1
|
Wu Y, Liu P, Feng C, Cao Q, Xu X, Liu Y, Li X, Zhu X, Zhang X. 3D printing calcium phosphate ceramics with high osteoinductivity through pore architecture optimization. Acta Biomater 2024; 185:111-125. [PMID: 39002921 DOI: 10.1016/j.actbio.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The osteoinductivity of 3D printed calcium phosphate (CaP) ceramics has a large gap compared with those prepared by conventional foaming methods, and improving the osteoinductivity of 3D printing CaP ceramics is crucial for successful application in bone regeneration. Pore architecture plays a critical role in osteoinductivity. In this study, CaP ceramics with a hexagonal close-packed (HCP) spherical pore structure were successfully fabricated using DLP printing technology. Additionally, octahedral (Octahedral), diamond (Diamond), and helical (Gyroid) structures were constructed with similar porosity and macropore diameter. CaP ceramics with the HCP structure exhibited higher compression strength (8.39 ± 1.82 MPa) and lower permeability (6.41 × 10-11 m2) compared to the Octahedral, Diamond, and Gyroid structures. In vitro cellular responses indicated that the macropore architecture strongly influenced the local growth rate of osteoblast-formed cell tissue; cells grew uniformly and formed circular rings in the HCP group. Furthermore, the HCP group promoted the expression of osteogenic genes and proteins more effectively than the other three groups. The outstanding osteoinductivity of the HCP group was confirmed in canine intramuscular implantation studies, where the new bone area reached up to 8.02 ± 1.94 % after a 10-week implantation. Additionally, the HCP group showed effective bone regeneration in repairing femoral condyle defects. Therefore, our findings suggest that 3D printed CaP bioceramics with an HCP structure promote osteoinductivity and can be considered as candidates for personalized precise treatment of bone defects in clinical applications. STATEMENT OF SIGNIFICANCE: 1. 3D printing BCP ceramics with high osteoinductivity were constructed through pore architecture optimization. 2. BCP ceramics with HCP structure exhibited relatively higher mechanical strength and lower permeability than those with Octahedral, Diamond and Gyroid structures. 3. BCP ceramics with HCP structure could promote the osteogenic differentiation of MC3T3-E1, and showed the superior in-vivo osteoinductivity and bone regeneration comparing with the other structures.
Collapse
Affiliation(s)
- Yonghao Wu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Puxin Liu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiujuan Xu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China
| | - Yunyi Liu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Wu L, Pei X, Dou Q, Su Z, Qin Y, Liu C, Zhao L, Tan Y, Chen Z, Fan Y, Zhang X, Zhou C. 3D Printed Calcium Phosphate Physiochemically Dual-Regulating Pro-Osteogenesis and Antiosteolysis for Enhancing Bone Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37007-37016. [PMID: 38953613 DOI: 10.1021/acsami.4c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Osteoblasts and osteoclasts are two of the most important types of cells in bone repair, and their bone-forming and bone-resorbing activities influence the process of bone repair. In this study, we proposed a physicochemical bidirectional regulation strategy via ration by physically utilizing hydroxyapatite nanopatterning to recruit and induce MSCs osteogenic differentiation and by chemically inhibiting osteolysis activity through the loaded zoledronate. The nanorod-like hydroxyapatite coating was fabricated via a modified hydrothermal process while the zoledronic acid was loaded through the chelation within the calcium ions. The fabrication of a hydroxyapatite/zoledronic acid composite biomaterial. This biomaterial promotes bone tissue regeneration by physically utilizing hydroxyapatite nanopatterning to recruit and induce MSCs osteogenic differentiation and by chemically inhibiting osteolysis activity through the loaded zoledronate. The nanorod-like hydroxyapatite coating was fabricated via a modified hydrothermal process while the zoledronic acid was loaded through the chelation within the calcium ions. The in vitro results tested on MSCs and RAW 246.7 indicated that the hydroxyapatite enhanced cells' physical sensing system, therefore enhancing the osteogenesis. At the same time the zoledronic acid inhibited osteolysis by downregulating the RANK-related genes. This research provides a promising strategy for enhancing bone regeneration and contributes to the field of orthopedic implants.
Collapse
Affiliation(s)
- Lina Wu
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xuan Pei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingyu Dou
- National Clinical Research Center for Geriatrics, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixuan Su
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yuxiang Qin
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Cai Liu
- Department of Orthopedic Surgery, The Affiliated Hospital of Panzhihua University, Panzhihua 617000, China
| | - Lianghu Zhao
- Department of Orthopedic Surgery, The Affiliated Hospital of Panzhihua University, Panzhihua 617000, China
| | - Yanfei Tan
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zi Chen
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Yujiang Fan
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Han W, Zhang R, Liu S, Zhang T, Yao X, Cao Y, Li J, Liu X, Li B. Recent Advances in Whiskers: Properties and Clinical Applications in Dentistry. Int J Nanomedicine 2024; 19:7071-7097. [PMID: 39045343 PMCID: PMC11265390 DOI: 10.2147/ijn.s471546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Whiskers are nanoscale, high-strength fibrous crystals with a wide range of potential applications in dentistry owing to their unique mechanical, thermal, electrical, and biological properties. They possess high strength, a high modulus of elasticity and good biocompatibility. Hence, adding these crystals to dental composites as reinforcement can considerably improve the mechanical properties and durability of restorations. Additionally, whiskers are involved in inducing the value-added differentiation of osteoblasts, odontogenic osteocytes, and pulp stem cells, and promoting the regeneration of alveolar bone, periodontal tissue, and pulp tissue. They can also enhance the mucosal barrier function, inhibit the proliferation of tumor cells, control inflammation, and aid in cancer prevention. This review comprehensively summarizes the classification, properties, growth mechanisms and preparation methods of whiskers and focuses on their application in dentistry. Due to their unique physicochemical properties, excellent biological properties, and nanoscale characteristics, whiskers show great potential for application in bone, periodontal, and pulp tissue regeneration. Additionally, they can be used to prevent and treat oral cancer and improve medical devices, thus making them a promising new material in dentistry.
