1
|
Ma T, He X, Liu X, Qiu XH, Ma JG, Cheng P. Construction of Stable 2D Cationic Breathing Ni-MOF for Cr(VI) Trapping and Electrochemical Sensing. Inorg Chem 2024. [PMID: 39266252 DOI: 10.1021/acs.inorgchem.4c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Pollution of surface water by heavy metal hexavalent chromium ions poses a serious threat to human health; herein, a two-dimensional (2D) cationic breathing Ni-MOF with free nitrate ions between the layers was designed and synthesized according to the characteristics of hexavalent chromium ions, {[Ni(L)2](NO3)2·5H2O}n (L = 1,3,5-tris[4-(imidazol-1-yl)phenyl]benzene). The flexible layer spacing of the 2D breathing Ni-MOF allows the exchange of NO3- by CrO42- without destroying the original structure. Electrostatic and hydrogen bonding interactions between CrO42- and Ni-MOF facilitate its exchange with NO3-. Moreover, CrO42- exhibits a higher binding energy with Ni-MOF compared to NO3-, and the hydrophobic channels of Ni-MOF favor CrO42- trapping due to its lower hydration energy. Consequently, Ni-MOF demonstrates both effective sorption and electrochemical sensing of Cr(VI), achieving a sensitivity of 2.091 μA μM-1 and a detection limit of 0.07 μM.
Collapse
Affiliation(s)
- Teng Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xingyue He
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Hang Qiu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jian-Gong Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Dutta S, Fajal S, Ghosh SK. Heavy Metal-Based Toxic Oxo-Pollutants Sequestration by Advanced Functional Porous Materials for Safe Drinking Water. Acc Chem Res 2024; 57:2546-2560. [PMID: 39163541 DOI: 10.1021/acs.accounts.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
ConspectusWater scarcity as a consequence of either environmental or economic actions is the most compelling global concern of the 21st century, as ∼2 billion people (26% of the total population) struggle to access safe drinking water and ∼3.6 billion (46% of the total population) lack access to clean water sanitation. In this context, groundwater pollution by toxic heavy metals and/or their oxo-pollutants, such as CrO42-, Cr2O72-, AsO43-, SeO32-, SeO42-, TcO4-, UO22+, etc., have been becoming rapidly growing global concerns. The severe toxicity upon bioaccumulation of these oxo-anions has prompted the US Environment Protection Agency (EPA) to mark these persistent and hazardous substances as priority pollutants. Additionally, the heavy-metal-based pollutants are difficult to transform into eco-friendly substances, thus presenting serious challenges toward human health and environmental preservation. To this end, the emergence of advanced functional porous materials (AFPMs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), metal-organic polyhedrons (MOPs), porous organic polymers (POPs), etc., have presented extraordinary opportunities in material research and water treatment applications. The liberty in designing and structural tunability of AFPMs, facilitated by utilization of structure-encoded molecular building blocks, enables precise control over target-specificity and structure-property correlations. Bridging the gap between strategic material design and on-demand real-world application can facilitate the development of next-generation sorbents/ion-exchangers for efficient water treatment.In this Account, we summarize the recent advancements from our group toward the development of cutting-edge multifunctional ionic-porous sorbents, offering viable solutions toward providing clean and safe drinking water. Our vision allows us to comprehend this challenge through two strategic factors: efficient oxo-anion capture via ion-exchange and specific host-guest interactions via installation of modular functional groups. To provide an overview, we first highlight the different structural variants and coexistance of various toxic oxo-anions depending on the pH of the medium and their adverse effects. Next, we highlight the promising potential of water stable cationic MOFs toward selective remediation of toxic Cr(VI), Mn(VII), Tc(VI), Se(IV), Se(VI), U (VI), As(III), and As(V)-based toxic oxo-pollutants from water. In the subsequent sections, we summarize the target-specific design strategies and oxo-anion remediation performances of ionic porous organic polymers and hybrid functional porous materials. The key role of target-specific designability and/or structural fine-tuning of AFPMs toward preferential sorption of oxo-pollutants is systematically demonstrate. Particularly, the role of ion-exchange (anion-exchange) processes toward targeted oxo-pollutant capture by ionic AFPMs has been discussed in details. In several examples, the AFPMs were successful in reducing the toxic oxo-anion concentration levels lower than the permitted values for drinking water by the World Health Organizing Committee (WHO), showcasing their real-world applicability potency.Our contemporaneous endeavors in exploring ionic AFPMs for selective toxic oxo-anion sequestration may serve as a blueprint to researchers for future development of the next generation sorbent materials for energy-economically feasible water treatment methods.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry and Centre for Water Research (CWR), Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sahel Fajal
- Department of Chemistry and Centre for Water Research (CWR), Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sujit K Ghosh
- Department of Chemistry and Centre for Water Research (CWR), Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
3
|
Guo Q, Li J, Zhao Y, Li L, He L, Zhao F, Zhai F, Zhang M, Chen L, Chai Z, Wang S. Record High Iodate Anion Capture by a Redox-Active Cationic Polymer Network. Angew Chem Int Ed Engl 2024; 63:e202400849. [PMID: 38656826 DOI: 10.1002/anie.202400849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
As a critical radioactive anionic contaminant, traditional adsorbents primarily remove iodate (IO3 -) through ion exchange or hard acid-hard base interactions, but suffer from limited affinity and capacity. Herein, employing the synergistic effect of ion exchange and redox, we successfully synthesized a redox-active cationic polymer network (SCU-CPN-6, [C9H10O2N5 ⋅ Cl]n) by merging guanidino groups with ion-exchange capability and phenolic groups with redox ability via a Schiff base reaction. SCU-CPN-6 exhibits a groundbreaking adsorption capacity of 896 mg/g for IO3 -. The inferior adsorption capacities of polymeric networks containing only redox (~0 mg/g) or ion exchange (232 mg/g) fragments underscore the synergistic "1+1>2" effect of the two mechanisms. Besides, SCU-CPN-6 shows excellent uptake selectivity for IO3 - in the presence of high concentrations of SO4 2-, Cl-, and NO3 -. Meanwhile, a high distribution coefficient indicates its exemplary deep-removal performance for low IO3 - concentration. The synergic strategy not only presents a breakthrough solution for the efficient removal of IO3 - but also establishes a promising avenue for the design of advanced adsorbents for diverse applications.
