaction (RCA). The resultant DNA nanowire serves as an "antenna" to successively lock numerous Raman reporter P2 (Cy3-P2-SH) through base pairing at regular intervals. Finally, the 3D plasma DNA nanostructures that resemble "signal towers" could be obtained by placing a large number of GNS with a strong affinity for Au-S. The proposed 3D SERS sensor exhibited a sensitivity of LOD as low as 0.274 mU/mL, which was attributed to a substantial electromagnetic field enhancement at the inter-nanoparticle gaps between the adjacent pedestal and antenna. Moreover, by exploiting the synergistic effect of the periodically extended DNA scaffold generated by RCA amplification and the co-assembly of thiol ligand, the loaded GNS can be extended to three-dimensional space, forming a high-density periodic hotspot in the focal volume, thereby ensuring high enhancement and high reproducibility of Raman signals. In addition, this method can be used to quantify T4 PNK in HeLa cells, demonstrating its applicability in diagnosing and estimating PNK-related diseases in complex fluids.
Collapse
Affiliation(s)
- Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Bingxin Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Liqi Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Hui Yuan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China; Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen. 2001 Longxiang Avenue, Longgang District, Shenzhen, 518172, China
| | - Yanli Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Bingqian Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Jiuming Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen. 2001 Longxiang Avenue, Longgang District, Shenzhen, 518172, China.
| | - Qingwang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
6
|
Luo D, Liu Z, Su A, Zhang Y, Wang H, Yang L, Yang W, Pang P. An electrochemical biosensor for detection of T4 polynucleotide kinase activity based on host-guest recognition between phosphate pillar[5]arene and methylene blue. Talanta 2024; 266:124956. [PMID: 37499362 DOI: 10.1016/j.talanta.2023.124956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
T4 polynucleotide kinase (T4 PNK) is an important DNA repair-related enzyme that plays a crucial role in DNA recombination, replication and damage repair. Herein, an electrochemical biosensor was developed for detection of T4 PNK activity and inhibitor screening based on supramolecular host-guest recognition between phosphate pillar (Dumitrache and McKinnon, 2017) [5] arene (PP5) and methylene blue (MB). The water-soluble PP5 employed as the host for complexation of MB guest molecules. The substrate DNA with 5'-hydroxyl group was first self-assembled on the gold electrode surface through the chemical adsorption of the thiol group, which was phosphorylated in the presence of T4 PNK and adenosine triphosphate (ATP). TiO2 served as a bridge to link phosphorylated DNA and PP5 via the robust phosphate-Ti4+-phosphate chemistry. The immobilized PP5 captured the MB on electrode surface via the supramolecular host-guest recognition interaction, resulting in an enhanced electrochemical response signal. The electrochemical signal is proportional to the T4 PNK concentration in the range of 2 × 10-4 to 5 U mL-1 with a detection limit of 1 × 10-4 U mL-1. It was also successfully used for PNK inhibitor screening and PNK activity assay in HeLa cell lysates sample. The proposed strategy provides a novel sensing platform for kinase activity assay and inhibitor screening, holding a great potential in clinical diagnostics, inhibitor screening, and nucleotide kinase-target drug discovery.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Zaiqiong Liu
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Aiwen Su
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Yanli Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Lijuan Yang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Pengfei Pang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| |
Collapse
|
7
|
Zhang S, Shao H, Li KB, Shi W, Han DM. Nanofluidic sensing platform for PNK assay using nonlinear hybridization chain reaction and its application in DNA logic circuit. Biosens Bioelectron 2023; 240:115632. [PMID: 37647684 DOI: 10.1016/j.bios.2023.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
In this study, a polyethyleneimine (PEI)/Zr4+-functionalized nanofluidic sensing platform based on nonlinear hybridization chain reaction (NHCR) was developed for PNK activity assay. With the existence of PNK, the hairpin HPNK was cleaved by λ exonuclease, liberating the initiator T-DNA. Then T-DNA triggered the nonlinear HCR in solution and the reaction products were absorbed onto the nanopore, which changed the surface charge of nanofluidic device and could be detected by current-voltage characteristic curves. Compared to traditional linear HCR, the nonlinear HCR exhibits a higher sensitivity and order of growth kinetics, making it a powerful signal amplifier in bioanalysis. Due to the powerful amplification efficiency of nonlinear HCR, high sensitivity of the nanopore and specific recognition site of PNK/λ-Exo, an ultrasensitive and selective PNK sensing approach had been developed and applied to precisely quantitate the PNK activity with a LOD of 0.0001 U/mL. Moreover, utilizing this nanofluidic system as a foundation, we constructed a logic circuit that utilized PNK, adenosine diphosphate (ADP), and (NH4)2SO4 as input elements. ADP and (NH4)2SO4 had a crucial function in facilitating the PNK to regulate the DNA logic gate. By modifying the target and inhibitors, the nanofluidic device could detect a variety of stimuli and execute more advanced logical operations.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Huahao Shao
- Zhijiang College of Zhejiang University of Technology, Shaoxing, Zhejiang, 312000, China
| | - Kai-Bin Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, China.
