1
|
Wright AJ, Nasralla HH, Deshmukh R, Jamalzadeh M, Hannigan M, Patera A, Li Y, Manzo-Perez M, Parashar N, Huang Z, Udumulla T, Chen W, De Forni D, Weck M, de Peppo GM, Riedo E, Shahrjerdi D. Nanoscale-localized multiplexed biological activation of field effect transistors for biosensing applications. NANOSCALE 2024; 16:19620-19632. [PMID: 39324869 DOI: 10.1039/d4nr02535k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The rise in antibiotic-resistant pathogens, highly infectious viruses, and chronic diseases has prompted the search for rapid and versatile medical tests that can be performed by the patient. Field-effect transistor (FET)-based electronic biosensing platforms are particularly attractive due to their sensitivity, fast turn-around time, potential for parallel detection of multiple pathogens, and compatibility with semiconductor manufacturing. However, an unmet critical need is a scalable, site-selective multiplexed biofunctionalization method with nanoscale precision for immobilizing different types of pathogen-specific bioreceptors on individual FETs, preventing parallel detection of multiple targets. Here, we propose a paradigm shift in FET biofunctionalization using thermal scanning probe lithography (tSPL) with a thermochemically sensitive polymer. This polymer can be spin-coated on fully-fabricated FET chips, making this approach applicable to any FET sensor material and technology. Crucially, we demonstrate the spatially selective multiplexed functionalization capability of this method by immobilizing different types of bioreceptors at prescribed locations on a chip with sub-20 nm resolution, paving the way for massively parallel FET detection of multiple pathogens. Antibody- and aptamer-modified graphene FET sensors are then realized, achieving ultra-sensitive detection of a minimum measured concentrations of 3 aM of SARS-CoV-2 spike proteins and 10 human SARS-CoV-2 infectious live virus particles per ml, and selectivity against human influenza A (H1N1) live virus.
Collapse
Affiliation(s)
- Alexander James Wright
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Hashem Hassan Nasralla
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Rahul Deshmukh
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Moeid Jamalzadeh
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Matthew Hannigan
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Andrew Patera
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Mirimus, Inc, 760 Parkside Ave, Brooklyn, NY, 11226, USA
| | - Yanxiao Li
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Miguel Manzo-Perez
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Nitika Parashar
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Zhujun Huang
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | | | - Weiqiang Chen
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Davide De Forni
- ViroStatics S.r.l., Viale Umberto I, 46, 07100 Sassari, Italy
| | - Marcus Weck
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | | | - Elisa Riedo
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Davood Shahrjerdi
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
2
|
Goldaeva KV, Pleshakova TO, Ivanov YD. Nanowire-based biosensors for solving biomedical problems. BIOMEDITSINSKAIA KHIMIIA 2024; 70:304-314. [PMID: 39324195 DOI: 10.18097/pbmc20247005304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The review considers modern achievements and prospects of using nanowire biosensors, principles of their operation, methods of fabrication, and the influence of the Debye effect, which plays a key role in improving the biosensor characteristics. Special attention is paid to the practical application of such biosensors for the detection of a variety of biomolecules, demonstrating their capabilities and potential in the detection of a wide range of biomarkers of various diseases. Nanowire biosensors also show excellent results in such areas as early disease diagnostics, patient health monitoring, and personalized medicine due to their high sensitivity and specificity. Taking into consideration their high efficiency and diverse applications, nanowire-based biosensors demonstrate significant promise for commercialization and widespread application in medicine and related fields, making them an important area for future research and development.