Collapse
Affiliation(s)
- Qi Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jie Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuting Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Lingyi Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Fuqiang Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Fuwan Zhai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Long Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Saha A, Pal A, Mukherjee D, Pal SC, Das MC. Two-Dimensional Cu(II)-MOF with Lewis Acid-Base Bifunctional Sites for Chemical Fixation of CO 2 and Bioactive 1,4-DHP Synthesis via Hantzsch Condensation. Inorg Chem 2024; 63:10832-10842. [PMID: 38807309 DOI: 10.1021/acs.inorgchem.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Five- and six-membered heterocycles containing nitrogen or oxygen have been considered as privileged scaffolds in organic chemistry and the chemical industry because of their usage in high-value commodities. Herein, we report a two-dimensional (2D) Cu(II)-based MOF catalyst, IITKGP-40, via the strategic employment of ample Lewis acid-base bifunctional sites (open metal nodes and free pyrazine moieties) along the pore wall. IITKGP-40 could convert toxic CO2 to cyclic carbonates in an atom-economical manner under solvent-free conditions and aromatic aldehyde to bioactive 1,4-DHPs via Hantzsch condensation. Exceptional catalytic performance (99%) and turnover number under mild reaction conditions for CO2 fixation using sterically hindered styrene oxide, and good-to-excellent yields for a wide range of aromatic aldehydes toward 1,4-dihydropyridines (1,4-DHPs) make IITKGP-40 promising as a multipurpose heterogeneous catalyst. Moreover, to demonstrate the practical utility of the catalyst, two biologically important drug molecules, diludine and nitrendipine analogue, have also been synthesized. IITKGP-40 is recyclable for at least three consecutive runs without significant loss of activity, making it promising for real-time applications.
Collapse
Affiliation(s)
- Apu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| | - Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| |
Collapse
|
5
|
Dutta S, Sinelshchikova A, Andreo J, Wuttke S. Nanoscience and nanotechnology for water remediation: an earnest hope toward sustainability. NANOSCALE HORIZONS 2024; 9:885-899. [PMID: 38591932 DOI: 10.1039/d4nh00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Water pollution and the global freshwater crisis are the most alarming concerns of the 21st century, as they threaten the sustainability and ecological balance of the environment. The growth of global population, climate change, and expansion of industrial processes are the main causes of these issues. Therefore, effective remediation of polluted water by means of detoxification and purification is of paramount importance. To this end, nanoscience and nanotechnology have emerged as viable options that hold tremendous potential toward the advancement of wastewater treatment methods to enhance treatment efficiency along with augmenting water supply via utilization of unconventional water sources. Materials at the nano level have shown great promise toward water treatment applications owing to their unique physicochemical properties. In this focus article, we highlight the role of new fundamental properties at the nano scale and material properties that are drastically increased due to the nano dimension (e.g. volume-surface ratio) and highlight their impact and potential toward water treatment. We identify and discuss how nano-properties could improve the three main domains of water remediation: the identification of pollutants, their adsorption and catalytic degradation. After discussing all the beneficial aspects we further discuss the key challenges associated with nanomaterials for water treatment. Looking at the current state-of-the-art, the potential as well as the challenges of nanomaterials, we believe that in the future we will see a significant impact of these materials on many water remediation strategies.
Collapse
Affiliation(s)
- Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Anna Sinelshchikova
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Jacopo Andreo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Kumar P, Abbas Z, Kumar P, Das D, Mobin SM. Highlights in Interface of Wastewater Treatment by Utilizing Metal Organic Frameworks: Purification and Adsorption Kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5040-5059. [PMID: 38419155 DOI: 10.1021/acs.langmuir.3c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polluted water has become a concern for the scientific community as it causes many severe threats to living beings. Detection or removal of contaminants present in wastewater and attaining purity of water that can be used for various purposes are a primary responsibility. Different treatment methods have already been used for the purification of sewage. There is a need for low-cost, highly selective, and reusable materials that can efficiently remove pollutants or purify contaminated water. In this regard, MOFs have shown significant potential for applications such as supercapacitors, drug delivery, gas storage, pollutant adsorption, etc. The outstanding structural diversity, substantial surface areas, and adjustable pore sizes of MOFs make them superior candidates for wastewater treatment. This Review provides an overview of the interaction science and engineering (kinetic and thermodynamic aspects with interactions) underpinning MOFs for water purification. First, fundamental strategies for the synthesis methods of MOFs, different categories, and their applicability in wastewater treatment are summarized, followed by a detailed explanation of various interaction mechanisms. Finally, current challenges and future outlooks for research on MOF materials toward the adsorption of hazardous components are discussed. A new avenue for modifying their structural characteristics for the adsorption and separation of hazardous materials, which will undoubtedly direct future work, is also summarized.
Collapse
|
7
|
Zhang L, Luo YT, Fan JQ, Xiao SJ, Zheng QQ, Liu XL, Tan QG, Sun C, Shi Q, Liang RP, Qiu JD. Efficient capture of iodine in steam and water media by hydrogen bond-driven charge transfer complexes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133488. [PMID: 38219593 DOI: 10.1016/j.jhazmat.2024.133488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Untreated radioactive iodine (129I and 131I) released from nuclear power plants poses a significant threat to humans and the environment, so the development of materials to capture iodine from water media and steam is critical. Here, we report a charge transfer complex (TCNQ-MA CTC) with abundant nitrogen atoms and π-conjugated system for adsorption of I2 vapor and I3- from aqueous solutions. Due to the synergistic binding mechanism of benzene/triazine rings and N-containing groups with iodine, special I-π and charge transfer interaction can be formed between the guest and the host, and thus efficient removal of I2 and I3- can be realized by TCNQ-MA CTC with the adsorption capacity up to 2.42 g/g and 800 mg/g, respectively. TCNQ-MA CTC can capture 92% of I3- within 2.5 min, showing extremely fast kinetics, excellent selectivity and high affinity (Kd = 5.68 × 106 mL/g). Finally, the TCNQ-MA CTC was successfully applied in the removal of iodine from seawater with the efficiency of 93.71%. This work provides new insights in the construction of charge transfer complexes and lays the foundation for its environmental applications.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yu-Ting Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jia-Qi Fan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiao-Lin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Quan-Gen Tan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chen Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiang Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China.
| |
Collapse
|
8
|
Wu X, Zhang H, Zhang X, Guan Q, Tang X, Wu H, Feng M, Wang H, Ou R. Sustainable lithium extraction enabled by responsive metal-organic frameworks with ion-sieving adsorption effects. Proc Natl Acad Sci U S A 2024; 121:e2309852121. [PMID: 38306476 PMCID: PMC10861930 DOI: 10.1073/pnas.2309852121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/20/2023] [Indexed: 02/04/2024] Open
Abstract
Metal-organic frameworks (MOFs) are superior ion adsorbents for selectively capturing toxic ions from water. Nevertheless, they have rarely been reported to have lithium selectivity over divalent cations due to the well-known flexibility of MOF framework and the similar physiochemical properties of Li+ and Mg2+. Herein, we report an ion-sieving adsorption approach to design sunlight-regenerable lithium adsorbents by subnanoporous MOFs for efficient lithium extraction. By integrating the ion-sieving agent of MOFs with light-responsive adsorption sites of polyspiropyran (PSP), the ion-sieving adsorption behaviors of PSP-MOFs with 6.0, 8.5, and 10.0 Å windows are inversely proportional to their pore size. The synthesized PSP-UiO-66 with a narrowest window size of 6.0 Å shows high LiCl adsorption capacity up to 10.17 mmol g-1 and good Li+/Mg2+ selectivity of 5.8 to 29 in synthetic brines with Mg/Li ratio of 1 to 0.1. It could be quickly regenerated by sunlight irradiation in 6 min with excellent cycling performance of 99% after five cycles. This work sheds light on designing selective adsorbents using responsive subnanoporous materials for environmentally friendly and energy-efficient ion separation and purification.