| | - Wei Shi
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, China.
| |
Collapse
|
8
|
Wu Y, Yi J, Su A, Zhang Y, Wang H, Yang L, Yang W, Pang P. An electrochemical biosensor for T4 polynucleotide kinase activity identification according to host-guest recognition among phosphate pillar[5]arene@palladium nanoparticles@reduced graphene oxide nanocomposite and toluidine blue. Mikrochim Acta 2023; 190:394. [PMID: 37715009 DOI: 10.1007/s00604-023-05983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
T4 polynucleotide kinase (T4 PNK) helps with DNA recombination and repair. In this work, a phosphate pillar[5]arene@palladium nanoparticles@reduced graphene oxide nanocomposite (PP5@PdNPs@rGO)-based electrochemical biosensor was created to identify T4 PNK activities. The PP5 used to complex toluidine blue (TB) guest molecules is water-soluble. With T4 PNK and ATP, the substrate DNA, which included a 5'-hydroxyl group, initially self-assembled over the gold electrode surface by chemical adsorption of the thiol units. Strong phosphate-Zr4+-phosphate chemistry allowed Zr4+ to act as a bridge between phosphorylated DNA and PP5@PdNPs@rGO. Through a supramolecular host-guest recognition connection, TB molecules were able to penetrate the PP5 cavity, where they produced a stronger electrochemical response. With a 5 × 10-7 U mL-1 detection limit, the electrochemical signal is linear in the 10-6 to 1 U mL-1 T4 PNK concentration range. It was also effective in measuring HeLa cell lysate-related PNK activities and screening PNK inhibitors. Nucleotide kinase-target drug development, clinical diagnostics, and screening for inhibitors all stand to benefit greatly from the suggested technology, which offers a unique sensing mechanism for kinase activity measurement.
Collapse
Affiliation(s)
- Yongju Wu
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Jinfei Yi
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Aiwen Su
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Yanli Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Lijuan Yang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Pengfei Pang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| |
Collapse
|
9
|
Kim Y, Kang E. A graphitic nano-onion/molybdenum disulfide nanosheet composite as a platform for HPV-associated cancer-detecting DNA biosensors. J Nanobiotechnology 2023; 21:187. [PMID: 37301851 DOI: 10.1186/s12951-023-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
An electrochemical DNA sensor that can detect human papillomavirus (HPV)-16 and HPV-18 for the early diagnosis of cervical cancer was developed by using a graphitic nano-onion/molybdenum disulfide (MoS2) nanosheet composite. The electrode surface for probing DNA chemisorption was prepared via chemical conjugation between acyl bonds on the surfaces of functionalized nanoonions and the amine groups on functionalized MoS2 nanosheets. The cyclic voltammetry profile of an 1:1 nanoonion/MoS2 nanosheet composite electrode had an improved rectangular shape compared to that of an MoS2 nanosheet elecrode, thereby indicating the amorphous nature of the nano-onions with sp2 distancing curved carbon layers that provide enhanced electronic conductivity, compared to MoS2 nanosheet only. The nanoonion/MoS2 sensor for the DNA detection of HPV-16 and HPV-18, respectively, was measured at high sensitivity through differential pulse voltammetry (DPV) in the presence of methylene blue (MB) as a redox indicator. The DPV current peak was lowered after probe DNA chemisorption and target DNA hybridization because the hybridized DNA induced less effective MB electrostatic intercalation due to it being double-stranded, resulting in a lower oxidation peak. The nanoonion/MoS2 nanosheet composite electrodes attained higher current peaks than the MoS2 nanosheet electrode, thereby indicating a greater change in the differential peak probably because the nanoonions enhanced conductive electron transfer. Notably, both of the target DNAs produced from HPV-18 and HPV-16 Siha and Hela cancer cell lines were effectively detected with high specificity. The conductivity of MoS2 improved by complexation with nano-onions provides a suitable platform for electrochemical biosensors for the early diagnosis of many ailments in humans.
