1
|
Shen Y, Zhang Y, Jiang Y, Cheng H, Wang B, Wang H. Membrane processes enhanced by various forms of physical energy: A systematic review on mechanisms, implementation, application and energy efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167268. [PMID: 37748609 DOI: 10.1016/j.scitotenv.2023.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Membrane technologies in water and wastewater treatment have been eagerly pursued over the past decades, yet membrane fouling remains the major bottleneck to overcome. Membrane fouling control methods which couple membrane processes with online in situ application of external physical energy input (EPEI) are getting closer and closer to reality, thanks to recent advances in novel materials and energy deliverance methods. In this review, we summarized recent studies on membrane fouling control techniques that depend on (i) electric field, (ii) acoustic field, (iii) magnetic field, and (iv) photo-irradiation (mostly ultraviolet or visible light). Mechanisms of each energy input were first reported, which defines the applicability of these methods to certain wastewater matrices. Then, means of implementation were discussed to evaluate the compatibility of these fouling control methods with established membrane techniques. After that, preferred applications of each energy input to different foulant types and membrane processes in the experiment reports were summarized, along with a discussion on the trends and knowledge gaps of such fouling control research. Next, specific energy consumption in membrane fouling control and flux enhancement was estimated and compared, based on the experimental results reported in the literature. Lastly, strength and weakness of these methods and future perspectives were presented as open questions.
Collapse
Affiliation(s)
- Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yichong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yulian Jiang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibo Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Banglong Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Zhang Y, Sun T, Zhang D, Sun S, Liu J, Li B, Shi Z. The Preparation of Superhydrophobic Polylactic Acid Membrane with Adjustable Pore Size by Freeze Solidification Phase Separation Method for Oil-Water Separation. Molecules 2023; 28:5590. [PMID: 37513463 PMCID: PMC10384457 DOI: 10.3390/molecules28145590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
An environmentally friendly pore size-controlled, superhydrophobic polylactic acid (PLA) membrane was successfully prepared by a simpler freeze solidification phase separation method (FSPS) and solution impregnation, which has application prospects in the field of oil-water separation. The pore size and structure of the membrane were adjusted by different solvent ratios and solution impregnation ratios. The PLA-FSPS membrane after solution impregnation (S-PLA-FSPS) had the characteristics of uniform pore size, superhydrophobicity and super lipophilicity, its surface roughness Ra was 338 nm, and the contact angle to water was 151°. The S-PLA-FSPS membrane was used for the oil-water separation. The membrane oil flux reached 16,084 L·m-2·h-1, and the water separation efficiency was 99.7%, which was much higher than that of other oil-water separation materials. In addition, the S-PLA-FSPS membrane could also be applied for the adsorption and removal of oil slicks and underwater heavy oil. The S-PLA-FSPS membrane has great application potential in the field of oil-water separation.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Tianyi Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dashuai Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Shishu Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Jinrui Liu
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Bangsen Li
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zaifeng Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
3
|
Fan W, Zhu S, Nie J, Du B. Thermo-Sensitive Microgel/Poly(ether sulfone) Composited Ultrafiltration Membranes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5149. [PMID: 37512423 PMCID: PMC10385273 DOI: 10.3390/ma16145149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Thermo-sensitive microgels known as PMO-MGs were synthesized via surfactant free emulsion polymerization, with poly(ethylene glycol) methacrylate (OEGMA475) and 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) used as the monomers and N, N-methylene-bis-acrylamide used as the crosslinker. PMO-MGs are spherical in shape and have an average diameter of 323 ± 12 nm, as determined via transmission electron microscopy. PMO-MGs/poly (ether sulfone) (PES) composited ultrafiltration membranes were then successfully prepared via the non-solvent-induced phase separation (NIPS) method using a PMO-MG and PES mixed solution as the casting solution. The obtained membranes were systematically characterized via combined X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and contact angle goniometer techniques. It was found that the presence of PMO-MGs significantly improved the surface hydrophilicity and antifouling performance of the obtained membranes and the PMO-MGs mainly located on the channel surface of the membranes. At 20 °C, the pure water flux increased from 217.6 L·m-2·h-1 for pure PES membrane (M00) to 369.7 L·m-2·h-1 for PMO-MGs/PES composited membrane (M20) fabricated using the casting solution with 20-weight by percentage microgels. The incorporation of PMO-MGs also gave the composited membranes a thermo-sensitive character. When the temperature increased from 20 to 45 °C, the pure water flux of M20 membrane was enhanced from 369.7 to 618.7 L·m-2·h-1.