Collapse
Affiliation(s)
- Wenze Han
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Shuzhi Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Tong Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Xuemin Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Yuxin Cao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Jiadi Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| |
Collapse
|
4
|
Diez-Escudero A, Espanol M, Ginebra MP. High-aspect-ratio nanostructured hydroxyapatite: towards new functionalities for a classical material. Chem Sci 2023; 15:55-76. [PMID: 38131070 PMCID: PMC10732134 DOI: 10.1039/d3sc05344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hydroxyapatite-based materials have been widely used in countless applications, such as bone regeneration, catalysis, air and water purification or protein separation. Recently, much interest has been given to controlling the aspect ratio of hydroxyapatite crystals from bulk samples. The ability to exert control over the aspect ratio may revolutionize the applications of these materials towards new functional materials. Controlling the shape, size and orientation of HA crystals allows obtaining high aspect ratio structures, improving several key properties of HA materials such as molecule adsorption, ion exchange, catalytic reactions, and even overcoming the well-known brittleness of ceramic materials. Regulating the morphogenesis of HA crystals to form elongated oriented fibres has led to flexible inorganic synthetic sponges, aerogels, membranes, papers, among others, with applications in sustainability, energy and catalysis, and especially in the biomedical field.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
5
|
Wang W, Liu P, Zhang B, Gui X, Pei X, Song P, Yu X, Zhang Z, Zhou C. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Int J Nanomedicine 2023; 18:5815-5830. [PMID: 37869064 PMCID: PMC10590137 DOI: 10.2147/ijn.s416098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano β-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results The FDM-printed PLA/nano β-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano β-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion The FDM-printed PLA/nano-β-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xuan Pei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ping Song
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xia Yu
- Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
- Department of Orthopedics, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Chen J, Gui X, Qiu T, Lv Y, Fan Y, Zhang X, Zhou C, Guo W. DLP 3D printing of high-resolution root scaffold with bionic bioactivity and biomechanics for personalized bio-root regeneration. BIOMATERIALS ADVANCES 2023; 151:213475. [PMID: 37267749 DOI: 10.1016/j.bioadv.2023.213475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Digital light projection (DLP) printing of hydroxyapatite (HAp) bioceramic provides a promising strategy for fabrication of complex personalized bio-tooth root scaffold with high-resolution. However, it is still a challenge to fabricate bionic bio-tooth root with satisfied bioactivity and biomechanics. This research studied the HAp-based bioceramic scaffold with bionic bioactivity and biomechanics for personalized bio-root regeneration. Compared to natural decellularized dentine (NDD) scaffolds with unitary shape and restricted mechanical properties, those DLP printing bio-tooth roots with natural size, high precision appearance, excellent structure, and a smooth surface were successfully manufactured, which met various shape and structure requirements for personalized bio-tooth regeneration. Moreover, the bioceramic sintering at 1250 °C enhanced the physicochemical properties of HAp and exhibited good elastic modulus (11.72 ± 0.53 GPa), which was almost twice of early NDD (4.76 ± 0.75 GPa). To further improve the surface activity of sintered biomimetic, the nano-HAw (nano-hydroxyapatite whiskers) coating deposited by hydrothermal treatment increased the mechanical properties and surface hydrophilicity, which indicated positive effects on dental follicle stem cells (DFSCs)' proliferation and enhanced the DFSCs osteoblastic differentiation in vitro. Subcutaneous transplantation in nude mice and in-situ transplantation in rat alveolar fossa proved that the nano-HAw-containing scaffold could promote the DFSCs differentiate into periodontal ligament-like enthesis formation. In conclusion, by combining the optimized sintering temperature and modified nano-HAw interface through hydrothermal treatment, the DLP-printing of HAp-based bioceramic with favorable bioactivity and biomechanics is a promising candidate for personalized bio-root regeneration.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Tao Qiu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Lv
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Zhou J, Xiong S, Liu M, Yang H, Wei P, Yi F, Ouyang M, Xi H, Long Z, Liu Y, Li J, Ding L, Xiong L. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol 2023; 11:1127162. [PMID: 37051275 PMCID: PMC10083331 DOI: 10.3389/fbioe.2023.1127162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
The number of patients with bone defects caused by various bone diseases is increasing yearly in the aging population, and people are paying increasing attention to bone tissue engineering research. Currently, the application of bone tissue engineering mainly focuses on promoting fracture healing by carrying cytokines. However, cytokines implanted into the body easily cause an immune response, and the cost is high; therefore, the clinical treatment effect is not outstanding. In recent years, some scholars have proposed the concept of tissue-induced biomaterials that can induce bone regeneration through a scaffold structure without adding cytokines. By optimizing the scaffold structure, the performance of tissue-engineered bone scaffolds is improved and the osteogenesis effect is promoted, which provides ideas for the design and improvement of tissue-engineered bones in the future. In this study, the current understanding of the bone tissue structure is summarized through the discussion of current bone tissue engineering, and the current research on micro-nano bionic structure scaffolds and their osteogenesis mechanism is analyzed and discussed.