Collapse
Affiliation(s)
- Youngjun Kim
- School of Chemical Engineering and Material Science, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, Republic of Korea
| | - Eunah Kang
- School of Chemical Engineering and Material Science, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
11
|
Liu XW, Liu WJ, Meng Y, Hu J, Zhang CY. Development of a tandem signal amplification strategy for label-free sensing polynucleotide kinase activity in cancer cells. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
An enzyme-free and label-free electrochemical biosensor for polynucleotide kinase. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Wang M, Gao F, Ni S, Song Y, Wang C, Li Q, Zhao P. Electrochemical immunosensor based on gold-thionine for detection of subarachnoid hemorrhage biomarker. Front Bioeng Biotechnol 2023; 11:1153987. [PMID: 36970612 PMCID: PMC10030515 DOI: 10.3389/fbioe.2023.1153987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: In clinical work, the realization of an early diagnosis of Subarachnoid hemorrhage (SAH) is primarily based on conventional computed tomography (CT), MR angiography, transcranial Doppler (TCD) ultrasound, and neurological assessments. However, the association between imaging manifestations and clinical findings is insufficiently perfect, particularly in SAH patients in acute phases with a lower amount of blood. The establishment of a direct, rapid and ultra-sensitive detection method based on electrochemical biosensors has emerged as a new competitive challenge in disease biomarkers research. Methods: In this study, a novel free-labeled electrochemical immunosensor for rapidly and sensitively detecting IL-6 in subarachnoid hemorrhage (SAH) blood has been developed using Au nanospheres-thionine composites (AuNPs/THI) as the interface modified on the electrode. Then, we detected IL-6 in blood samples from SAH patients by (enzyme-linked immunosorbent assay) ELISA and electrochemical immunosensor. Results: Under the best conditions, the developed electrochemical immunosensor exhibited a wide linear range from 10-2 ng/mL to 102 ng/mL with a low detection limit of 1.85 pg/mL. Furthermore, when the immunosensor was employed in the analysis of IL-6 in 100% serum, the results obtained by electrochemical immunoassay were consistent with those obtained by ELISA without suffering from other significant biological interference. Discussion: The designed electrochemical immunosensor realizes the detection of IL-6 in actual serum samples with high accuracy and sensitivity, and could potentially become a promising technique for applications in the clinical diagnosis of SAH.
