1
|
Du L, Zhong Y, Zhao L, Hu C, Shen L, Yang Y, Zhong J. Self-healing polyacrylates based on dynamic disulfide and quadruple hydrogen bonds. SOFT MATTER 2024; 20:3612-3619. [PMID: 38619442 DOI: 10.1039/d4sm00257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Herein, a self-healing polyacrylate system was successfully prepared by introducing crosslinking agents containing disulfide bonds and monomers capable of forming quadruple hydrogen bonds through free radical copolymerization. This polymer material exhibited good toughness and self-healing properties through chemical and physical dual dynamic networks while maintaining excellent mechanical properties, which expanded the development path of self-healing acrylate materials. Compared to uncrosslinked and single dynamically crosslinked polymers, its elongation at break was as high as 437%, and its tensile strength was 5.48 MPa. Due to the presence of dual reversible dynamic bonds in the copolymer system, good self-healing was also achieved at 60 °C. In addition, differential scanning calorimetry and thermogravimetric analysis measurements confirmed that the thermal stability and glass transition temperature of the material were improved owing to the presence of physical and chemical cross-linking networks.
Collapse
Affiliation(s)
- Longjin Du
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Yuting Zhong
- School of Education, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Linying Zhao
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Chengzhen Hu
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Liang Shen
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Yuping Yang
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Jiang Zhong
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| |
Collapse
|
2
|
Kudo R, Samitsu S, Mori H. Self-healing amino acid-bearing acrylamides/ n-butyl acrylate copolymers via multiple noncovalent bonds. RSC Adv 2024; 14:7850-7857. [PMID: 38449826 PMCID: PMC10915467 DOI: 10.1039/d4ra00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Four amino acid-bearing acrylamides, N-acryloyl-l-threonine (AThrOH), N-acryloyl-l-glutamic acid (AGluOH), N-acryloyl-l-phenylalanine (APheOH), and N-acryloyl-l, l-diphenylalanine (APhePheOH), were selected for copolymerization with n-butyl acrylate (nBA) to develop amino acid-based self-healable copolymers. A series of copolymers comprising amino acid-bearing acrylamides and nBA with tunable comonomer compositions and molecular weights were synthesized by free radical and reversible addition-fragmentation chain-transfer copolymerization. Self-healing and mechanical properties originated from the noncovalent bonds between the carboxyl, hydroxyl, and amide groups, and π-π stacking interactions among the amino acid residues in the side chains were evaluated. Among these copolymers, P(nBA-co-AGluOH) with suitable comonomer compositions and molecular weights (nBA : AGluOH = 82 : 18, Mn = 18 300, Mw/Mn = 2.58) exhibited good mechanical properties (modulus of toughness = 17.3 MJ m-3) and self-healing under ambient conditions. The multiple noncovalent bonds of P(nBA-co-AGluOH)s were also efficient in improving the optical properties with an enhanced refractive index and good transparency.