Collapse
Affiliation(s)
- Xu Wu
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC3000, Australia
| | - Xinyu Zhang
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Qian Guan
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Xiaocong Tang
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Hao Wu
- Department of Chemistry, Tsinghua University, Beijing100084, People’s Republic of China
| | - Mingbao Feng
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC3800, Australia
| | - Ranwen Ou
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| |
Collapse
|
9
|
Joshi P, Mehta S, Goswami RN, Srivastava M, Ray A, Khatri OP. Fruit waste-derived cellulose-polyaniline composite for adsorption-coupled reduction of chromium oxyanions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8719-8735. [PMID: 38182948 DOI: 10.1007/s11356-023-31511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Hexavalent chromium oxyanions, known as potentially toxic micropollutants, exist in the effluents and discharges of metallurgical, electroplating, refractory, chemical, and tanning industries. The exposure of chromium-contaminated water causes severe health hazards. The present work outlines a facile approach to grow polyaniline (PANI) on fruit-waste-derived cellulose (CEL) via oxidative polymerization of aniline; followed by chemical processing with NH4OH to obtain CEL-PANI-EB composites for adsorptive separation-coupled reduction of highly toxic hexavalent chromium oxyanions. The spectroscopic analyses of the CEL-PANI-EB composite before and after adsorption of Cr(VI) oxyanions revealed hydrogen bonding, electrostatic, and complexation as major interactive pathways. The adsorbed hexavalent chromium oxyanions are reduced into Cr(III) species by oxidation of PANI-based benzenoid amine into quinoid imine in the CEL-PANI-EB composite. The adsorption of Cr(VI) oxyanions by the CEL-PANI-EB composite showed negligible effects of other anionic co-pollutants, like NO3- and SO42-. The CEL-PANI-EB composite adsorbed Cr(VI) oxyanions with a removal capacity of 469 mg g-1, based on the Langmuir adsorption isotherm model. The hydroxyl functionalities in cellulose and amine/imine functionalities in PANI facilitate the electrostatic attraction between the CEL-PANI-EB and Cr(VI) oxyanions in an acidic environment beside the hydrogen linkages. The adsorbed Cr(VI) oxyanions are reduced to Cr(III)-based species by the benzenoid amines of PANI, as revealed from the XPS analyses. The CEL-PANI-EB composite showed excellent recyclability and maintained 83.4% adsorption efficiency after seven runs of chromium adsorption-desorption. The current findings reveal the potential of CEL-PANI-EB composites for the adsorptive removal of Cr(VI) oxyanions and their conversion into a lesser toxic form, making them promising materials for wastewater treatment applications.
Collapse
Affiliation(s)
- Pratiksha Joshi
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Sweta Mehta
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Ramesh N Goswami
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Manoj Srivastava
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Anjan Ray
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Om P Khatri
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Fajal S, Ghosh D, Mandal W, Ghosh SK. Preferential separation of a radioactive TcO 4- surrogate from a mixture of oxoanions by a cationic MOF. Chem Commun (Camb) 2024. [PMID: 38259146 DOI: 10.1039/d3cc05627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Preferential trapping of a selected metal-oxoanion from a mixture of other metal-oxoanionic toxic pollutants in water has been demonstrated by implementing energy-efficient adsorption followed by the ion-exchange method, utilizing a hydrolytically stable cationic metal-organic framework (MOF). The cationic MOF exhibits ultrafast and selective extraction efficiency towards ReO4- (a surrogate anion of radioactive TcO4-) over other metal-oxoanions in contaminated water systems.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pashan, Pune 411 008, India.
| | - Dipayan Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pashan, Pune 411 008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pashan, Pune 411 008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pashan, Pune 411 008, India.
- Centre for Water Research (CWR), Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|
11
|
Lal S, Singh P, Singhal A, Kumar S, Singh Gahlot AP, Gandhi N, Kumari P. Advances in metal-organic frameworks for water remediation applications. RSC Adv 2024; 14:3413-3446. [PMID: 38259988 PMCID: PMC10801355 DOI: 10.1039/d3ra07982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Rapid industrialization and agricultural development have resulted in the accumulation of a variety of harmful contaminants in water resources. Thus, various approaches such as adsorption, photocatalytic degradation and methods for sensing water contaminants have been developed to solve the problem of water pollution. Metal-organic frameworks (MOFs) are a class of coordination networks comprising organic-inorganic hybrid porous materials having organic ligands attached to inorganic metal ions/clusters via coordination bonds. MOFs represent an emerging class of materials for application in water remediation owing to their versatile structural and chemical characteristics, such as well-ordered porous structures, large specific surface area, structural diversity, and tunable sites. The present review is focused on recent advances in various MOFs for application in water remediation via the adsorption and photocatalytic degradation of water contaminants. The sensing of water pollutants using MOFs via different approaches, such as luminescence, electrochemical, colorimetric, and surface-enhanced Raman spectroscopic techniques, is also discussed. The high porosity and chemical tunability of MOFs are the main driving forces for their widespread applications, which have huge potential for their commercial use.