Collapse
Affiliation(s)
- Mengyue Wang
- The Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Feng Gao
- The Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Shoujie Ni
- The Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yanan Song
- The Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China
| | - Cai Wang
- The Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Qian Li
- The Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Peng Zhao
- The Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
- *Correspondence: Peng Zhao,
| |
Collapse
|
14
|
Yuan X, Yuan H, Liu B, Liu Y. Self-Supplying Guide RNA-Mediated CRISPR/Cas12a Fluorescence System for Sensitive Detection of T4 PNKP. Molecules 2022; 27:9019. [PMID: 36558152 PMCID: PMC9782049 DOI: 10.3390/molecules27249019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sensitive detection methods for T4 polynucleotide kinase/phosphatase (T4 PNKPP) are urgently required to obtain information on malignancy and thereby to provide better guidance in PNKP-related diagnostics and drug screening. Although the CRISPR/Cas12a system shows great promise in DNA-based signal amplification protocols, its guide RNAs with small molecular weight often suffer nuclease degradation during storage and utilization, resulting in reduced activation efficiency. Herein, we proposed a self-supplying guide RNA-mediated CRISPR/Cas12a system for the sensitive detection of T4 PNKP in cancer cells, in which multiple copies of guide RNA were generated by in situ transcription. In this assay, T4 PNKP was chosen as a model, and a dsDNA probe with T7 promoter region and the transcription region of guide RNA were involved. Under the action of T4 PNKP, the 5'-hydroxyl group of the dsDNA probe was converted to a phosphate group, which can be recognized and digested by Lambda Exo, resulting in dsDNA hydrolysis. The transcription template was destroyed, which resulted in the failure to generate guide RNA by the transcription pathway. Therefore, the CRISPR/Cas12a system could not be activated to effectively cleavage the F-Q-reporter, and the fluorescence signal was turned off. In the absence of T4 PNKP, the 5'-hydroxyl group of the substrate DNA cannot be digested by Lambda Exo. The intact dsDNA acts as the transcription template to generate a large amount of guide RNA. Finally, the formed Cas12a/gRNA complex triggered the reverse cleavage of Cas12a on the F-Q-reporter, resulting in a "turn-on" fluorescence signal. This strategy displayed sharp sensitivity of T4 PNKP with the limit of detection (LOD) down to 0.0017 mU/mL, which was mainly due to the multiple regulation effect of transcription amplification. In our system, the dsDNA simultaneously serves as the T4 PNKP substrate, transcription template, and Lambda Exo substrate, avoiding the need for multiple probe designs and saving costs. By integrating the target recognition, Lambda Exo activity, and trans-cleavage activity of Cas12a, CRISPR/Cas12a catalyzed the cleavage of fluorescent-labeled short-stranded DNA probes and enabled synergetic signal amplification for sensitive T4 PNKP detection. Furthermore, the T4 PNKP in cancer cells has been evaluated as a powerful tool for biomedical research and clinical diagnosis, proving a good practical application capacity.
Collapse
Affiliation(s)
- Xiuhua Yuan
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hui Yuan
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Bingxin Liu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Yeling Liu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
15
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
A colorimetric/electrochemical dual-mode sensor based on Fe3O4@MoS2-Au NPs for high-sensitivity detection of hydrogen peroxide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Wei L, Kong X, Wang M, Zhang Y, Pan R, Cheng Y, Lv Z, Zhou J, Ming J. A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation. Anal Bioanal Chem 2022; 414:7923-7933. [PMID: 36136111 DOI: 10.1007/s00216-022-04327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/01/2022]
Abstract
The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K+ or Na+. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL-1, and the detection limit of 0.0021 U mL-1 could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.
Collapse
Affiliation(s)
- Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Xianglong Kong
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Mengran Wang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Yixin Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Yuanzheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China.
| | - Jingjing Ming
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
18
|
Sun X, Duan M, Li R, Meng Y, Bai Q, Wang L, Liu M, Yang Z, Zhu Z, Sui N. Ultrathin Graphdiyne/Graphene Heterostructure as a Robust Electrochemical Sensing Platform. Anal Chem 2022; 94:13598-13606. [PMID: 36124415 DOI: 10.1021/acs.analchem.2c03387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Graphdiyne (GDY) has been considered as an appealing electrode material for electrochemical sensing because of its alkyne-rich structure and high degrees of π-conjugation, which shows great affinity to heavy metal ions and pollutant molecules via d-π and π-π interactions. However, the low surface area and poor conductivity of bulk GDY limit its electrochemical performance. Herein, a two-dimensional ultrathin GDY/graphene (GDY/G) nanostructure was synthesized and used as an electrode material for electrochemical sensing. Graphene plays the role of an epitaxy template for few-layered GDY growth and conductive layers. The formed few-layered GDY with a high surface area possesses abundant affinity sites toward heavy metal ions (Cd2+, Pb2+) and toxic molecules, for example, nitrobenzene and 4-nitrophenol, via d-π and π-π interactions, respectively. Moreover, hemin as a key part of the enzyme catalytic motif was immobilized on GDY/G via π-π interactions. The artificial enzyme mimic hemin/GDY/G-modified electrode exhibited promising ascorbic acid and uric acid detection performance with excellent sensitivity and selectivity, a good linear range, and reproducibility. More importantly, real sample detection and the feasibility of this electrochemical sensor as a wearable biosensor were demonstrated.