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaoxiong Zhu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Zulfi A, Hartati S, Nur’aini S, Noviyanto A, Nasir M. Electrospun Nanofibers from Waste Polyvinyl Chloride Loaded Silver and Titanium Dioxide for Water Treatment Applications. ACS OMEGA 2023; 8:23622-23632. [PMID: 37426230 PMCID: PMC10324079 DOI: 10.1021/acsomega.3c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023]
Abstract
The electrospun nanofiber membrane from polyvinyl chloride (PVC) waste for water treatment applications has been successfully produced. The PVC precursor solution was prepared by dissolving the PVC waste in DMAc solvent, and a centrifuge was used to separate undissolved materials from the precursor solution. Ag and TiO2 were added to the precursor solution before the electrospinning process. We studied the fabricated PVC membranes using SEM, EDS, XRF, XRD, and FTIR to study the fiber and membrane properties. The SEM images depicted that Ag and TiO2 addition has changed the morphology and size of fibers. The EDS images and XRF spectra confirmed the presence of Ag and TiO2 on the nanofiber membrane. The XRD spectra showed the amorphous structure of all membranes. The FTIR result indicated that the solvent completely evaporated throughout the spinning process. The fabricated PVC@Ag/TiO2 nanofiber membrane showed the photocatalytic degradation of dyes under visible light. The filtration test on the membrane PVC and PVC@Ag/TiO2 depicted that the presence of Ag and TiO2 affected the flux and separation factor of the membrane.
Collapse
Affiliation(s)
- Akmal Zulfi
- Research
Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Komplek BRIN Cisitu, Bandung 40135, Indonesia
| | - Sri Hartati
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Syarifa Nur’aini
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Alfian Noviyanto
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
- Department
of Mechanical Engineering, Mercu Buana University, Jl. Meruya Selatan, Kebun Jeruk, Jakarta 11650, Indonesia
| | - Muhamad Nasir
- Research
Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Komplek BRIN Cisitu, Bandung 40135, Indonesia
| |
Collapse
|
5
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Li D, Xu C, Huang J, Guo Z. Janus Fabric with Asymmetric Wettability for Switchable Emulsion Separation and Controllable Droplets with Low Friction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1320-1329. [PMID: 36626239 DOI: 10.1021/acs.langmuir.2c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Superwetting surfaces have recently attracted extensive attention in oil-water emulsion separation and droplet manipulations, which are widely used in various situations ranging from wastewater treatment, to flexible electronics, to biochemical diagnosis. However, it still remains challenging to obtain asymmetric materials with high efficiency during oil-water separation. Meanwhile, excellent robustness of the superhydrophobic surface is of significance but retards the mobility of droplets due to increased lateral adhesion of small spacing between solid protrusions. Herein, a facile approach is demonstrated to obtain the excellent robustness of Janus fabrics with asymmetric wettability. As for one side of water-in-oil emulsion separation, mimicking the soft earthworm with periodically wrinkled skin, an adaptive superhydrophobic fabric was fabricated by wrapping soft wrinkled poly(dimethylsiloxane) (PDMS) polymer with a cross-linking structure on woven fabric fibers induced by Ar plasma treatment. In addition, inspired by the desert beetle's structure but with reversed wettability, the other side of the Janus fabric was constructed for treating emulsion of oil-in-water. In addition, the underwater superoleophobic surface consisting of magnetically responsive PDMS microcilia with slippery heads, which shows robustness against pH, improved water drop mobility and lowered the resistance of fluid friction similar to the intrinsic hydrophobic Salvinia molesta with additional slippery performance. Hence, we propose a novel and easy approach that optimizes enhanced emulsion separation and reduced fluid drag properties simultaneously, which actively broadens their widespread applications.