Collapse
Affiliation(s)
- Seema Lal
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Parul Singh
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Anchal Singhal
- Department of Chemistry, St. Joseph's College Bengaluru Karnataka India
| | - Sanjay Kumar
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | | | - Namita Gandhi
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| |
Collapse
|
12
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
13
|
Liu X, Li Y, Chen Z, Yang H, Cai Y, Wang S, Chen J, Hu B, Huang Q, Shen C, Wang X. Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2023; 53:1289-1309. [DOI: doi.org/10.1080/10643389.2023.2168473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Xiaolu Liu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yang Li
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Hui Yang
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yawen Cai
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, P.R. China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, P.R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| |
Collapse
|
14
|
Ghosh R, Ghosh TK, Pramanik S, Musha Islam AS, Ghosh P. Superiority of the Supramolecular Halogen Bond Receptor over Its H-Bond Analogue toward the Efficient Extraction of Perrhenate from Water. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25184-25192. [PMID: 36583941 DOI: 10.1021/acsami.2c19555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A halogen bond-based water-soluble tetrapodal iodoimidazolium receptor, (L-I)(4Br), exhibited a high degree of efficiency (∼96%) in extracting ReO4- from 100% aqueous medium within a wide range of concentrations and of pH values along with excellent reusability. The solid-state X-ray diffraction study showed the trapping of ReO4- by (L-I)(4Br) via the Re-O····I halogen bonding interaction. XPS studies also suggested the interaction between I and ReO4- through polarization of the electron density of I atoms by ReO4-. (L-I)(4Br) is found to be capable of retaining its high extraction efficiency in the presence of competing anions such as F-, Cl-, I-, SO42-, H2PO4-, CO32-, NO3-, BF4-, ClO4-, Cr2O72-, and a mixture of these anions. Interestingly, (L-I)(4Br) was found to be superior in ReO4- extraction as compared to its hydrogen-bond donor analogue, (L-H)(4Br), as confirmed by a series of control experiments and theoretical calculations. Our synthesized dipodal and tripodal halogen bond donor receptors and their H-analogues validated the superiority of these classes of supramolecular halogen bond donor receptors over their hydrogen-bond analogues. (L-I)(4Br) also showed superior practical applicability in terms of the removal of ReO4- at anion concentrations as low as ∼100 ppm, which was a major shortcoming of (L-H)(4Br).
Collapse
Affiliation(s)
- Rajib Ghosh
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| | - Tamal Kanti Ghosh
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| | - Sourav Pramanik
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| | - Abu Saleh Musha Islam
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| | - Pradyut Ghosh
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| |
Collapse
|
15
|
Sun Q, Qin L, Lai C, Liu S, Chen W, Xu F, Ma D, Li Y, Qian S, Chen Z, Chen W, Ye H. Constructing functional metal-organic frameworks by ligand design for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130848. [PMID: 36696779 DOI: 10.1016/j.jhazmat.2023.130848] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) with unique physical and chemical properties are composed of metal ions/clusters and organic ligands, including high porosity, large specific surface area, tunable structure and functionality, which have been widely used in chemical sensing, environmental remediation, and other fields. Organic ligands have a significant impact on the performance of MOFs. Selecting appropriate types, quantities and properties of ligands can well improve the overall performance of MOFs, which is one of the critical issues in the synthesis of MOFs. This article provides a comprehensive review of ligand design strategies for functional MOFs from the number of different types of organic ligands. Single-, dual- and multi-ligand design strategies are systematically presented. The latest advances of these functional MOFs in environmental applications, including pollutant sensing, pollutant separation, and pollutant degradation are further expounded. Furthermore, an outlook section of providing some insights on the future research problems and prospects of functional MOFs is highlighted with the purpose of conquering current restrictions by exploring more innovative approaches.
Collapse
Affiliation(s)
- Qian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenjing Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shixian Qian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhexin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenfang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoyang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
16
|
Tang P, Xie XX, Huang ZY, Kuang ZY, Cai SL, Zhang WG, Zheng SR. Two Cu( i) coordination polymers based on a new benzimidazolyl-tetrazolyl heterotopic ligand for visible-light-driven photocatalytic dye degradation. CrystEngComm 2023. [DOI: 10.1039/d2ce01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two Cu(i) CPs based on a new heterotopic tripodal ligand were constructed and their visible-light-driven photocatalytic performance were studied.
Collapse
Affiliation(s)
- Ping Tang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xue-Xian Xie
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zi-Yuan Huang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhi-Yang Kuang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Song-Liang Cai
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Wei-Guang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China
| | - Sheng-Run Zheng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
17
|
Dutta S, More YD, Fajal S, Mandal W, Dam GK, Ghosh SK. Ionic metal-organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chem Commun (Camb) 2022; 58:13676-13698. [PMID: 36421063 DOI: 10.1039/d2cc05131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications. In the present review, we summarize the progress and future prospects of iMOFs both in terms of fundamental developments and potential applications. Furthermore, the design principles of ionic MOFs and their state-of-the-art ion exchange performances are discussed in detail and the future perspectives of these promising ionic materials are proposed.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
18
|
Zhao R, Bai X, Yang W, Fan K, Zhang H. Grafting (S)-2-Phenylpropionic Acid on Coordinatively Unsaturated Metal Centers of MIL-101(Al) Metal-Organic Frameworks for Improved Enantioseparation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8456. [PMID: 36499951 PMCID: PMC9740726 DOI: 10.3390/ma15238456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Chiral metal-organic frameworks (cMOFs) are emerging chiral stationary phases for enantioseparation owing to their porosity and designability. However, a great number of cMOF materials show poor separation performance for chiral drugs in high-performance liquid chromatography (HPLC). The possible reasons might be the irregular shapes of MOFs and the low grafting degree of chiral ligands. Herein, MIL-101-Ppa@SiO2 was synthesized by a simple coordination post-synthetic modification method using (S)-(+)-2-Phenylpropionic acid and applied as the chiral stationary phase to separate chiral compounds by HPLC. NH2-MIL-101-Ppa@SiO2 prepared via covalent post-synthetic modification was used for comparison. The results showed that the chiral ligand density of MIL-101-Ppa@SiO2 was higher than that of NH2-MIL-101-Ppa@SiO2, and the MIL-101-Ppa@SiO2 column exhibited better chiral separation performance and structural stability. The binding affinities between MIL-101-Ppa@SiO2 and chiral compounds were simulated to prove the mechanism of the molecular interactions during HPLC. These results revealed that cMOFs prepared by coordination post-synthetic modification could increase the grafting degree and enhance the separation performance. This method can provide ideas for the synthesis of cMOFs.
Collapse
Affiliation(s)
- Rui Zhao
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xueyan Bai
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenhui Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Kun Fan
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
19
|
Wei C, Yang Z, Zhang J, Ji H. Selective and efficient removal of ReO4- from aqueous solution by imidazolium-based porous organic polymers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Samanta P, Dutta S, Let S, Sen A, Shirolkar MM, Ghosh SK. Hydroxy-Functionalized Hypercrosslinked Polymers (HCPs) as Dual Phase Radioactive Iodine Scavengers: Synergy of Porosity and Functionality. Chempluschem 2022; 87:e202200212. [PMID: 36066453 DOI: 10.1002/cplu.202200212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/12/2022] [Indexed: 02/18/2024]
Abstract
Large-scale nuclear power plant production of iodine radionuclides (129 I, 131 I) pose huge threat in the events of nuclear disaster. Effective removal of radioiodine from nuclear waste is one of the most critical challenge because of the drawbacks of state-of-the-art adsorbents such as high cost, low uptake capacity and non-recyclability. Herein, two hydroxy-functionalized (-OH) hypercrosslinked polymers (HCPs), namely HCP-91 and HCP-92, have been synthesized and employed towards capture of iodine. High chemical stability along with synergistic harmony of high porosity and functionality of these materials makes them suitable candidates for capture of iodine from both vapor phase and water medium. Moreover, both the HCPs showed superior iodine removal performance from water in terms of fast kinetics and high removal efficiency (2.9 g g-1 and 2.49 g g-1 for HCP-91 and HCP-92 respectively). The role of functionality (-OH groups) and porosity has been established with the help of HCP-91, HCP-92 and non-functionalized biphenyl HCP for the efficient capture of I3 - ions from water. In addition, both HCPs exhibited excellent selectivity and recyclability towards triiodide ions, rendering the potential of these materials towards real-time applications. Lastly, Density functional theoretical studies revealed key insights and corroborate well with the experimental findings.