Collapse
Affiliation(s)
- Xiuchao Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Menglu Duan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Rongteng Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yuan Meng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Manhong Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43 0AL, United Kingdom
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
19
|
Combination of DNA walker and Pb2+-specific DNAzyme-based signal amplification with a signal-off electrochemical DNA sensor for Staphylococcus aureus detection. Anal Chim Acta 2022; 1222:340179. [DOI: 10.1016/j.aca.2022.340179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
|
20
|
Gao Y, Wang S, Wang B, Jiang Z, Fang T. Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202956. [PMID: 35908166 DOI: 10.1002/smll.202202956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The disulfide compounds of molybdenum (MoS2 ) are layered van der Waals materials that exhibit a rich array of polymorphic structures. MoS2 can be roughly divided into semiconductive phase and metallic phase according to the difference in electron filling state of the 4d orbital of Mo atom. The two phases show completely different properties, leading to their diverse applications in biosensors. But to some extent, they compensate for each other. This review first introduces the relationship between phase state and the chemical/physical structures and properties of MoS2 . Furthermore, the synthetic methods are summarized and the preparation strategies for metastable phases are highlighted. In addition, examples of electronic and chemical property designs of MoS2 by means of doping and surface modification are outlined. Finally, studies on biosensors based on MoS2 in recent years are presented and classified, and the roles of MoS2 with different phases are highlighted. This review offers references for the selection of materials to construct different types of biosensors based on MoS2 , and provides inspiration for sensing performance enhancement.
Collapse
Affiliation(s)
- Yan Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Siyao Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Bin Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Zhao Jiang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Tao Fang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
21
|
Jia D, Fan W, Ren W, Liu C. One-step detection of T4 polynucleotide kinase activity based on single particle-confined enzyme reaction and digital particle counting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
A multiple primers-mediated exponential rolling circle amplification strategy for highly sensitive detection of T4 polynucleotide kinase and T4 DNA ligase activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Yang J, He G, Wu W, Deng W, Tan Y, Xie Q. Sensitive photoelectrochemical determination of T4 polynucleotide kinase using AuNPs/SnS 2/ZnIn 2S 4 photoactive material and enzymatic reaction-induced DNA structure switch strategy. Talanta 2022; 249:123660. [PMID: 35689947 DOI: 10.1016/j.talanta.2022.123660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022]
Abstract
We report here Au nanoparticles (AuNPs)/SnS2/ZnIn2S4 as a high-performance active material for sensitive photoelectrochemical (PEC) determination of T4 polynucleotide kinase (T4 PNK) using an enzymatic reaction-induced DNA structure switch strategy. To construct the PEC biosensor, a double-stranded DNA probe consisting of a CdS quantum dots (QDs)-labeled single-stranded DNA (sDNA) and its complementary DNA (cDNA) is immobilized on the AuNPs/SnS2/ZnIn2S4 photoactive material. T4 PNK can catalyze the phosphorylation of 5'-OH-terminated sDNA in the double-stranded DNA probe when ATP is present, and λ-exonuclease can catalyze the degradation of the phosphorylated sDNA into small fragments. Then the cDNA forms a hairpin structure so that CdS QDs and AuNPs are in close contact, which can induce exciton-plasma interactions between CdS QDs and AuNPs. The exciton-plasma interactions significantly boost the photocurrent, enabling the "signal on" PEC determination of T4 PNK in the range of 10-4 - 1 U mL-1 with a detection limit of 6 × 10-5 U mL-1. The PEC biosensor can also be used to screen enzyme inhibitors.