Collapse
Affiliation(s)
- K V Goldaeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - Yu D Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Ju H, Cheng L, Li M, Mei K, He S, Jia C, Guo X. Single-Molecule Electrical Profiling of Peptides and Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401877. [PMID: 38639403 PMCID: PMC11267281 DOI: 10.1002/advs.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, there has been a significant increase in the application of single-molecule electrical analysis platforms in studying proteins and peptides. These advanced analysis methods have the potential for deep investigation of enzymatic working mechanisms and accurate monitoring of dynamic changes in protein configurations, which are often challenging to achieve in ensemble measurements. In this work, the prominent research progress in peptide and protein-related studies are surveyed using electronic devices with single-molecule/single-event sensitivity, including single-molecule junctions, single-molecule field-effect transistors, and nanopores. In particular, the successful commercial application of nanopores in DNA sequencing has made it one of the most promising techniques in protein sequencing at the single-molecule level. From single peptides to protein complexes, the correlation between their electrical characteristics, structures, and biological functions is gradually being established. This enables to distinguish different molecular configurations of these biomacromolecules through real-time electrical monitoring of their life activities, significantly improving the understanding of the mechanisms underlying various life processes.
Collapse
Affiliation(s)
- Hongyu Ju
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Li Cheng
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Mengmeng Li
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Suhang He
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Chuancheng Jia
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Xuefeng Guo
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
4
|
Kaur G, Bhari R, Kumar K. Nanobiosensors and their role in detection of adulterants and contaminants in food products. Crit Rev Biotechnol 2024; 44:547-561. [PMID: 36842973 DOI: 10.1080/07388551.2023.2175196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/28/2023]
Abstract
Nanotechnology is a multifaceted technical and scientific field undergoing a fast expansion. Nanoparticles, quantum dots, nanotubes, nanorods, nanowires, nanochips and many more are being increasingly used for fabrication of nanosensors and nanobiosensors to increase the sensitivity and selectivity of reactions. Food safety is an extremely important concern in food industries since it is directly associated with effect of food on human health. Here in our review, we have not only described the newest information regarding methods and use of nanomaterials for construction of nanosensors but also their detection range, limit of detection (LOD) and applications for food safety. Precise nanosensors having improved sensitivity and low limit of detection were discussed in brief. Review is primarily focused on nanosensors employed for detection of adulterants and contaminants in food products such as meat products, milk, fruit juices and water samples.
Collapse
Affiliation(s)
- Gurlovleen Kaur
- Department of Biotechnology and Food Technology, M. M. Modi College, Patiala, Punjab, India
- Department of Biotechnology and Food Technology, Punjabi University, Patiala, Punjab, India
| | - Ranjeeta Bhari
- Department of Biotechnology and Food Technology, Punjabi University, Patiala, Punjab, India
| | - Kuldeep Kumar
- Department of Biotechnology and Food Technology, M. M. Modi College, Patiala, Punjab, India
| |
Collapse
|
5
|
Lin JC, Zhou ZY, Cheng YC, Chang IN, Lin CE, Wu CC. Solution-Induced Degradation of the Silicon Nanobelt Field-Effect Transistor Biosensors. BIOSENSORS 2024; 14:65. [PMID: 38391984 PMCID: PMC10886492 DOI: 10.3390/bios14020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Field-effect transistor (FET)-based biosensors are powerful analytical tools for detecting trace-specific biomolecules in diverse sample matrices, especially in the realms of pandemics and infectious diseases. The primary concern in applying these biosensors is their stability, a factor directly impacting the accuracy and reliability of sensing over extended durations. The risk of biosensor degradation is substantial, potentially jeopardizing the sensitivity and selectivity and leading to inaccurate readings, including the possibility of false positives or negatives. This paper delves into the documented degradation of silicon nanobelt FET (NBFET) biosensors induced by buffer solutions. The results highlight a positive correlation between immersion time and the threshold voltage of NBFET devices. Secondary ion mass spectrometry analysis demonstrates a gradual increase in sodium and potassium ion concentrations within the silicon as immersion days progress. This outcome is ascribed to the nanobelt's exposure to the buffer solution during the biosensing period, enabling ion penetration from the buffer into the silicon. This study emphasizes the critical need to address buffer-solution-induced degradation to ensure the long-term stability and performance of FET-based biosensors in practical applications.