Collapse
Affiliation(s)
- Jingyu Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shilang Xiong
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hao Yang
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Wei
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Yi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Min Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hanrui Xi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Zhisheng Long
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yayun Liu
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jingtang Li
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Linghua Ding
- Department of Orthopedics, Jinhua People’s Hospital, Jinhua, Zhejiang, China
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Long Xiong,
| |
Collapse
|
8
|
Zhang B, Xing F, Chen L, Zhou C, Gui X, Su Z, Fan S, Zhou Z, Jiang Q, Zhao L, Liu M, Fan Y, Zhang X. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration. BIOMATERIALS ADVANCES 2023; 145:213261. [PMID: 36577193 DOI: 10.1016/j.bioadv.2022.213261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Currently, various bioceramics have been widely used in bone regeneration. However, it remains a huge challenge to remote isolation bone regeneration, such as severed finger regeneration. The remote isolation bone tissue has a poor regenerative microenvironment that lacks enough blood and nutrition supply. It is very difficult to repair and regenerate. In this study, well-controlled multi-level porous 3D-printed calcium phosphate (CaP) bioceramic scaffolds with precision customized structures were fabricated by high-resolution digital light projection (DLP) printing technology for remote isolation bone regeneration. In vitro results demonstrated that optimizing material processing procedures could achieve multi-level control of 3D-printed CaP bioceramic scaffolds and enhance the osteoinduction ability of bioceramics effectively. In vivo results indicated that 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedure exhibited a promising ability of bone regeneration and osteoinduction in ectopic osteogenesis and in situ caudal vertebrae regeneration in beagles. This study provided a promising strategy based on 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedures for remote isolation bone regeneration, such as severed finger regeneration.
Collapse
Affiliation(s)
- Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zixuan Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Shiqi Fan
- Schools of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhigang Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Wang Y, Song P, Wu L, Su Z, Gui X, Gao C, Zhao H, Wang Y, Li Z, Cen Y, Pan B, Zhang Z, Zhou C. In situ photo-crosslinked adhesive hydrogel loaded with mesenchymal stem cell-derived extracellular vesicles promotes diabetic wound healing. J Mater Chem B 2023; 11:837-851. [PMID: 36594635 DOI: 10.1039/d2tb02371g] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The delayed healing of diabetic wounds is directly affected by the disturbance of wound microenvironment, resulting from persistent inflammation, insufficient angiogenesis, and impaired cell functions. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) showed considerable therapeutic potential in diabetic wound healing. However, the low retention rate of MSC-EVs at wound sites hampers their efficacy. For skin wounds exposed to the outer environment, using a hydrogel with tissue adhesiveness under a moist wound condition is a promising strategy for wound healing. In this study, we modified methacryloyl-modified gelatin (GelMA) hydrogel with catechol motifs of dopamine to fabricate a GelMA-dopamine hydrogel. EVs isolated from MSCs were applied in the synthesized GelMA-dopamine hydrogel to prepare a GelMA-dopamine-EV hydrogel. The results demonstrated that the newly formed GelMA-dopamine hydrogel possessed improved properties of softness, adhesiveness, and absorptive capacity, as well as high biocompatibility in the working concentration (15% w/v). In addition, MSC-EVs were verified to promote cell migration and angiogenesis in vitro. In the skin wound model of diabetic rats, the GelMA-dopamine-EV hydrogel exerted prominent wound healing efficacy estimated by collagen deposition, skin appendage regeneration, and the expression of IL-6, CD31, and TGF-β. In conclusion, this combination of MSC-EVs and the modified hydrogel not only accelerates wound closure but also promotes skin structure normalization by rescuing the homeostasis of the healing microenvironment of diabetic wounds, which provides a potential approach for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ping Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zixuan Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Canyu Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Hanxing Zhao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yudong Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
10
|
Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater 2022; 13:jfb13040187. [PMID: 36278657 PMCID: PMC9589993 DOI: 10.3390/jfb13040187] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient's families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. The biological performance of CaPs, as a determining factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures have demonstrated excellent ability in promoting bone regeneration. This review focuses on the relationships and interactions between the physicochemical/biological properties of CaP biomaterials and their species, sizes, and morphologies in bone regeneration, including synthesis strategies, structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This review will be helpful for scientists and engineers to further understand CaP-based biomaterials (CaPs), and be useful in developing new high-performance biomaterials for bone repair.