Collapse
Affiliation(s)
- Deke Li
- School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou730050, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| |
Collapse
|
7
|
Zhang J, Qu W, Li X, Wang Z. Surface engineering of filter membranes with hydrogels for oil-in-water emulsion separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Wang D, Gao Y, Gao S, Huang H, Min F, Li Y, Seeger S, Jin J, Chu Z. Antifouling superhydrophilic porous glass membrane based on sulfobetaine prepared by thiol−ene click chemistry for high-efficiency oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Yang J, Jia Y, Li B, Jiao J. Facile and simple fabrication of superhydrophobic and superoleophilic MS/PDA/DT sponge for efficient oil/water separation. ENVIRONMENTAL TECHNOLOGY 2022; 43:4092-4101. [PMID: 34115553 DOI: 10.1080/09593330.2021.1942559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
To overcome the problems of frequent leakage accidents during oil exploitation, a superhydrophobic and superoleophilic porous MS/PDA/DT sponge was successfully prepared via mild solvent evaporation method, and a polydopamine assisted surface coating of 1-dodecanethiol (DT) on a melamine sponge (MS) substrate. Surface structure and performance of the MS/PDA/DT sponge were characterized by Scanning Electron Microscope (SEM), Fourier transform infrared spectrometer (FTIR), and Video Optical Contact Angle (CA) metre. The results showed that the as-prepared MS/PDA/DT sponge has a high-water contact angle (WCA) of 147.2°, which is probably attributed to both the rough surface derived from in situ growth and the low surface energy due to grafting of hydrophobic 1-dodecanethiol. The durability of the as-constructed MS/PDA/DT sponge was studied by repeated abrasion tests. After 50 abrasion cycles, the superhydrophobicity of the MS/PDA/DT sponge good mechanical durability. The MS/PDA/DT sponge can effectively absorb oil with an absorption capacity of up to 24 times its weight. The superhydrophobic and superoleophilic MS/PDA/DT sponge has the potential as a promising adsorbent for oil/water separation.Highlights The MS/PDA/DT sponge was prepared via the mild solvent evaporation method.The contact angle of the MS/PDA/DT sponge was 147.2o.The adsorption capacity of the MS/PDA/DT sponge was 24 times their weight.The cost-efficient, environmentally friendly porous materials show high oil/water separation efficiency.
Collapse
Affiliation(s)
- Juxiang Yang
- School of Chemical Engineering, Xi'an University, Xi'an, People's Republic of China
| | - Yuan Jia
- School of Chemical Engineering, Xi'an University, Xi'an, People's Republic of China
| | - Beibei Li
- School of Chemical Engineering, Xi'an University, Xi'an, People's Republic of China
| | - Jiao Jiao
- School of Chemical Engineering, Xi'an University, Xi'an, People's Republic of China
| |
Collapse
|
10
|
Long X, Zhao GQ, Zheng Y, Hu J, Zuo Y, Zhang J, Jiao F. Porous and carboxyl functionalized titanium carbide MXene sheets for fast oil-in-water emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Chen X, Zhan Y, Sun A, Feng Q, Yang W, Dong H, Chen Y, Zhang Y. Anchoring the TiO2@crumpled graphene oxide core–shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil–water emulsion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Feng Q, Zhan Y, Yang W, Dong H, Sun A, Li L, Chen X, Chen Y. Ultra-high flux and synergistically enhanced anti-fouling Ag@MXene lamellar membrane for the fast purification of oily wastewater through nano-intercalation, photocatalytic self-cleaning and antibacterial effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Li X, Han L, Huang Z, Li Z, Li F, Duan H, Huang L, Jia Q, Zhang H, Zhang S. A robust air superhydrophilic/superoleophobic diatomite porous ceramic for high-performance continuous separation of oil-in-water emulsion. CHEMOSPHERE 2022; 303:134756. [PMID: 35533935 DOI: 10.1016/j.chemosphere.2022.134756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) porous architecture has attracted considerable attention in remediation of oil/water emulsion. In present work, an air superhydrophilic/superoleophobic