Collapse
Affiliation(s)
- Ryo Kudo
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University 4-3-16, Jonan Yonezawa City Yamagata Prefecture 992-8510 Japan
| | - Sadaki Samitsu
- National Institute for Materials Science 1-2-1, Sengen Tsukuba 305-0047 Japan
| | - Hideharu Mori
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University 4-3-16, Jonan Yonezawa City Yamagata Prefecture 992-8510 Japan
| |
Collapse
|
3
|
Song Y, Li J, Song G, Li X. Tough and Self-Healing Waterborne Polyurethane Elastomers via Dynamic Hydrogen Bonds Design for Flexible Conductive Substrate Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2683-2691. [PMID: 38179609 DOI: 10.1021/acsami.3c12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Balancing the mechanical strength and self-healing performance of polyurethane (PU) remains a significant challenge in achieving excellent self-repairing PU materials. In this study, a self-healing waterborne PU elastomer was designed from a bionic concept by incorporating 2'-deoxythymidine (2'-dT) and isophorone diamine (IPDA) into the polymer chain. The loose stacking of IPDA's irregular cycloaliphatic structure resulted in the irregular arrangement of urethane bonds in the hard domain. The formation of sextuple hydrogen bonds between 2'-dT and urethane bonds, as well as quadruple hydrogen bonds between urethane bonds themselves, enhanced the mechanical properties of the material. The multiple hydrogen bonds can dissociate, recombine, and dissipate energy, thereby improving the material's repair capability. The hierarchical self-assembly of hydrogen bonds enabled the PU to achieve a tensile strength of 15.3 MPa and toughness of 100.75 MJ/m3. The prepared PU film is highly transparent and has a transmittance of more than 90%. Additionally, it can undergo rapid repair under high temperatures or under trace solvent conditions. When used as a flexible conductive substrate, it quickly restored the conductivity and enhanced the material's lifespan after surface damage. This environmentally friendly and self-healing waterborne PU elastomer will hold broad application prospects in the field of flexible electronic devices.
Collapse
Affiliation(s)
- Yinghu Song
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jialiang Li
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Guojun Song
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoru Li
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Zhang G, Li C, Tan J, Wang M, Liu Z, Ren Y, Xue Y, Zhang Q. Double Modification of Poly(urethane-urea): Toward Healable, Tear-Resistant, and Mechanically Robust Elastomers for Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2134-2146. [PMID: 36571454 DOI: 10.1021/acsami.2c18397] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polyurethane elastomers with mechanical robustness, tear resistance, and healing efficiency hold great potential in wearable sensors and soft robots. However, achieving excellent mechanical properties and healable capability simultaneously remains highly desirable but exclusive. Herein, we propose a straightforward procedure for double modification of poly(urethane-urea) (PUU) via thiolactone chemistry, and two different dynamic cross-linking bonds (disulfide linkages and Zn2+/imidazole coordination) are successively incorporated into the side chain of PUU, producing double cross-linking elastomers (PUU-I/Zn-S). The synergy between disulfide linkages and Zn2+/imidazole coordination forms a robust and dynamic network, endowing PUU-I/Zn-S with excellent mechanical and healing properties. The tensile stress, elongation at break, and toughness of the resultant elastomer can reach 44.06 MPa, 1000%, and 181.93 MJ m-3, respectively. Meanwhile, PUU-I/Zn-S exhibits outstanding tearing resistance with a tearing energy of 42.1 kJ m-2. The PUU-I/Zn-S can restore its mechanical robustness after self-healing at room temperature (25 ± 2 °C) or 60 °C and even maintain 91% of its original tensile strength after reprocessing two times. Additionally, PUU-I/Zn-S-based strain sensors are fabricated by introducing conductive nanofillers and demonstrate remarkable sensing capability to diverse human body motions. This work demonstrates a simple and feasible method for the postfunctionalization and enhancement of polyurethane and provides some insights into reconciling the traditional contradictory properties of mechanical robustness and healing efficiency.