Collapse
|
11
|
Gu P, Xu Y, Liu Q, Wang Y, Li Z, Chen M, Mao R, Liang J, Zhang X, Fan Y, Sun Y. Tailorable 3DP Flexible Scaffolds with Porosification of Filaments Facilitate Cell Ingrowth and Biomineralized Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32914-32926. [PMID: 35829709 DOI: 10.1021/acsami.2c07649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Facilitating cell ingrowth and biomineralized deposition inside filaments of 3DP scaffolds are an ideal bone repair strategy. Here, 3D printed PLGA/HA scaffolds with hydroxyapatite content of 50% (P5H5) and 70% (P3H7) were prepared by optimizing 3D printing inks, which exhibited good tailorability and foldability to meet clinical maneuverability. The supercritical CO2 foaming technology further endowed the filaments of P5H5 with a richer interconnected pore structure (P5H5-C). The finite element and computational fluid dynamics simulation analysis indicated that the porosification could effectively reduce the stress concentration at the filament junction and improved the overall permeability of the scaffold. The results of in vitro experiments confirmed that P5H5-C promoted the adsorption of proteins on the surface and inside of filaments, accelerated the release of Ca and P ions, and significantly upregulated osteogenesis (Col I, ALP, and OPN)- and angiogenesis (VEGF)-related gene expression. Subcutaneous ectopic osteogenesis experiments in nude mice further verified that P5H5-C facilitated cell growth inside filaments and biomineralized deposition, as well as significantly upregulated the expression of osteogenesis- and angiogenesis-related genes (Col I, ALP, OCN, and VEGF) and protein secretion (ALP, RUNX2, and VEGF). The porosification of filaments by supercritical CO2 foaming provided a new strategy for accelerating osteogenesis of 3DP implants.
Collapse
Affiliation(s)
- Peiyang Gu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Quanying Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Zhulian Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Manyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Ruiqi Mao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
12
|
Thygesen T, Slots C, Jensen MB, Ditzel N, Kassem M, Langhorn L, Andersen MØ. Comparison of off-the-shelf β-tricalcium phosphate implants with novel resorbable 3D printed implants in mandible ramus of pigs. Bone 2022; 159:116370. [PMID: 35183809 DOI: 10.1016/j.bone.2022.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/16/2021] [Accepted: 02/12/2022] [Indexed: 11/24/2022]
Abstract
Facial reconstructive surgery has already implemented the use of 3D printed Patient Specific Implants derived from CAD/CAM-based technologies as an alternative to preformed bone graft substitutes. 3D-printed patient-specific implants derived from CAD/CAM-based technologies are used in facial reconstructive surgery as an alternative to preformed bone graft substitutes. However, to minimize the invasiveness and long-term adverse effects of surgical interventions, the implant needs to exhibit exact fitting, porosity, density, and volume and be made from resorbable materials that allow ingrowth and formation of new bone tissue. Therefore, we present this pilot study using 3D-printed implants consisting of pure β-TCP, produced using a novel technique that assures these properties. Eight pigs received 3D-printed truncated porous cone bone implants paired with either an off-the-shelve a chronOS (DePuy Synthes chronOS Vivify Preforms) preformed block (n = 4) or a no-implant void (n = 4) in a surgically created defect on each side of the angle of the mandible. After 6 months, CT data showed that all 3D-printed implants performed as well as did the off-the-shelve implants, with predicted osteointegration medially and laterally and with minimal gapping between the implants and native bone. The CT findings were confirmed by histological analysis that revealed that the 3D-printed implants together with the off-the-shelve implants were almost complete resorbed. Much of the resorbed volume had been replaced by vascularized compact bone, and fusion between newly formed bone and native bone was observed in all implants, further indicating that the 3D-printed implants and off-the-shelve implants performed equally well. Only soft tissue developed in the void control sites. Further studies are needed to confirm these initial findings.
Collapse
Affiliation(s)
- T Thygesen
- Clinic for Oral and Maxillofacial Surgery, Vestre Stationsvej 15, 5000 Odense C, Denmark
| | - C Slots
- Ossiform ApS, Oslogade 1, 5000 Odense C, Denmark
| | - M B Jensen
- Ossiform ApS, Oslogade 1, 5000 Odense C, Denmark.
| | - N Ditzel
- Clinical Institute, Molecular Endocrinology Laboratory, J. B. Winsløws Vej 25, 2nd floor, 5000 Odense C, Denmark
| | - M Kassem
- Clinical Institute, Molecular Endocrinology Laboratory, J. B. Winsløws Vej 25, 2nd floor, 5000 Odense C, Denmark
| | - L Langhorn
- Biomedical Laboratory, University of Southern Denmark, J. B. Winsløwsvej 25, 5000 Odense C, Denmark
| | - M Ø Andersen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
13
|
Daneshmandi L, Holt BD, Arnold AM, Laurencin CT, Sydlik SA. Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Sci Rep 2022; 12:6960. [PMID: 35484292 PMCID: PMC9050648 DOI: 10.1038/s41598-022-10603-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
Bone regenerative engineering could replace autografts; however, no synthetic material fulfills all design criteria. Nanocarbons incorporated into three-dimensional printed (3DP) matrices can improve properties, but incorporation is constrained to low wt%. Further, unmodified nanocarbons have limited osteogenic potential. Functionalization to calcium phosphate graphene (CaPG) imparts osteoinductivity and osteoconductivity, but loading into matrices remained limited. This work presents ultra-high content (90%), 3DP-CaPG matrices. 3DP-CaPG matrices are highly porous (95%), moderately stiff (3 MPa), and mechanically robust. In vitro, they are cytocompatible and induce osteogenic differentiation of human mesenchymal stem cells (hMSCs), indicated by alkaline phosphatase, mineralization, and COL1α1 expression. In vivo, bone regeneration was studied using a transgenic fluorescent-reporter mouse non-union calvarial defect model. 3DP-CaPG stimulates cellular ingrowth, retains donor cells, and induces osteogenic differentiation. Histology shows TRAP staining around struts, suggesting potential osteoclast activity. Apparent resorption of 3DP-CaPG was observed and presented no toxicity. 3DP-CaPG represents an advancement towards a synthetic bone regeneration matrix.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Brian D Holt
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Anne M Arnold
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA.