Collapse
Affiliation(s)
- Jinhua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Guihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Wenying Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
24
|
Mphuthi N, Sikhwivhilu L, Ray SS. Functionalization of 2D MoS 2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. BIOSENSORS 2022; 12:bios12060386. [PMID: 35735534 PMCID: PMC9220812 DOI: 10.3390/bios12060386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 05/24/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) have gained considerable attention due to their distinctive properties and broad range of possible applications. One of the most widely studied transition metal dichalcogenides is molybdenum disulfide (MoS2). The 2D MoS2 nanosheets have unique and complementary properties to those of graphene, rendering them ideal electrode materials that could potentially lead to significant benefits in many electrochemical applications. These properties include tunable bandgaps, large surface areas, relatively high electron mobilities, and good optical and catalytic characteristics. Although the use of 2D MoS2 nanosheets offers several advantages and excellent properties, surface functionalization of 2D MoS2 is a potential route for further enhancing their properties and adding extra functionalities to the surface of the fabricated sensor. The functionalization of the material with various metal and metal oxide nanostructures has a significant impact on its overall electrochemical performance, improving various sensing parameters, such as selectivity, sensitivity, and stability. In this review, different methods of preparing 2D-layered MoS2 nanomaterials, followed by different surface functionalization methods of these nanomaterials, are explored and discussed. Finally, the structure-properties relationship and electrochemical sensor applications over the last ten years are discussed. Emphasis is placed on the performance of 2D MoS2 with respect to the performance of electrochemical sensors, thereby giving new insights into this unique material and providing a foundation for researchers of different disciplines who are interested in advancing the development of MoS2-based sensors.
Collapse
Affiliation(s)
- Ntsoaki Mphuthi
- DSI-Mintek Nanotechnology Innovation Centre, Randburg 2125, South Africa;
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Lucky Sikhwivhilu
- DSI-Mintek Nanotechnology Innovation Centre, Randburg 2125, South Africa;
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
25
|
Electrochemically Effective Surface Area of a Polyaniline Nanowire-Based Platinum Microelectrode and Development of an Electrochemical DNA Sensor. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/8947080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrochemical DNA sensors based on nanocomposite materials of polyaniline nanowires (PANi NWs) have been published in the literature. However, it is interesting that there are very few research studies related to the development of electrochemical DNA sensors based on PANi NWs individually. In this study, PANi NWs were synthesized site-specifically on a Pt microelectrode with only 0.785 mm2 area using an electropolymerization procedure. The electrosynthesis allows direct deposition of PANi NWs onto the Pt microelectrode in a rapid and cost-effective way. The good properties of PANi NWs including uniform size, uniform distribution throughout the Pt working electrode, and H2SO4 doping which improved the conductivity of the PANi material were obtained. Especially, the electrochemically effective surface area of the PANi NW-based Pt microelectrode determined in this work is nearly 19 times larger than that of the Pt working electrode. The PANi NW layer with large electrochemically effective surface area and high biocompatibility is consistent with the application in electrochemical DNA sensors. The fabricated DNA sensors show advantages such as simple fabrication, direct detection, high sensitivity (with the detection limit of 2.48 × 10−14 M), good specificity, and low sample volume requirement. This study also contributes to confirm the role of PANi NWs in DNA probe immobilization as well as in electrochemical signal transmission in the development of electrochemical DNA sensors.
Collapse
|
26
|
Tao J, Liu Z, Zhu Z, Zhang Y, Wang H, Pang P, Yang C, Yang W. Electrochemical detection of T4 polynucleotide kinase activity based on magnetic Fe 3O 4@TiO 2 nanoparticles triggered by a rolling circle amplification strategy. Talanta 2022; 241:123272. [PMID: 35121542 DOI: 10.1016/j.talanta.2022.123272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/29/2022]
Abstract