Collapse
Affiliation(s)
- Jung-Chih Lin
- Department of Integrated Chinese and Western Medicine, Chung Shan Medical University Hospital, and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Zhao-Yu Zhou
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan; (Z.-Y.Z.); (Y.-C.C.)
| | - Yi-Ching Cheng
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan; (Z.-Y.Z.); (Y.-C.C.)
| | - I-Nan Chang
- Department of Electronic Engineering, Feng Chia University, Taichung 40724, Taiwan;
| | - Chu-En Lin
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan; (Z.-Y.Z.); (Y.-C.C.)
| | - Chi-Chang Wu
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan; (Z.-Y.Z.); (Y.-C.C.)
| |
Collapse
|
6
|
Zhang H, Qiu Y, Osawa F, Itabashi M, Ohshima N, Kajisa T, Sakata T, Izumi T, Sone H. Estimation of the Depletion Layer Thickness in Silicon Nanowire-Based Biosensors from Attomolar-Level Biomolecular Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19892-19903. [PMID: 37046176 DOI: 10.1021/acsami.3c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Silicon nanowire (SiNW) biosensors have attracted a lot of attention due to their superior sensitivity. Recently, the dependence of biomolecule detection sensitivity on the nanowire (NW) width, number, and doping density has been partially investigated. However, the primary reason for achieving ultrahigh sensitivity has not been elucidated thus far. In this study, we designed and fabricated SiNW biosensors with different widths (10.8-155 nm) by integrating a complementary metal-oxide-semiconductor process and electron beam lithography. We aimed to investigate the detection limit of SiNW biosensors and reveal the critical effect of the 10-nm-scaled SiNW width on the detection sensitivity. The sensing performance was evaluated by detecting antiovalbumin immunoglobulin G (IgG) with various concentrations (from 6 aM to 600 nM). The initial thickness of the depletion region of the SiNW and the changes in the depletion region due to biomolecule binding were calculated. The basis of this calculation are the resistance change ratios as functions of IgG concentrations using SiNWs with different widths. The calculation results reveal that the proportion of the depletion region over the entire SiNW channel is the essential reason for high-sensitivity detection. Therefore, this study is crucial for an indepth understanding on how to maximize the sensitivity of SiNW biosensors.
Collapse
Affiliation(s)
- Hui Zhang
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Yawei Qiu
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Fumiya Osawa
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Meiko Itabashi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Noriyasu Ohshima
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Taira Kajisa
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Takashi Izumi
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Faculty of Health Care, Teikyo Heisei University, 2-51-4, Higashiikebukuro, Toshima-Ku, Tokyo 170-8445, Japan
| | - Hayato Sone
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
7
|
Azam T, Bukhari SH, Liaqat U, Miran W. Emerging Methods in Biosensing of Immunoglobin G-A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:676. [PMID: 36679468 PMCID: PMC9862834 DOI: 10.3390/s23020676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Human antibodies are produced due to the activation of immune system components upon exposure to an external agent or antigen. Human antibody G, or immunoglobin G (IgG), accounts for 75% of total serum antibody content. IgG controls several infections by eradicating disease-causing pathogens from the body through complementary interactions with toxins. Additionally, IgG is an important diagnostic tool for certain pathological conditions, such as autoimmune hepatitis, hepatitis B virus (HBV), chickenpox and MMR (measles, mumps, and rubella), and coronavirus-induced disease 19 (COVID-19). As an important biomarker, IgG has sparked interest in conducting research to produce robust, sensitive, selective, and economical biosensors for its detection. To date, researchers have used different strategies and explored various materials from macro- to nanoscale to be used in IgG biosensing. In this review, emerging biosensors for IgG detection have been reviewed along with their detection limits, especially electrochemical biosensors that, when coupled with nanomaterials, can help to achieve the characteristics of a reliable IgG biosensor. Furthermore, this review can assist scientists in developing strategies for future research not only for IgG biosensors but also for the development of other biosensing systems for diverse targets.