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA.
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Yang Z, Xie L, Zhang B, Zhang G, Huo F, Zhou C, Liang X, Fan Y, Tian W, Tan Y. Preparation of BMP-2/PDA-BCP Bioceramic Scaffold by DLP 3D Printing and its Ability for Inducing Continuous Bone Formation. Front Bioeng Biotechnol 2022; 10:854693. [PMID: 35464724 PMCID: PMC9019734 DOI: 10.3389/fbioe.2022.854693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Digital light processing (DLP)-based 3D printing is suitable to fabricate bone scaffolds with small size and high precision. However, the published literature mainly deals with the fabrication procedure and parameters of DLP printed bioceramic scaffold, but lacks the subsequent systematic biological evaluations for bone regeneration application. In this work, a biphasic calcium phosphate (BCP) macroporous scaffold was constructed by DLP-based 3D printing technique. Furthermore, bone morphogenetic protein-2 (BMP-2) was facilely incorporated into this scaffold through a facile polydopamine (PDA) modification process. The resultant scaffold presents an interconnected porous structure with pore size of ∼570 μm, compressive strength (∼3.6 MPa), and the self-assembly Ca-P/PDA nanocoating exhibited excellent sustained-release property for BMP-2. Notably, this BMP-2/PDA-BCP scaffold presents favorable effects on the adhesion, proliferation, osteogenic differentiation, and mineralization of bone marrow stromal cells (BMSCs). Furthermore, in vivo experiments conducted on rats demonstrated that the scaffolds could induce cell layer aggregation adjacent to the scaffolds and continuous new bone generation within the scaffold. Collectively, this work demonstrated that the BMP-2/PDA-BCP scaffold is of immense potential to treat small craniofacial bone defects in demand of high accuracy.
Collapse
Affiliation(s)
- Ziyang Yang
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Gang Zhang
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xi Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yinghui Tan
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
[Research progress of in-situ three dimensional bio-printing technology for repairing bone and cartilage injuries]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:487-494. [PMID: 35426290 PMCID: PMC9011084 DOI: 10.7507/1002-1892.202111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the research progress of in-situ three dimensional (3D) bio-printing technology in the repair of bone and cartilage injuries. METHODS Literature on the application of in-situ 3D bio-printing technology to repair bone and cartilage injuries at home and abroad in recent years was reviewed, analyzed, and summarized. RESULTS As a new tissue engineering technology, in-situ 3D bio-printing technology is mainly applied to repair bone, cartilage, and skin tissue injuries. By combining biomaterials, bioactive substances, and cells, tissue is printed directly at the site of injury or defect. At present, the research on the technology mainly focuses on printing mode, bio-ink, and printing technology; the application research in the field of bone and cartilage mainly focuses on pre-vascularization, adjusting the composition of bio-ink, improving scaffold structure, printing technology, loading drugs, cells, and bioactive factors, so as to promote tissue injury repair. CONCLUSION Multiple animal experiments have confirmed that in-situ 3D bio-printing technology can construct bone and cartilage tissue grafts in a real-time, rapid, and minimally invasive manner. In the future, it is necessary to continue to develop bio-inks suitable for specific tissue grafts, as well as combine with robotics, fusion imaging, and computer-aided medicine to improve printing efficiency.
Collapse
|
16
|
Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol 2022; 208:400-408. [PMID: 35248609 DOI: 10.1016/j.ijbiomac.2022.03.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023]
Abstract
Human understanding of skin is constantly ongoing. Great progress has been made in skin repair, wound dressing regeneration biomaterials research in recent years. This review introduced the clinical research and guiding principles of skin repair, wound dressing biomaterials at home and abroad, introduced the classification of various skin repair and wound dressing, listed the composition and performance of different dressing biomaterials, including traditional, natural, synthetic, tissue-engineered dressing materials were extensively reviewed. The biological molecular structures and biological function characteristics of different dressing biomaterials are comprehensively reviewed. Collagen, chitosan, alginate hydrogels et al. as the most popular biological macromolecules in skin repair and wound dressing applications were reviewed. The future development direction is also prospected. This paper reviews the research progress of advanced functional skin repair and wound dressing, which provides a reference for the modifications and applications of wound dressings.
Collapse
|
17
|
Diogo GS, Marques CF, Freitas-Ribeiro S, Sotelo CG, Pérez-Martin RI, Pirraco RP, Reis RL, Silva TH. Mineralized collagen as a bioactive ink to support encapsulation of human adipose stem cells: A step towards the future of bone regeneration. BIOMATERIALS ADVANCES 2022; 133:112600. [PMID: 35525763 DOI: 10.1016/j.msec.2021.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Bioprinting - printing with incorporated living cells - has earned special attention on tissue engineering approaches, aiming to closer reproduce the 3D microenvironment of the target tissue. However, it raises extra complexity related to the need to use cell-friendly printing conditions that still comply with material printing fidelity. Inspired by the composite nano structural organization of mineralized tissues, this work reports the efficiency of the chemical approach followed to in situ mineralize blue shark skin collagen, at a nano scale level, to ultimately produce stable inks. The influence of initial cellular density was evaluated by assessing three different concentrations (2.5, 5 and 7.5 × 106 cells·ml-1) of human adipose stem cells (hASC), with the higher density of encapsulated cells presenting improved viability in a long culture term. Immunodetection of osteogenic-related markers, like RUNX2 and osteopontin, 21 days after cell culture in basal conditions confirmed the potential of the ink to be applied for osteogenic purposes, which may be associated with the success of the cell-to-ink interaction and the Ca2+ ions released from the co-precipitated hydroxyapatite. A combination of mineralized shark collagen, alginate and hASC is thus proposed as a bioactive bioink with potential properties for regeneration of bone tissue.