An ultrasensitive electrochemical detection of the activity and inhibition of T4 polynucleotide kinase (T4 PNK) was developed by using magnetic Fe3O4@TiO2 core-shell nanoparticles, which was triggered by a rolling circle amplification strategy (Fe3O4@TiO2-RCA). We used Fe3O4@TiO2 as a substrate to anchor a DNA primer. DNA S1 with 5'-OH termini was phosphorylated in the presence of T4 PNK and ATP, which was adsorbed on the surface of Fe3O4@TiO2 NPs and served as the primer for subsequent RCA reactions. After adding circular template DNA S2, RCA was initiated in the presence of phi29 DNA polymerase and dNTPs. Then, Fc-labeled DNA S3 (Fc-S3) was hybridized with RCA. The obtained Fe3O4@TiO2-RCA was adsorbed on the surface of a magnetic gold electrode (MGE) by magnetic enrichment, resulting in an enhanced electrochemical signal. The T4 PNK activity can be monitored by measuring the electrochemical signal generated. This electrochemical assay is sensitive to the activity of T4 PNK with a dynamic linear range of 0.00001-20 U/mL and a low detection limit of 3.0 × 10-6 U/mL. The proposed strategy can be used to screen the T4 PNK inhibitors, so it has great potential in the discovery of nucleotide kinase-target drug and early clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Jinpeng Tao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Zaiqiong Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Zhenyu Zhu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Chun Yang
- Shaanxi Geological Survey Center, Xi'an, 710068, PR China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| |
Collapse
|
27
|
Lin Q, Wu J, Jiang L, Kong D, Xing C, Lu C. Target-driven assembly of DNAzyme probes for simultaneous electrochemical detection of multiplex microRNAs. Analyst 2021; 147:262-267. [PMID: 34935782 DOI: 10.1039/d1an02036f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we employed target-driven assembly of a Mg2+-dependent DNAzyme to develop an ultrasensitive electrochemical biosensor for the simultaneous detection of miRNA-21 and miRNA-141. The target miRNAs could hybridize with two partial DNAzymes, facilitating the formation of a stable and active Mg2+-dependent DNAzyme. With the help of the Mg2+ cofactor, the DNAzyme could circularly cleave the ferrocene (Fc) or methylene blue (MB) labelled hairpin probes and release Fc and MB labels from the electrode surface, which could significantly amplify the current suppression to achieve multiple detection of small amounts of miRNA-21 and miRNA-141. This electrochemical biosensor showed high sensitivity and selectivity for the simultaneous detection of miRNA-21 and miRNA-141. Furthermore, the proposed method was also successfully applied for the determination of miRNA-21 and miRNA-141 from diluted serum samples. Overall, the proposed sensor showed several considerable advantages including simple preparation, high sensitivity, and enzyme-free signal amplification. Therefore, the proposed electrochemical biosensor could be used as a highly efficient amplification strategy for simultaneous detection of various miRNA biomarkers in bioanalysis and clinical diagnostics.
Collapse
Affiliation(s)
- Qitian Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| | - Junye Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| | - Lili Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| | - Dexian Kong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| |
Collapse
|
28
|
Huang C, Shen G, Ding S, Kan A, Jiang D, Jiang W. Primer-template conversion-based cascade signal amplification strategy for sensitive and accurate detection of polynucleotide kinase activity. Anal Chim Acta 2021; 1187:339139. [PMID: 34753572 DOI: 10.1016/j.aca.2021.339139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
Here, a primer-template conversion-based cascade signal amplification strategy is described for the sensitive detection of polynucleotide kinase (PNK) activity. This strategy integrated rolling circle amplification (RCA) and multiple-repeated-strand displacement amplification (MRSDA) with G-quadruplex based fluorescence lighting-up assay. A delicate dumbbell-shaped DNA probe with 5'-hydroxyl terminus was designed, in which G-quadruplex and half recognition site of nicking enzyme Nb.BbvCI were encoded in two loops respectively. Under the action of PNK, the 5' terminus on dumbbell probe was firstly phosphorylated, and then the dumbbell was cyclized with the catalyzation of T4 ligase to become the RCA template. The RCA process produced multiple copies of the prolonged primer. After that, under the assistance of nicking enzyme Nb.BbvCI, a primer-template conversion occurred, which converted the primer and template of RCA into the template and primer of the subsequent MRSDA, respectively. The MRSDA generated multiple repeated ssDNA sequences which possessed G-quadruplexes for outputting signal by lighting-up fluorescence of thioflavin T (ThT). The cascade signal amplification of RCA and MRSDA provided high detection sensitivity, and the target-dependence of template in cascade signal amplification led to a low background. The method showed excellent detection limit of 0.2 × 10-6 U μL-1 in buffer and 5 cells in cell lysate sample. Moreover, this method displayed favorable selectivity when interfering proteins were present. The developed strategy has good practical potential for PNK activity detection in clinical diagnosis and medical research.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Guohong Shen
- Breast Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 250013, Jinan, PR China
| | - Shengyong Ding
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Ailing Kan
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, PR China.