Collapse
Affiliation(s)
- Guoxian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - JiaoJun Tan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Mingqi Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yafeng Ren
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ying Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
5
|
Yang S, Chen T, Bu Z, Tuo X, Gong Y, Guo J. Thermal responsive photopolymerization
3D
printed shape memory polymers enhanced by heat transfer media. J Appl Polym Sci 2022. [DOI: 10.1002/app.53514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuochen Yang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Tingjun Chen
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Zesen Bu
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Xiaohang Tuo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Yumei Gong
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Jing Guo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| |
Collapse
|
6
|
Siqueira JS, Reed WF. Continuous Monitoring and Characterization of Copolymerization Reactions of Acrylate Monomers with Indistinguishable Ultraviolet Spectra using Infrared Spectroscopy. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
De Bon F, Lorandi F, Coelho JFJ, Serra AC, Matyjaszewski K, Isse AA. Dual electrochemical and chemical control in atom transfer radical polymerization with copper electrodes. Chem Sci 2022; 13:6008-6018. [PMID: 35685801 PMCID: PMC9132085 DOI: 10.1039/d2sc01982e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 01/02/2023] Open
Abstract
In Atom Transfer Radical Polymerization (ATRP), Cu0 acts as a supplemental activator and reducing agent (SARA ATRP) by activating alkyl halides and (re)generating the CuI activator through a comproportionation reaction, respectively. Cu0 is also an unexplored, exciting metal that can act as a cathode in electrochemically mediated ATRP (eATRP). Contrary to conventional inert electrodes, a Cu cathode can trigger a dual catalyst regeneration, simultaneously driven by electrochemistry and comproportionation, if a free ligand is present in solution. The dual regeneration explored herein allowed for introducing the concept of pulsed galvanostatic electrolysis (PGE) in eATRP. During a PGE, the process alternates between a period of constant current electrolysis and a period with no applied current in which polymerization continues via SARA ATRP. The introduction of no electrolysis periods without compromising the overall polymerization rate and control is very attractive, if large current densities are needed. Moreover, it permits a drastic charge saving, which is of unique value for a future scale-up, as electrochemistry coupled to SARA ATRP saves energy, and shortens the equipment usage. The use of a Cu cathode in eATRP allows exploiting the synergistic effect between electrochemical and chemical stimuli to halt or accelerate polymerizations, reduce energy consumption and achieve control in challenging systems.![]()
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal
| | - Francesca Lorandi
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy .,Department of Chemistry, Carnegie Mellon University 4400 Fifth Ave 15213 Pittsburgh PA USA
| | - Jorge F J Coelho
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal
| | | | - Abdirisak A Isse
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy
| |
Collapse
|
8
|
Liu Z, Guo W, Wang W, Guo Z, Yao L, Xue Y, Liu Q, Zhang Q. Healable Strain Sensor Based on Tough and Eco-Friendly Biomimetic Supramolecular Waterborne Polyurethane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6016-6027. [PMID: 35061368 DOI: 10.1021/acsami.1c21987] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stretchable sensors are essential for flexible electronics, which can be made with polymer elastomers as the matrix. The main challenge in producing practical devices is to obtain polymers with mechanical stability, eco-friendliness, and self-healing properties. Herein, we introduce urea bonds and 2-ureido-4[1H]-pyrimidinone (UPy) to synthesize tailored waterborne polyurethanes (WPU-UPy-x) with a hierarchical hydrogen bond (H-bond). Accordingly, sound tensile performance (strength: 53.33 MPa, toughness: 128.97 MJ m-3), satisfying deformation recovery, and good self-healing capability of the WPU-UPy-x film are demonstrated. With atomic force microscope characterization, we find that UPy groups contribute to the highly improved microphase separation of WPU-UPy-x, responsible for good mechanical properties. As a proof of concept, a strain sensor is successfully configured, thanks to the good interfacial interactions between the polyurethane matrix and the Ti3C2Tx MXene conductive filler, which features sensitive and stable performance for monitoring diverse human and mechanical motions. Intriguingly, this sensor is capable of self-healing after cutting and displays well-retained sensitivity to detect the stretched signal. The as-proposed design concept for healable and sensitive strain sensors can shed light on future wearable electronics.