Collapse
Affiliation(s)
- Gabriela S Diogo
- 3Bs' Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina F Marques
- 3Bs' Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Freitas-Ribeiro
- 3Bs' Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carmen G Sotelo
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | | | - Rogério P Pirraco
- 3Bs' Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs' Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3Bs' Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
18
|
Zhang Z, Li Y, Zhang T, Yang X, Fan K, Wang D, Li S, Hu Y, Fu W. Titanium implants modified by laser microtexturing enhance the bioactivity of gastric epithelial cells and fibroblast cells. J Appl Biomater Funct Mater 2021; 19:22808000211064951. [PMID: 34905988 DOI: 10.1177/22808000211064951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The clinical application of anastomotic instruments improves the efficiency of the digestive tract surgery. However, the stapler with titanium nails implanted is still controversial in terms of anastomotic complications, and further improvement and optimization are needed. The purpose of this study was to explore the optimal microtextured parameters that could enhance the bioactivity of titanium implants in vitro. Laser microtexturing technology was used to construct the groove-type microstructural surfaces with different parameters, and human gastric mucosal epithelial cells (GES-1 cells) and mouse fibroblasts (3T3 cells) were cultured on the surface of the titanium plates in vitro. The data of cell adhesion, cell proliferation and cell activity were obtained and statistically analyzed. The textured titanium plates meet the expected design. GES-1 and 3T3 cell adhesion were better in the surface of titanium plates in microstructural group than that in the polished group. GES-1 and 3T3 cells also showed higher proliferative activity in the microstructural group compared with the polished group. The laser textured titanium plates have good groove-type microstructure, which increase the surface roughness, change the surface wettability, promote the adhesion, proliferating and orderly growth of GES-1 and 3T3 cells, and show good biological properties.
Collapse
Affiliation(s)
- Zhaoxiong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yuanchun Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Ting Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xiaoyang Yang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, People's Republic of China
| | - Kaihu Fan
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Daohan Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Shuliang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, Shandong, People's Republic of China.,Department of Gastrointestinal Surgery, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, Shandong, People's Republic of China
| | - Yahui Hu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, People's Republic of China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
19
|
Yu Y, Li X, Li J, Li D, Wang Q, Teng W. Dopamine-assisted co-deposition of hydroxyapatite-functionalised nanoparticles of polydopamine on implant surfaces to promote osteogenesis in environments with high ROS levels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112473. [PMID: 34857259 DOI: 10.1016/j.msec.2021.112473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/18/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Environments with high reactive oxygen species (ROS) levels, which are common in patients with diseases such as diabetes, periodontitis, and osteoporosis, impair the osseointegration of implants. To address this issue, by using a one-pot dopamine-assisted co-deposition method, we constructed a three-dimensional coating of hydroxyapatite-functionalised nanoparticles of polydopamine (HA/nPDAs) on implant surfaces, where polydopamine is designed to protect cells via scavenging excessive ROS and HA facilitates osteogenesis. First, nanoparticles of polydopamine (nPDAs) were prepared by self-polymerization and assembly of dopamine under alkaline conditions, and HA/nPDAs were obtained by incubating nPDAs in simulated body fluid (SBF) due to metal chelation and ionic interactions triggered by the catechol moieties of PDA. Thereafter, HA/nPDAs with thickness of ~4 μm were constructed on titanium surfaces by immersing titanium discs in a weak alkaline solution of HA/nPDAs and dopamine through interface interactions driven by catechol chemistry. The properties of coatings (e.g., thickness, composition, hydrophilia and morphology) can be controlled by preparation conditions such as mineralization time and reactant concentration. The coatings display efficient ROS-scavenging ability, promote cell proliferation, and upregulate the activity of alkaline phosphatase and the expression of osteogenesis-related genes in environments with high or normal ROS levels, demonstrating the great promise of such coatings for osseointegration promotion, especially in the state of high ROS in diseases. This study provides a facile, efficient, mild, and universal strategy in engineering functional surfaces on any substrates for diversified applications by simple variation of co-deposited components, through taking advantages of versatile catechol chemistry and nanoparticles with stereo structure and great specific surface area.