| | - Wei Jiang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
29
|
Zhang L, Fan W, Jia D, Feng Q, Ren W, Liu C. Microchamber-Free Digital Flow Cytometric Analysis of T4 Polynucleotide Kinase Phosphatase Based on Single-Enzyme-to-Single-Bead Space-Confined Reaction. Anal Chem 2021; 93:14828-14836. [PMID: 34713697 DOI: 10.1021/acs.analchem.1c03724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Digital bioassays have attracted extensive attention in biomedical applications due to their ultrahigh sensitivity. However, traditional digital bioassays require numerous microchambers such as droplets or microwells, which restricts their application scope. Herein, we propose a microchamber-free flow cytometric method for the digital quantification of T4 polynucleotide kinase phosphatase (T4 PNKP) based on an unprecedented phenomenon that each T4 PNKP molecule-catalyzed reaction can be spatially self-confined on a single microbead, which ultimately enables the one-target-to-one-fluorescence-positive microbead digital signal transduction. The digital signal-readout mode can clearly detect T4 PNKP concentrations as low as 1.28 × 10-10 U/μL, making it most sensitive method to date. Significantly, T4 PNKP can be specifically distinguished from other phosphatases and nucleases in complex samples by digitally counting the fluorescence-positive microbeads, which cannot be realized by traditional bulk measurement-based methods. Taking advantage of the novel space-confined enzymatic feature of T4 PNKP, this digital mechanism can use T4 PNKP as the enzyme label to fabricate digital sensing systems toward various biomolecules such as digital enzyme-linked immunosorbent assay (ELISA). Therefore, this work not only enlarges the toolbox for high-sensitivity biomolecule detection but also opens new gates to fabricate next-generation digital assays.
Collapse
Affiliation(s)
- Lijun Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Dailu Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Qinya Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
30
|
Martínez-Periñán E, García-Mendiola T, Enebral-Romero E, Del Caño R, Vera-Hidalgo M, Vázquez Sulleiro M, Navío C, Pariente F, Pérez EM, Lorenzo E. A MoS 2 platform and thionine-carbon nanodots for sensitive and selective detection of pathogens. Biosens Bioelectron 2021; 189:113375. [PMID: 34087724 DOI: 10.1016/j.bios.2021.113375] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
This work focuses on the combination of molybdenum disulfide (MoS2) and à la carte functionalized carbon nanodots (CNDs) for the development of DNA biosensors for selective and sensitive detection of pathogens. MoS2 flakes prepared through liquid-phase exfoliation, serves as platform for thiolated DNA probe immobilization, while thionine functionalized carbon nanodots (Thi-CNDs) are used as electrochemical indicator of the hybridization event. Spectroscopic and electrochemical studies confirmed the interaction of Thi-CNDs with DNA. As an illustration of the pathogen biosensor functioning, DNA sequences from InIA gen of Listeria monocytogenes bacteria and open reading frame sequence (ORF1ab) of SARS-CoV-2 virus were detected and quantified with a detection limit of 67.0 fM and 1.01 pM, respectively. Given the paradigmatic selectivity of the DNA hybridization, this approach allows pathogen detection in the presence of other pathogens, demonstrated by the detection of Listeria monocytogenes in presence of Escherichia coli. We note that this design is in principle amenable to any pathogen for which the DNA has been sequenced, including other viruses and bacteria. As example of the application of the method in real samples it has been used to directly detect Listeria monocytogenes in cultures without any DNA Polymerase Chain Reaction (PCR) amplification process.
Collapse
Affiliation(s)
| | - Tania García-Mendiola
- Departamento de Química Analítica. Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | | | - Rafael Del Caño
- Departamento de Química Analítica. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | - Cristina Navío
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Félix Pariente
- Departamento de Química Analítica. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Emilio M Pérez
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica. Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
31
|
Lin M, Wan H, Zhang J, Huang F, Li S, Xia F. Bioinspired Programmable Engineering of a Color-Change Biointerface based on Dual-Stimulation Regulation. ACS APPLIED BIO MATERIALS 2020; 3:8970-8977. [DOI: 10.1021/acsabm.0c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hao Wan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|