Collapse
Affiliation(s)
- Tehmina Azam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Syed Hassan Bukhari
- College of Computational Sciences and Natural Sciences, Minerva University, San Francisco, CA 94103, USA
| | - Usman Liaqat
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Waheed Miran
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Cheng Y, Gan X, Liu Z, Wang J, Xu J, Chen K, Yu L. Nanostripe-Confined Catalyst Formation for Uniform Growth of Ultrathin Silicon Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:121. [PMID: 36616032 PMCID: PMC9824257 DOI: 10.3390/nano13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Uniform growth of ultrathin silicon nanowire (SiNW) channels is the key to accomplishing reliable integration of various SiNW-based electronics, but remains a formidable challenge for catalytic synthesis, largely due to the lack of uniform size control of the leading metallic droplets. In this work, we explored a nanostripe-confined approach to produce highly uniform indium (In) catalyst droplets that enabled the uniform growth of an orderly SiNW array via an in-plane solid-liquid-solid (IPSLS) guided growth directed by simple step edges. It was found that the size dispersion of the In droplets could be reduced substantially from Dcatpl = 20 ± 96 nm on a planar surface to only Dcatns = 88 ± 13 nm when the width of the In nanostripe was narrowed to Wstr= 100 nm, which could be qualitatively explained in a confined diffusion and nucleation model. The improved droplet uniformity was then translated into a more uniform growth of ultrathin SiNWs, with diameter of only Dnw= 28 ± 4 nm, which has not been reported for single-edge guided IPSLS growth. These results lay a solid basis for the construction of advanced SiNW-derived field-effect transistors, sensors and display applications.
Collapse
|
9
|
Laksana PJB, Tsai LC, Lin CC, Chang-Liao KS, Moodley MK, Chen CD. Opto Field-Effect Transistors for Detecting Quercetin-Cu 2+ Complex. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197219. [PMID: 36236317 PMCID: PMC9573373 DOI: 10.3390/s22197219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 05/27/2023]
Abstract
In this study, we explored the potential of applying biosensors based on silicon nanowire field-effect transistors (bio-NWFETs) as molecular absorption sensors. Using quercetin and Copper (Cu2+) ion as an example, we demonstrated the use of an opto-FET approach for the detection of molecular interactions. We found that photons with wavelengths of 450 nm were absorbed by the molecular complex, with the absorbance level depending on the Cu2+ concentration. Quantitative detection of the molecular absorption of metal complexes was performed for Cu2+ concentrations ranging between 0.1 μM and 100 μM, in which the photon response increased linearly with the copper concentration under optimized bias parameters. Our opto-FET approach showed an improved absorbance compared with that of a commercial ultraviolet-visible spectrophotometry.
Collapse
Affiliation(s)
- Pradhana Jati Budhi Laksana
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Li-Chu Tsai
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chang-Cheng Lin
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Kuei-Shu Chang-Liao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mathew K. Moodley
- Discipline of Physics, School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Chii-Dong Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Arjmand T, Legallais M, Nguyen TTT, Serre P, Vallejo-Perez M, Morisot F, Salem B, Ternon C. Functional Devices from Bottom-Up Silicon Nanowires: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1043. [PMID: 35407161 PMCID: PMC9000537 DOI: 10.3390/nano12071043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
This paper summarizes some of the essential aspects for the fabrication of functional devices from bottom-up silicon nanowires. In a first part, the different ways of exploiting nanowires in functional devices, from single nanowires to large assemblies of nanowires such as nanonets (two-dimensional arrays of randomly oriented nanowires), are briefly reviewed. Subsequently, the main properties of nanowires are discussed followed by those of nanonets that benefit from the large numbers of nanowires involved. After describing the main techniques used for the growth of nanowires, in the context of functional device fabrication, the different techniques used for nanowire manipulation are largely presented as they constitute one of the first fundamental steps that allows the nanowire positioning necessary to start the integration process. The advantages and disadvantages of each of these manipulation techniques are discussed. Then, the main families of nanowire-based transistors are presented; their most common integration routes and the electrical performance of the resulting devices are also presented and compared in order to highlight the relevance of these different geometries. Because they can be bottlenecks, the key technological elements necessary for the integration of silicon nanowires are detailed: the sintering technique, the importance of surface and interface engineering, and the key role of silicidation for good device performance. Finally the main application areas for these silicon nanowire devices are reviewed.