Collapse
Affiliation(s)
- Yilin Yu
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xiaolei Li
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jiarun Li
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Dongying Li
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Wei Teng
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
20
|
Nilsson Hall G, Rutten I, Lammertyn J, Eberhardt J, Geris L, Luyten FP, Papantoniou I. Cartilaginous spheroid-assembly design considerations for endochondral ossification: towards robotic-driven biomanufacturing. Biofabrication 2021; 13. [PMID: 34450613 DOI: 10.1088/1758-5090/ac2208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Spheroids have become essential building blocks for biofabrication of functional tissues. Spheroid formats allow high cell-densities to be efficiently engineered into tissue structures closely resembling the native tissues. In this work, we explore the assembly capacity of cartilaginous spheroids (d∼ 150µm) in the context of endochondral bone formation. The fusion capacity of spheroids at various degrees of differentiation was investigated and showed decreased kinetics as well as remodeling capacity with increased spheroid maturity. Subsequently, design considerations regarding the dimensions of engineered spheroid-based cartilaginous mesotissues were explored for the corresponding time points, defining critical dimensions for these type of tissues as they progressively mature. Next, mesotissue assemblies were implanted subcutaneously in order to investigate the influence of spheroid fusion parameters on endochondral ossification. Moreover, as a step towards industrialization, we demonstrated a novel automated image-guided robotics process, based on targeting and registering single-spheroids, covering the range of spheroid and mesotissue dimensions investigated in this work. This work highlights a robust and automated high-precision biomanufacturing roadmap for producing spheroid-based implants for bone regeneration.
Collapse
Affiliation(s)
- Gabriella Nilsson Hall
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
| | - Iene Rutten
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001 Leuven, Belgium
| | | | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,GIGA in silico medicine, Université de Liège, Avenue de l'Hôpital 11-BAT 34, 4000 Liège 1, Belgium.,Biomechanics Section, KU Leuven, Celestijnenlaan 300C, PB 2419, 3001 Leuven, Belgium
| | - Frank P Luyten
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou 26504, Platani, Patras, Greece
| |
Collapse
|
21
|
Xu S, Zhang H, Li X, Zhang X, Liu H, Xiong Y, Gao R, Yu S. Fabrication and biological evaluation of porous β-TCP bioceramics produced using digital light processing. Proc Inst Mech Eng H 2021; 236:286-294. [PMID: 34479452 DOI: 10.1177/09544119211041186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beta-tricalcium phosphate (β-TCP) refers to one ideal bone repair substance with good biocompatibility and osteogenicity. A digital light processing (DLP)-system used in this study creates bioceramic green part by stacking up layers of photocurable tricalcium phosphate-filled slurry with various β-TCP weight fractions. Results show that the sintering shrinkage is anisotropic and the shrinkage vertically reaches over that horizontally. The obtained porous β-TCP parts have both macroporous outer structure and microporous inner structure, the macropore size is 400-600 μm and the micropore size is 500-1500 nm. The mechanical tests show that the porous β-TCP bioceramic's compressive strength reaches 16.53 MPa. The cell culture confirmed that the porous β-TCP bioceramic is capable of achieving the effective attaching, growing, and proliferating pertained to mouse osteoblast cells. This study identified considerable blood vessels and significant ectopic bone forming obviously based on the histologically-related assessment when implanting to rabbit femoral condyle deficiency for 3 months. Thus, under high bioactive property and osteoinductivity, and large precision and mechanical strength that can be adjusted, the DLP printed porous β-TCP ceramics is capable of being promising for special uses of bones repairing.
Collapse
Affiliation(s)
- SongFeng Xu
- National Cancer Center/National Cancer Clinical Medical Research Center/Chinese Academy of Medical Sciences, Department of Orthopedics, Peking Union Medical College, Beijing, China.,Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Hang Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Li
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - XinXin Zhang
- National Cancer Center/National Cancer Clinical Medical Research Center/Chinese Academy of Medical Sciences, Department of Orthopedics, Peking Union Medical College, Beijing, China
| | - HuanMei Liu
- National Cancer Center/National Cancer Clinical Medical Research Center/Chinese Academy of Medical Sciences, Department of Orthopedics, Peking Union Medical College, Beijing, China
| | - Yinze Xiong
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - RuiNing Gao
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - ShengJi Yu
- National Cancer Center/National Cancer Clinical Medical Research Center/Chinese Academy of Medical Sciences, Department of Orthopedics, Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Deng C, Yang J, He H, Ma Z, Wang W, Zhang Y, Li T, He C, Wang J. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomater Sci 2021; 9:4891-4903. [PMID: 34047307 DOI: 10.1039/d1bm00535a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Repair of osteochondral defects is still a challenge, especially the regeneration of hyaline cartilage. Parathyroid hormone (PTH) can inhibit the hypertrophy of chondrocytes to maintain the phenotype of hyaline cartilage. Here, we aimed to construct a bio-printed biphasic scaffold with a mechanical gradient based on dual modification of silk fibroin (SF) for the integrated repair of osteochondral defects. Briefly, SF was grafted with PTH (SF-PTH) and covalently immobilized with methacrylic anhydride (SF-MA), respectively. Next, gelatin methacryloyl (GM) mixed with SF-PTH or SF-MA was used as a bio-ink for articular cartilage and subchondral bone regeneration. Finally, the GM + SF-PTH/GM + SF-MA osteochondral biphasic scaffold was constructed using 3D bioprinting technology, and implanted in a rabbit osteochondral defect model. In this study, the SF-PTH bio-ink was synthesized for the first time. In vitro results indicated that the GM + SF-MA bio-ink had good mechanical properties, while the GM + SF-PTH bio-ink inhibited the hypertrophy of chondrocytes and was beneficial for the production of hyaline cartilage extracellular matrix. Importantly, an integrated GM + SF-PTH/GM + SF-MA biphasic scaffold with a mechanical gradient was successfully constructed. The results in vivo demonstrated that the GM + SF-PTH/GM + SF-MA scaffold could promote the regeneration of osteochondral defects and maintain the phenotype of hyaline cartilage to a large extent. Collectively, our results indicate that the integrated GM + SF-PTH/GM + SF-MA biphasic scaffold constructed by 3D bioprinting is expected to become a new strategy for the treatment of osteochondral defects.