Collapse
Affiliation(s)
- Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| | - Arunabha Sen
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| | - Mandar M Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU) Lavale, Pune, 412115, Maharashtra, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
21
|
Ming M, Yin S, Shi J. Poly(ionic liquids)-Impregnated UiO-66 composites for efficient sequestration of dichromate. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Li ZJ, Liu JY, Yu Y, Chang KJ, Wang H, Li YJ, Gai K. Rational Design of High-Performance Cationic Organic Network Adsorbents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23868-23876. [PMID: 35549003 DOI: 10.1021/acsami.2c03119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Development of high-performance ionic organic network (ION) adsorbents is of great importance for water remediation. However, the research on IONs is still nascent, especially, the design philosophy regarding contaminant adsorption has rarely been explored. In this contribution, we optimized the adsorption efficiency of IONs by increasing the density of charged sites and improving their accessibility. We first produced a new cationic organic network (CON), CON-LDU4, with a high density of positive sites via synthesis from tetra(4-pyridyl)ethene. Compared to the analogue CON-LDU2 that synthesized from tetra(4-(4-pyridyl)phenyl)ethene, CON-LDU4 exhibited higher efficiency in adsorption of methyl blue, indicating that the higher ionic density results in the higher adsorption efficiency. To further improve the accessibility of the active sites, another new CON material (CON-LDU5) was synthesized by employing a hard template. CON-LDU5 exhibited a larger specific surface area than CON-LDU4, with clearly enhanced adsorption efficiency. Finally, CON-LDU5 was used to capture CrO42- ions in water with fast adsorption kinetics (k2 = 0.0328 g mg-1 min-1) and high adsorption capacity (369 mg g-1).
Collapse
Affiliation(s)
- Zhi-Jun Li
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, P. R. China
| | - Ji-Yu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Yue Yu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, P. R. China
| | - Ke-Jian Chang
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, P. R. China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, P. R. China
| | - Yi-Jun Li
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, P. R. China
| | - Ke Gai
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, P. R. China
| |
Collapse
|
23
|
Mandal W, Fajal S, Mollick S, Shirolkar MM, More YD, Saurabh S, Mahato D, Ghosh SK. Unveiling the Impact of Diverse Morphology of Ionic Porous Organic Polymers with Mechanistic Insight on the Ultrafast and Selective Removal of Toxic Pollutants from Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20042-20052. [PMID: 35465661 DOI: 10.1021/acsami.2c02174] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, detoxification of contaminated water by different types of materials has received a great deal of attention. However, lack of methodical in-depth understanding of the role of various physical properties of such materials toward improved sorption performance limits their applicable efficiencies. In perspective, decontamination of oxoanion-polluted water by porous materials with different morphologies are unexplored due to a shortfall of proper synthetic strategies. Herein, systematic optimization of sequestration performance toward efficient decontamination of toxic oxoanion-polluted water has been demonstrated by varying the morphologies of an imidazolium-based cationic polymeric network [ionic porous organic polymers (iPOP-5)]. Detailed morphological evolution showed that the chemically stable ionic polymer exhibited several morphologies such as spherical, nanotube, and flakes. Among them, the flakelike material [iPOP-5(F)] showed ultrafast capture efficiency (up to ∼99 and >85% removal within less than 1 min) with high saturation capacities (301 and 610 mg g-1) toward chromate [Cr(VI)] and perrhenate [Re(VII)] oxoanions, respectively, in water. On the other hand, the spherical-shaped polymer [iPOP-5(S)] exhibited relatively slow removal kinetics (>5 min for complete removal) toward both Cr(VI) and Re(VII) oxoanions. Notably, iPOP-5(F) eliminated Cr(VI) and Re(VII) selectively even in the presence of excessive (∼100-fold) competing anions from both high- and low-concentration contaminated water. Further, the compound demonstrated efficient separation of those oxoanions in a wide pH range as well as in various water systems (such as potable, lake, river, sea, and tannery water) with superior regeneration ability. Moreover, as a proof of concept, a column exchange-based water treatment experiment by iPOP-5(F) has been performed to reduce the concentration of Cr(VI) and Re(VII) below the WHO permitted level. Mechanistic investigation suggested that the rare in situ exfoliation of flakes into thin nanosheets helps to achieve ultrafast capture efficiency. In addition, detailed theoretical binding energy calculations were executed in order to understand such rapid, selective binding of chromate and perrhenate oxoanions with iPOP-5(F) over other nonmetal-based anions.
Collapse
Affiliation(s)
- Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhaba Road, Pashan, Pune 411008, India
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhaba Road, Pashan, Pune 411008, India
| | - Samraj Mollick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhaba Road, Pashan, Pune 411008, India
| | - Mandar M Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhaba Road, Pashan, Pune 411008, India
| | - Satyam Saurabh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhaba Road, Pashan, Pune 411008, India
| | - Debanjan Mahato
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhaba Road, Pashan, Pune 411008, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhaba Road, Pashan, Pune 411008, India
| |
Collapse
|
24
|
Percástegui EG. Metal-organic cages against toxic chemicals and pollutants. Chem Commun (Camb) 2022; 58:5055-5071. [PMID: 35383805 DOI: 10.1039/d2cc00604a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continuous release of toxic chemicals and pollutants into the atmosphere and natural waters threatens, directly and indirectly, human health, the sustainability of the planet, and the future of society. Materials capable of capturing or chemically inactivating hazardous substances, which are harmful to humans and the environment, are critical in the modern age. Metal-organic cages (MOCs) show great promise as materials against harmful agents both in solution and in solid state. This Highlight features examples of MOCs that selectively encapsulate, adsorb, or remove from a medium noxious gases, toxic organophosphorus compounds, water pollutant oxoanions, and some emerging organic contaminants. Remarkably, the toxicity of interacting contaminants may be lowered by MOCs as well. Specific cases pertaining to the use of these cages for the chemical degradation of some harmful substances are presented. This Highlight thus aims to provide an overview of the possibilities of MOCs in this area and new methodological insights into their operation for enhancing their activity and the engineering of further remediation applications.