diatomite porous ceramic (AS-DC) was prepared, using SiO2 whiskers modified diatomite ceramic as the substrate and FS-50 as the modifier. The interconnected SiO2 whiskers intertwined on the skeleton of ceramic block forming a 3D network structure, which not only improved the wettability of AS-DC, but also reinforced its mechanical property (about 2.5 MPa of compressive strength). The as-prepared AS-DC with intrinsically superoleophobicity (154°) and superhydrophilicity (0°) exhibited an underwater oil contact angle of 161°, suggesting a multifunctional separation capability. By simply assembling AS-DC with pipes and a pump, it could not only separate the surfactant-stabilized oil-in-water emulsion in a permeation flux as high as 107.8 kg min-1 m-2 with a selectivity of >95%, but also collect the clean water from the floating oil/water mixture in a flux of 197.4 kg min-1 m-2 and a selectivity of ∼99%. In addition, the AS-DC was resistant to the salt/acid/alkaline corrosion and temperature fluctuation. The mechanical/chemical firmness of AS-DC renders it tremendous potential as a robust 3D architecture in real application for purification of oil/water mixture.
Collapse
Affiliation(s)
- Xiaojian Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lei Han
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Zhi Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Faliang Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hongjuan Duan
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Quanli Jia
- Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou, 450052, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
14
|
Xiong Q, Tian Q, Yue X, Xu J, He X, Qiu F, Zhang T. Superhydrophobic PET@ZnO Nanofibrous Membrane Extract from Waste Plastic for Efficient Water-In-Oil Emulsion Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Xiong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Xuejie Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Jicheng Xu
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Chemistry and Materials Science, Zhenjiang College, Zhenjiang 212028, China
| | - Xu He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| |
Collapse
|
15
|
Superhydrophilic PVDF Nanofibrous Membranes with Hierarchical Structure based on Solution Blow Spinning for Oil-water Separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Jin Y, Huang L, Zheng K, Zhou S. Blending Electrostatic Spinning Fabrication of Superhydrophilic/Underwater Superoleophobic Polysulfonamide/Polyvinylpyrrolidone Nanofibrous Membranes for Efficient Oil-Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8241-8251. [PMID: 35772102 DOI: 10.1021/acs.langmuir.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The scarcity of water resources has led to widespread interest in the treatment of oily wastewater. This study prepared a novel superhydrophilic/underwater superoleophobic polysulfonamide (PSA)/polyvinylpyrrolidone (PVP) nanofibrous membrane through electrostatic spinning for efficient oil-water emulsion separation. The surface morphology, fiber diameter distribution, wettability properties, and oil-water emulsion separation performance of the membranes were investigated. Results showed that the addition of PVP increases the diameter of the fibers, which led to a loose, large, porous structure and improved the permeability of the membranes. A high pure-water flux of 2057 L·m-2·h-1 was obtained for membranes with PVP addition of 3 wt%, providing an 835% increase in pure-water flux compared with a pure PSA nanofibrous membrane (220 L·m-2·h-1). For n-hexane-in-water emulsions, the optimum membrane obtained a high separation efficiency of 99.7%, in which flux was 1.5 times greater than that of the pure PSA nanofibrous membrane. Moreover, the optimum membrane exhibited good recycling stability and solvent resistance. The as-prepared PSA/PVP nanofibrous membrane displayed high permeability, an outstanding rejection rate, resistance to organic solvents, and reusability for oil-water separation, providing great potential in practical membrane separation applications.