Collapse
Affiliation(s)
- Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Wenyan Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zijian Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Laifeng Yao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ying Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qing Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
9
|
Green and sustainable cellulose-based shape memory composites with excellent conductivity for temperature warning. Carbohydr Polym 2022; 276:118767. [PMID: 34823787 DOI: 10.1016/j.carbpol.2021.118767] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Green and sustainable cellulose-based composites containing poly(ε-caprolactone) (PCL) with temperature-induced shape memory properties and conductivity performance are presented. The composites are fabricated by in situ polymerization of ε-caprolactone (ε-CL) monomer in three-dimensional porous cellulose gels, and then silver-porous cellulose gel/poly(ε-caprolactone) (Ag-Cell/PCL) composites are fabricated by depositing Ag onto the surface of porous cellulose gel/poly(ε-caprolactone) (Cell/PCL) composites. The addition of PCL not only improves the mechanical properties of the Cell/PCL composites but also endows them with excellent shape memory properties. The Cell/PCL composites exhibit a high shape-fixing rate (98.9%) and can recover to their original shape within 8 s without external force. In addition, the Ag-Cell/PCL composites show superior and stable conductivity under different bending angles. Finally, a temperature warning sensor with fast performance is successfully designed using Ag-Cell/PCL composites. This work provides a means to develop temperature warning systems based on shape memory polymers.
Collapse
|
10
|
Lei X, Xiong G, Xiao Y, Huang T, Xin X, Xue S, Zhang Q. High temperature shape memory poly(amide-imide)s with strong mechanical robustness. Polym Chem 2022. [DOI: 10.1039/d2py00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shape memory poly(amide-imide)s with strong mechanical robustness, outstanding heat resistance and low water uptake were fabricated.
Collapse
Affiliation(s)
- Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Tianhao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiangze Xin
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
11
|
Xue Y, Li C, Wang W, Liu Z, Guo Z, Tan J, Zhang Q. Preparation of Poly(thiol-urethane) Covalent Adaptable Networks Based on Multiple-Types Dynamic Motifs. Macromol Rapid Commun 2021; 43:e2100510. [PMID: 34643989 DOI: 10.1002/marc.202100510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/25/2021] [Indexed: 11/10/2022]
Abstract
To solve the issue of polymeric materials recycling, developing intrinsic self-healing materials containing dynamic bonds has attracted many researchers' highly concerning. However, the tradeoff between their mechanical strength and stretchability always does not avoid. Herein, to surmount the above tradeoff, metal-ligand (Cu2+ -S) interactions are introduced into the cross-linking polythiourethane covalent adaptable networks (PTU CANs) with three kinds of dynamic motifs (thiourethane, disulfide, and hydrogen bonds). When the molar ratio of Cu2+ to S is 6.37%, the break strength (9.41 ± 0.34 MPa) and Young's modulus (26.02 ± 0.55 MPa) of the metal-ligand coordination complex PTU (Cu2+ -PTU-3) dramatically increase, whereas the peak strain almost does not decline (454.44 ± 3.95%). To conduct the repairing, Cu2+ -PTU-3 is further confirmed excellent repairing capability. Therefore, these new PTU CANs have significant potential for the new self-healing materials.
Collapse
Affiliation(s)
- Ying Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenyan Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zijian Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
12
|
Chen ZH, Fan ST, Qiu ZJ, Nie ZJ, Zhang SX, Zhang S, Li BJ, Cao Y. Tough double-network elastomers with slip-rings. Polym Chem 2021. [DOI: 10.1039/d1py00327e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to surmount the inherent trade-off between toughness and stiffness for most elastomers, we developed a strategy which let two polymer networks form an interpenetrated structure through introducing slip-rings by a very simple one-step synthesis method.
Collapse
Affiliation(s)
- Zhi-Hui Chen
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Shu-Ting Fan
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Zhen-Jiang Qiu
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Zi-Jun Nie
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Shao-Xia Zhang
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Bang-Jing Li
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
13
|
Wang W, Guo Z, Liu Z, Qiu S, Li C, Zhang Q. A spontaneously healable robust ABA tri-block polyacrylate elastomer with a multiphase structure. Polym Chem 2021. [DOI: 10.1039/d1py00907a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiphase structural designed acrylate elastomer capable of autonomously repairing structures and restoring functions upon damage was developed via an effective method, realizing good mechanical properties.
Collapse
Affiliation(s)
- Wenyan Wang
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zijian Guo
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zongxu Liu
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Shuai Qiu
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|