Collapse
Affiliation(s)
- Changxu Deng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Jin Yang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999, People North Road, Shanghai 201620, China.
| | - Hongtao He
- The Third Ward of Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian 116000, Liaoning Province, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Wenhao Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Tao Li
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Chuanglong He
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999, People North Road, Shanghai 201620, China.
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China. and Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1956 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
23
|
Wang D, Zhang P, Mei X, Chen Z. Repair calvarial defect of osteoporotic rats by berberine functionalized porous calcium phosphate scaffold. Regen Biomater 2021; 8:rbab022. [PMID: 34211732 PMCID: PMC8240619 DOI: 10.1093/rb/rbab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
In this article, we propose a simple scheme of using berberine (BBR) to modify porous calcium phosphate ceramics (named PCPC). These BBR molecules regulate the crystallization of hydroxyapatite nanorods on PCPC. We found that these nanorods and the adsorbed BBR changed the interface micro-environment of PCPC by SEM images. The microenvironment of PCPC surface is essential for promoting BMSCs’ proliferation and differentiation. These results demonstrated that PCPC/BBR markedly improved the bone regeneration of osteoporosis rats. Moreover, PCPC/BBR had significantly increased the expression levels of ALP, osteocalcin and bone morphogenetic protein2 and RUNX2 in BMSCs originated from osteoporosis rats.
Collapse
Affiliation(s)
- Dahao Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Peng Zhang
- Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou 121001, China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
24
|
Ma Z, Li B, Tang R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Benke Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
25
|
Zhang Z, Xu R, Yang Y, Liang C, Yu X, Liu Y, Wang T, Yu Y, Deng F. Micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and secretion to improve osseointegration. J Nanobiotechnology 2021; 19:78. [PMID: 33741002 PMCID: PMC7980346 DOI: 10.1186/s12951-021-00826-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
Background Micro/nano-textured hierarchical titanium topography is more bioactive and biomimetic than smooth, micro-textured or nano-textured titanium topographies. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs play important roles in the osseointegration of titanium implants, but the effects and mechanisms of titanium topography on BMSCs-derived exosome secretion are still unclear. This study determined whether the secretion behavior of exosomes derived from BMSCs is differently affected by different titanium topographies both in vitro and in vivo. Results We found that both micro/nanonet-textured hierarchical titanium topography and micro/nanotube-textured hierarchical titanium topography showed favorable roughness and hydrophilicity. These two micro/nano-textured hierarchical titanium topographies enhanced the spreading areas of BMSCs on the titanium surface with stronger promotion of BMSCs proliferation in vitro. Compared to micro-textured titanium topography, micro/nano-textured hierarchical titanium topography significantly enhanced osseointegration in vivo and promoted BMSCs to synthesize and transport exosomes and then release these exosomes into the extracellular environment both in vitro and in vivo. Moreover, micro/nanonet-textured hierarchical titanium topography promoted exosome secretion by upregulating RAB27B and SMPD3 gene expression and micro/nanotube-textured hierarchical titanium topography promoted exosome secretion due to the strongest enhancement in cell proliferation. Conclusions These findings provide evidence that micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and extracellular secretion for enhanced osseointegration. Our findings also highlight that the optimized titanium topography can increase exosome secretion from BMSCs, which may promote osseointegration of titanium implants. ![]()
Collapse
Affiliation(s)
- Zhengchuan Zhang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Ruogu Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yang Yang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Chaoan Liang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yun Liu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Tianlu Wang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yi Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.
| |
Collapse
|
26
|
Sun S, Jiao Z, Wang Y, Wu Z, Wang H, Ji Q, Liu Y, Wang Z, Zhang P. Porous polyetheretherketone microcarriers fabricated via hydroxylation together with cell-derived mineralized extracellular matrix coatings promote cell expansion and bone regeneration. Regen Biomater 2021; 8:rbab013. [PMID: 33763233 PMCID: PMC7975764 DOI: 10.1093/rb/rbab013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Porous microcarriers have aroused increasing attention recently by facilitating oxygen and nutrient transfer, supporting cell attachment and growth with sufficient cell seeding density. In this study, porous polyetheretherketone (PEEK) microcarriers coated with mineralized extracellular matrix (mECM), known for their chemical, mechanical and biological superiority, were developed for orthopedic applications. Porous PEEK microcarriers were derived from smooth microcarriers using a simple wet-chemistry strategy involving the reduction of carbonyl groups. This treatment simultaneously modified surface topology and chemical composition. Furthermore, the microstructure, protein absorption, cytotoxicity and bioactivity of the obtained porous microcarriers were investigated. The deposition of mECM through repeated recellularization and decellularization on the surface of porous MCs further promoted cell proliferation and osteogenic activity. Additionally, the mECM coated porous microcarriers exhibited excellent bone regeneration in a rat calvarial defect repair model in vivo, suggesting huge potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Haowei Wang
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Qingming Ji
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yi Liu
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
27
|
Zhou C, Wang K, Sun Y, Wang Q, Jiang Q, Liang J, Pei X, Zhang B, Fan Y, Zhang X. Biofabrication (3D Bioprinting) Laboratory at Sichuan University. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00115-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|