Collapse
Affiliation(s)
- Tabassom Arjmand
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), IMEP-LAHC, F-38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LTM, F-38000 Grenoble, France;
| | - Maxime Legallais
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), IMEP-LAHC, F-38000 Grenoble, France
| | - Thi Thu Thuy Nguyen
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
| | - Pauline Serre
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LTM, F-38000 Grenoble, France;
| | - Monica Vallejo-Perez
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
| | - Fanny Morisot
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
| | - Bassem Salem
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LTM, F-38000 Grenoble, France;
| | - Céline Ternon
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
| |
Collapse
|
11
|
Nguyen-Le TA, Bartsch T, Wodtke R, Brandt F, Arndt C, Feldmann A, Sandoval Bojorquez DI, Roig AP, Ibarlucea B, Lee S, Baek CK, Cuniberti G, Bergmann R, Puentes-Cala E, Soto JA, Kurien BT, Bachmann M, Baraban L. Nanosensors in clinical development of CAR-T cell immunotherapy. Biosens Bioelectron 2022; 206:114124. [PMID: 35272215 DOI: 10.1016/j.bios.2022.114124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Immunotherapy using CAR-T cells is a new technological paradigm for cancer treatment. To avoid severe side effects and tumor escape variants observed for conventional CAR-T cells approach, adaptor CAR technologies are under development, where intermediate target modules redirect immune cells against cancer. In this work, silicon nanowire field-effect transistors are used to develop target modules for an optimized CAR-T cell operation. Focusing on a library of seven variants of E5B9 peptide that is used as CAR targeting epitope, we performed multiplexed binding tests using nanosensor chips. These peptides had been immobilized onto the sensor to compare the transistor signals upon titration with anti-La 5B9 antibodies. The correlation of binding affinities and sensor sensitivities enabled a selection of candidates for the interaction between CAR and target modules. An extremely low detection limit was observed for the sensor, down to femtomolar concentration, outperforming the current assay of the same purpose. Finally, the CAR T-cells redirection capability of selected peptides in target modules was proven successful in an in-vitro cytotoxicity assay. Our results open the perspective for the nanosensors to go beyond the early diagnostics in clinical cancer research towards developing and monitoring immunotherapeutic treatment, where the quantitative analysis with the standard techniques is limited.
Collapse
Affiliation(s)
- Trang Anh Nguyen-Le
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Tabea Bartsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Florian Brandt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Diana Isabel Sandoval Bojorquez
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Arnau Perez Roig
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Bergoi Ibarlucea
- Institute for Materials Science, Max Bergmann Center for Biomaterials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Seungho Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Chan-Ki Baek
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center for Biomaterials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Edinson Puentes-Cala
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta, 681011, Colombia
| | | | - Biji T Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307, Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, Germany. Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Dresden, Germany.
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany.
| |
Collapse
|
12
|
Molecular Recognition by Silicon Nanowire Field-Effect Transistor and Single-Molecule Force Spectroscopy. MICROMACHINES 2022; 13:mi13010097. [PMID: 35056261 PMCID: PMC8777874 DOI: 10.3390/mi13010097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Silicon nanowire (SiNW) field-effect transistors (FETs) have been developed as very sensitive and label-free biomolecular sensors. The detection principle operating in a SiNW biosensor is indirect. The biomolecules are detected by measuring the changes in the current through the transistor. Those changes are produced by the electrical field created by the biomolecule. Here, we have combined nanolithography, chemical functionalization, electrical measurements and molecular recognition methods to correlate the current measured by the SiNW transistor with the presence of specific molecular recognition events on the surface of the SiNW. Oxidation scanning probe lithography (o-SPL) was applied to fabricate sub-12 nm SiNW field-effect transistors. The devices were applied to detect very small concentrations of proteins (500 pM). Atomic force microscopy (AFM) single-molecule force spectroscopy (SMFS) experiments allowed the identification of the protein adsorption sites on the surface of the nanowire. We detected specific interactions between the biotin-functionalized AFM tip and individual avidin molecules adsorbed to the SiNW. The measurements confirmed that electrical current changes measured by the device were associated with the deposition of avidin molecules.
Collapse
|