Collapse
Affiliation(s)
- Edmundo G Percástegui
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, Mexico. .,Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco km 14.5, 50200 Toluca, Estado de México, Mexico
| |
Collapse
|
25
|
Huang X, Huang L, Babu Arulmani SR, Yan J, Li Q, Tang J, Wan K, Zhang H, Xiao T, Shao M. Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: A review. ENVIRONMENTAL RESEARCH 2022; 204:112381. [PMID: 34801541 DOI: 10.1016/j.envres.2021.112381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Anion pollution in water has become a problem that cannot be ignored. The anion concentration should be controlled below the national emission standard to meet the demand for clean water. Among the methods for removing excess anions in water, the adsorption method has a unique removal performance, and the core of the adsorption method is the adsorbent. In recent years, the emerging metal-organic frameworks (MOFs) have the advantages of adjustable porosity, high specific surface area, diverse functions, and easy modification. They are very competitive in the field of adsorption of liquid anions. This article focuses on the adsorption of fluoride, arsenate, chromate, radioactive anions (ReO4-, TcO4-, SeO42-/SeO32-), phosphate ion, chloride ion, and other anions by MOFs and their derivatives. The preparation methods of MOFs are introduced in turn, the application of different types of metal-based MOFs to adsorb various anions were discussed in categories with their crystal structure and functional groups. The influence on the adsorption of anions is analyzed, including the more common and special adsorption mechanisms, adsorption kinetics and thermodynamics, and regeneration performance are briefly described. Finally, the current situation of MOFs adsorption of anions is summarized, and the outlook for future development is summarized to provide my own opinions for the practical application of MOFs.
Collapse
Affiliation(s)
- Xuanjie Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Lei Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Samuel Raj Babu Arulmani
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Jinfeng Tang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Kuilin Wan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, PR China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, And Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
26
|
Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: Adsorptive, catalytic and extractive processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Dutta S, Mukherjee S, Qazvini OT, Gupta AK, Sharma S, Mahato D, Babarao R, Ghosh SK. Three‐in‐One C
2
H
2
‐Selectivity‐Guided Adsorptive Separation across an Isoreticular Family of Cationic Square‐Lattice MOFs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Soumya Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer Straße 1 85748 Garching b. München Germany
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85748 Garching b. München Germany
| | - Omid T. Qazvini
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Arvind K. Gupta
- Centre for Analysis and Synthesis Department of Chemistry Lund University Box 124 22100 Lund Sweden
| | - Shivani Sharma
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Debanjan Mahato
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Ravichandar Babarao
- School Science RMIT University Melbourne 3001 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3169 Australia
| | - Sujit K. Ghosh
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|
28
|
Huang M, Lou Z, Zhao W, Lu A, Hao X, Wang Y, Feng X, Shan W, Xiong Y. Immersion grinding and in-situ polymerization synthesis of poly(ionic liquid)s incorporation into MOF composites as radioactive TcO 4- scavenger. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126871. [PMID: 34449325 DOI: 10.1016/j.jhazmat.2021.126871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Imidazolium-based ionic liquids (ILs) are a promising candidate for efficient separation of radioactive pertechnetate (TcO4-) from nuclear waste. However, their effective fixation, availability of active sites and slow adsorption kinetics remain challenges. Here, we incorporated the bisimidazolium-based ILs into porous metal-organic frameworks (MOFs) via a combination of immersion grinding and in-situ polymerization. 3,3'-divinyl-1,1'(1,4-butanediyl) diimidazolium dichloride is tightly bound inside and outside the porous MOFs matrix by uniform immersion grinding, which facilitates the exposure of more adsorption sites and provides channels for the anions to travel through quickly. Solvent-free polymerization reduces environmental pollution and energy consumption. Notably, the composite P[C4(VIM)2]Cl2@MIL-101 possesses an admirable removal efficiency (673 mg g-1) compared with the pristine poly(ionic liquid)s (215 mg g-1). Meanwhile, it exhibits fast sorption kinetics (92% in 2 min), good β and γ radiation-resistance, excellent regeneration and eminent removal efficiency in high alkaline conditions (83%). These superior traits endow that P[C4(VIM)2]Cl2@MIL-101 effectively separated TcO4- from simulated Hanford Low-activity Waste (LAW) Melter off-gas scrubber solution tested in this work. DFT density functional theory confirms that the strong electrostatic attraction and minimum Gibbs free energy (-6.2 kcal mol-1) achieve high selective adsorption for TcO4-. P[C4(VIM)2]Cl2@MIL-101 demonstrates the considerable potential to remove TcO4- from radioactive contaminants.
Collapse
Affiliation(s)
- Mengnan Huang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhenning Lou
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Wenyan Zhao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Anping Lu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaomai Hao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yuejiao Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaogeng Feng
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Weijun Shan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Ying Xiong
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
29
|
Chen ZP, Li D, Xu L, Jiang YF, Lin K, Zhao Y, Zhao J. Cationic metal-organic frameworks constructed from a trigonal imidazole-containing ligand for the removal of Cr2O72- in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj01567f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, cationic metal-organic frameworks (MOFs) have drawn considerable attention in the treatment of wastewater containing toxic anions via anion exchange due to the presence of exchangeable anions in their pores....
Collapse
|
30
|
Macreadie LK, Gilchrist AM, McNaughton DA, Ryder WG, Fares M, Gale PA. Progress in anion receptor chemistry. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Dutta S, Mukherjee S, Qazvini OT, Gupta AK, Sharma S, Mahato D, Babarao R, Ghosh SK. Three-in-One C 2 H 2 -Selectivity-Guided Adsorptive Separation across an Isoreticular Family of Cationic Square-Lattice MOFs. Angew Chem Int Ed Engl 2021; 61:e202114132. [PMID: 34797935 DOI: 10.1002/anie.202114132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/06/2022]
Abstract
Energy-efficient selective physisorption driven C2 H2 separation from industrial C2-C1 impurities such as C2 H4 , CO2 and CH4 is of great importance in the purification of downstream commodity chemicals. We address this challenge employing a series of isoreticular cationic metal-organic frameworks, namely iMOF-nC (n=5, 6, 7). All three square lattice topology MOFs registered higher C2 H2 uptakes versus the competing C2-C1 gases (C2 H4 , CO2 and CH4 ). Dynamic column breakthrough experiments on the best-performing iMOF-6C revealed the first three-in-one C2 H2 adsorption selectivity guided separation of C2 H2 from 1:1 C2 H2 /CO2 , C2 H2 /C2 H4 and C2 H2 /CH4 mixtures. Density functional theory calculations critically examined the C2 H2 selective interactions in iMOF-6C. Thanks to the abundance of square lattice topology MOFs, this study introduces a crystal engineering blueprint for designing C2 H2 -selective layered metal-organic physisorbents, previously unreported in cationic frameworks.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Soumya Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching b. München, Germany.,Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching b. München, Germany
| | - Omid T Qazvini
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Arvind K Gupta
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 22100, Lund, Sweden
| | - Shivani Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debanjan Mahato
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Ravichandar Babarao
- School Science, RMIT University, Melbourne, 3001, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3169, Australia
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
32
|
Mukherjee S, Dutta S, More YD, Fajal S, Ghosh SK. Post-synthetically modified metal-organic frameworks for sensing and capture of water pollutants. Dalton Trans 2021; 50:17832-17850. [PMID: 34787161 DOI: 10.1039/d1dt02862f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thanks to a bottom-up design of metals and organic ligands, the library of metal-organic frameworks (MOFs) has seen a conspicuous growth. Post-synthetically modified MOFs comprise a relatively smaller subset of this library. Whereas the approach of post-synthetic modification was seminally introduced for MOFs in the early 1990s, the earliest examples of post-synthetically modified MOFs are only congruous with adsorption and catalysis. The utility of PSM-derived MOFs for the sensing and capture of water contaminants is relatively niche. Arguably though, an increasing number of post-synthetically modified MOFs are finding relevance in the context of water pollutant remediation. In this article, we review the recent advances in this area and propose a structure-function relationship-guided blueprint for the future outlook.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
33
|
Patra K, Ansari SA, Mohapatra PK. Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. J Chromatogr A 2021; 1655:462491. [PMID: 34482010 DOI: 10.1016/j.chroma.2021.462491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Efficient separation of hazardous radionuclides from radioactive waste remains a challenge to the global acceptance of nuclear power due to complex nature of the waste, high radiotoxicities and presence of large number of interfering elements. Sorption of radioactive elements from liquid phase, gas phase or their solid particulates on various synthetic organic, inorganic or biological sorbents is looked as one of the options for their remediation. In this context, highly porous materials, termed as metal-organic frameworks (MOFs), have shown promise for efficient capturing of various types of radioactive elements. Major advantages that have been advocated for the application of MOFs in radionuclide sorption are their excellent chemical stability, and their large surface area due to abundant functional groups, and porosity. In this review, recent developments on the application of MOFs for radionuclide sequestration are briefly discussed. Focus has been devoted to address the separation of few crucial radioactive elements such as Th, U, Tc, Re, Se, Sr and Cs from aqueous solutions, which are important for liquid radioactive waste management. Apart from these radioactive metal ions, removal of radionuclide bearing gases such as I2, Xe, and Kr are also discussed. Aspects related to the interaction of MOFs with the radionuclides are also discussed. Finally, a perspective for comprehensive investigation of MOFs for their applications in radioactive waste management has been outlined.
Collapse
Affiliation(s)
- Kankan Patra
- Nuclear Recycles Board, Bhabha Atomic Research Centre, Tarapur 401502, India
| | - Seraj A Ansari
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Prasanta K Mohapatra
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
34
|
Stanton R, Russell E, Brandt H, Trivedi DJ. Capture of Toxic Oxoanions from Water Using Metal-Organic Frameworks. J Phys Chem Lett 2021; 12:9175-9181. [PMID: 34528794 DOI: 10.1021/acs.jpclett.1c02550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effective capture of common water contaminants using metal-organic frameworks (MOFs) presents a remedy for current environmental concerns arising from the pollution of water sources. The crystalline porous nature of MOFs, their high internal surface area, and exceptional tunability make them suitable candidates for sequestration and removal of pollutants. However, the efficiency of capture depends largely on the nature of the interactions between the anions and the MOF. In this work, to elucidate the host-guest interactions involved in the capture of such pollutants, we explore three characteristically different MOFs: ZIF-8, iMOF-2c, and MOF-74. We demonstrate by ab initio electronic structure calculations the importance of exploiting qualitatively different binding modes for strong host-guest interactions available in the selected MOFs. Our simulations reveal the relative performance of neutral and cationic adsorbents while underscoring the importance of employing MOFs containing open metal sites for the efficient uptake of anions.
Collapse
Affiliation(s)
- Robert Stanton
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Emma Russell
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Hayden Brandt
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
35
|
Sharma S, Dutta S, Dam GK, Ghosh SK. Neutral Nitrogen Donor Ligand-based MOFs for Sensing Applications. Chem Asian J 2021; 16:2569-2587. [PMID: 34324257 DOI: 10.1002/asia.202100638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Neutral nitrogen donor (N-donor) ligand-based MOFs, with their enticing features inclusive of facile synthesis, labile metal-ligand bond, framework flexibility, atomic level tunability renders them appealing in molecular recognition-based studies. Intriguingly, the flexibility in such systems (owing to weaker metal-nitrogen bonds) promote maximization of host-analyte interactions, which is critical for the manifestation of a signaling response. Such host-analyte interactions can be tapped by discerning any change in the physical properties associated with the system, such as optical, fluorometric, chemiresistive, magnetic, dielectric constant, mass. This minireview presents a brief discussion on the various types of signal transduction pathways unveiled hitherto using neutral N-donor ligand-based MOFs and the fundamental insight into the signal's origin. Moreover, an elaborate compilation of the recent examples in this field has been presented. Also, the untapped prospects have been highlighted, which may serve as a beacon to drive future research.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
36
|
Sen A, Sharma S, Dutta S, Shirolkar MM, Dam GK, Let S, Ghosh SK. Functionalized Ionic Porous Organic Polymers Exhibiting High Iodine Uptake from Both the Vapor and Aqueous Medium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34188-34196. [PMID: 34279084 DOI: 10.1021/acsami.1c07178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Large-scale generation of radioactive iodine (129I, 131I) in nuclear power plants pose a critical threat in the event of fallout, thus rendering the development of iodine sequestering materials (from both the vapor and aqueous medium) highly pivotal. Herein, we report two chemically stable ionic polymers containing multiple binding sites, including phenyl rings, imidazolium cations, and bromide anions, which in synergy promote adsorption of iodine/triiodide anions. In brief, exceptional iodine uptake (from the vapor phase) was observed at nuclear fuel reprocessing conditions. Furthermore, the ionic nature propelled removal of >99% of I3- from water within 30 min. Additionally, benchmark uptake capacities, as well as unprecedented selectivity, were observed for I3-anions. The excellent affinity (distribution coefficient, ∼105 mL/g) enabled iodine capture from seawater-spiked samples. Moreover, iodine-loaded compounds showed conductivity (10-4 S/cm, 10-6 S/cm), placing them among the best known conducting porous organic polymers. Lastly, DFT studies unveiled key insights in coherence with the experimental findings.
Collapse
Affiliation(s)
- Arunabha Sen
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Shivani Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Mandar M Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
37
|
Dutta S, Let S, Shirolkar MM, Desai AV, Samanta P, Fajal S, More YD, Ghosh SK. A luminescent cationic MOF for bimodal recognition of chromium and arsenic based oxo-anions in water. Dalton Trans 2021; 50:10133-10141. [PMID: 34190294 DOI: 10.1039/d1dt01097b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water pollution from heavy metals and their toxic oxo-anionic derivatives such as CrO42-, Cr2O72-, HAsO42-, and HAsO32- has become one of the most critical environmental issues. To address this, herein, we report a new hydrolytically stable luminescent Zn(ii) based cationic metal organic framework (MOF), iMOF-4C, which further successfully exhibited a rare dual "turn off/on" fluorescence response toward Cr(vi), As(v) and As(iii) based oxo-anions respectively in water medium. In addition, iMOF-4C was found to maintain its superior selectivity in the presence of other concurrent anions (e.g. SO42-, Cl-, Br-, ClO4-, NO3-, SCN- and CO32-). More importantly, iMOF-4C exhibited an excellent selective and sensitive luminescence "turn-off" response towards CrO42- and Cr2O72- anions in water medium with the quenching constant (Ksv) values as high as 1.31 × 105 M-1 (CrO42-) and 4.85 × 105 M-1 (Cr2O72-), which are found to be the highest among the values reported in the regime of MOFs. Interestingly, iMOF-4C showed fluorescence "turn-on" response toward HAsO42- and HAsO32- with an enhancement coefficient (Kec) of 1.98 × 104 M-1 and 3.56 × 103 M-1 respectively. The high sensitivity and low detection limits make iMOF-4C more feasible for real-time sensing of such toxic oxo-anions in an aqueous medium. Furthermore, the probable sensing mechanism has been investigated by DFT calculation studies and discussed in detail.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Mandar M Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Aamod V Desai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
38
|
Sen A, Dutta S, Dam GK, Samanta P, Let S, Sharma S, Shirolkar MM, Ghosh SK. Imidazolium-Functionalized Chemically Robust Ionic Porous Organic Polymers (iPOPs) toward Toxic Oxo-Pollutants Capture from Water. Chemistry 2021; 27:13442-13449. [PMID: 34259357 DOI: 10.1002/chem.202102399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/12/2022]
Abstract
Fabricating new and efficient materials aimed at containment of water contamination, in particular removing toxic heavy metal based oxo-anions (e. g. CrO4 2- , TcO4 - ) holds paramount importance. In this work, we report two new highly stable imidazolium based ionic porous organic polymers (iPOPs) decorated with multiple interaction sites along with electrostatics driven adsorptive removal of such oxo-anions from water. Both the iPOPs (namely, iPOP-3 and iPOP-4) exhibited rapid sieving kinetics and very high saturation uptake capacity for CrO4 2- anions (170 and 141 mg g-1 for iPOP-3 and iPOP-4 respectively) and ReO4 - (515.5 and 350.3 mg g-1 for iPOP-3 and iPOP-4 respectively), where ReO4 - anions being the non-radioactive surrogative counterpart of radioactive TcO4 - ions. Noticeably, both iPOPs showed exceptional selectivity towards CrO4 2- and ReO4 - even in presence of several other concurrent anions such as Br- , Cl- , SO4 2- , NO3 - etc. The theoretical binding energy calculations via DFT method further confirmed the preferential interaction sites as well as binding energies of both iPOPs towards CrO4 2- and ReO4 - over all other competing anions which corroborates with the experimental high capacity and selectivity of iPOPs toward such oxo-anions.
Collapse
Affiliation(s)
- Arunabha Sen
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune 411008, India
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune 411008, India
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune 411008, India
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune 411008, India
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune 411008, India
| | - Shivani Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune 411008, India
| | - Mandar M Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
39
|
Dutta S, Let S, Sharma S, Mahato D, Ghosh SK. Recognition and Sequestration of Toxic Inorganic Water Pollutants with Hydrolytically Stable Metal-Organic Frameworks. CHEM REC 2021; 21:1666-1680. [PMID: 34137495 DOI: 10.1002/tcr.202100127] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Indexed: 11/11/2022]
Abstract
Water pollution and crisis of freshwater is one of the most alarming concern globally, which threatens the development and survival of living beings. Recycling of contaminated water has been the prime demand of 21st century as the area of contamination in natural waterbodies increasing rapidly worldwide. Detoxification and purification of wastewater via adsorptive removal technology has been proven to be more efficient because of it's simplicity, lesser complexity and cost-effectiveness. As the most rapid-growing division of coordination chemistry, porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) with the liberty of crafting tailorable porous architecture and presence of numerous functional sites have become quintessential for recognition and sequestration of water pollutants. This personal account intends to highlight our recent contributions in the field of sensing and sequestration of toxic aquatic inorganic pollutants by functionalized water stable MOFs.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), 411008, Pune, Pune, India
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), 411008, Pune, Pune, India
| | - Shivani Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), 411008, Pune, Pune, India
| | - Debanjan Mahato
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), 411008, Pune, Pune, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), 411008, Pune, Pune, India
| |
Collapse
|
40
|
Li Y, Yang J, Ma JF. A copper(ii)-based porous metal-organic framework for the efficient and rapid capture of toxic oxo-anion pollutants from water. Dalton Trans 2021; 50:3832-3840. [PMID: 33615324 DOI: 10.1039/d0dt04252h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The efficient and selective capture of toxic oxo-anions is highly desirable for environmental retrieval and hazardous waste disposal. This has remained an important task and gained considerable scientific attention due to their harmful effects on the ecosystem and human health. Herein, a porous cationic metal-organic framework (MOF), namely, [Cu3Cl(L)(H2O)2]·Cl·4DMA·8H2O (1), was synthesized (H4L = 1,4,8,11-tetrazacyclotetradecane-N,N',N'',N'''-tetramethylenecinnamic acid and DMA = N,N'-dimethylacetamide). 1 shows high stability in aqueous solution and represents an extraordinary example that is capable of efficiently capturing environmentally toxic Cr2O72- and MnO4- anions. Moreover, the removal of Cr2O72- and MnO4- anions from water was also explored in the presence of other competing anions.
Collapse
Affiliation(s)
- Yang Li
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | | | | |
Collapse
|
41
|
Liu JJ, Fu JJ, Li GJ, Liu T, Xia SB, Cheng FX. A water-stable photochromic MOF with controllable iodine sorption and efficient removal of dichromate. CrystEngComm 2021. [DOI: 10.1039/d1ce00935d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photochromic cationic MOF with one-dimensional channels was prepared based on a π-conjugated electron-deficient viologen, which exhibits high uptake capacity for Cr2O72− through ion-exchange and controllable iodine adsorption behavior.
Collapse
Affiliation(s)
- Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jia-Jia Fu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Gui-Jun Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Teng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Shu-Biao Xia
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Fei-Xiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|