Collapse
Affiliation(s)
- Yuting Jin
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Longwei Huang
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Ke Zheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, China
| | - Shaoqi Zhou
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
17
|
Zhou W, Hu X, Zhan B, Li S, Chen Z, Liu Y. Green and rapid fabrication of superhydrophilic and underwater superoleophobic coatings for super anti-crude oil fouling and crude oil-water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Periyasamy T, Asrafali SP, Raorane CJ, Haldhar R, Kim S. Strategies for Improving the Thermomechanical, Flame Retardancy and Dielectric Properties of Benzophenone‐Functionalized Polybenzoxazine. ChemistrySelect 2022. [DOI: 10.1002/slct.202201072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Rajesh Haldhar
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Seong‐Cheol Kim
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
19
|
Shome A, Das A, Borbora A, Dhar M, Manna U. Role of chemistry in bio-inspired liquid wettability. Chem Soc Rev 2022; 51:5452-5497. [PMID: 35726911 DOI: 10.1039/d2cs00255h] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemistry and topography are the two distinct available tools for customizing different bio-inspired liquid wettability including superhydrophobicity, superamphiphobicity, underwater superoleophobicity, underwater superoleophilicity, and liquid infused slippery property. In nature, various living species possessing super and special liquid wettability inherently comprises of distinctly patterned surface topography decorated with low/high surface energy. Inspired from the topographically diverse natural species, the variation in surface topography has been the dominant approach for constructing bio-inspired antiwetting interfaces. However, recently, the modulation of chemistry has emerged as a facile route for the controlled tailoring of a wide range of bio-inspired liquid wettability. This review article aims to summarize the various reports published over the years that has elaborated the distinctive importance of both chemistry and topography in imparting and modulating various bio-inspired wettability. Moreover, this article outlines some obvious advantages of chemical modulation approach over topographical variation. For example, the strategic use of the chemical approach has allowed the facile, simultaneous, and independent tailoring of both liquid wettability and other relevant physical properties. We have also discussed the design of different antiwetting patterned and stimuli-responsive interfaces following the strategic and precise alteration of chemistry for various prospective applications.
Collapse
Affiliation(s)
- Arpita Shome
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India. .,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.,Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India
| |
Collapse
|
20
|
Xue N, Cui Y, Xiao H, Wang Y, Huang Y, Huang X, Shi B. Collagen fiber membrane as multi-functional support enabled rational design of ultrahigh-flux separation membrane for the remediation of oil contamination in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128649. [PMID: 35299108 DOI: 10.1016/j.jhazmat.2022.128649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Membrane separation is a promising approach for the remediation of oil contamination in water. High-flux separation of membrane relies on the rational design of ultrathin active layer to significantly reduce mass transfer distance for achieving high separation flux, while the ultrathin active layer is usually fragile with poor mechanical strength, which has to be supported on a support. Herein, we employed collagen fiber membrane (CFM) as multi-functional support for the in-situ growth of polyacrylonitrile (PAN) layer by electrospinning to prepare the high-performance PAN/CFM composite membrane. Due to the amphiphilic nature and strong capillary effect, CFM played the role as multi-functional support to provide separation effectiveness and boosted separation flux. The PAN/CFM composite membrane enabled ultrahigh separation flux (e.g., 51751.59 L m-2 h-1 bar-1) to a variety of oil-in-water emulsion, which was one order of magnitude higher than that of commercial polyethersulfone membrane and 1.86-fold to that of cellulose acetate membrane. Furthermore, the PAN/CFM composite membrane retained high separation flux (e.g., 11046.97 L m-2 h-1 bar-1) during the 5th separation cycle, providing appreciable anti-fouling capability. Therefore, our findings provided a promising way to effectively resolve the problem of oil contamination in water.
Collapse
Affiliation(s)
- Ni Xue
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yiwen Cui
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Hanzhong Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yujia Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yawen Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China; Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China; Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
21
|
Sun Q, Xiang B, Mu P, Li J. Green Preparation of a Carboxymethyl Cellulose-Coated Membrane for Highly Efficient Separation of Crude Oil-In-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7067-7076. [PMID: 35617663 DOI: 10.1021/acs.langmuir.2c00834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing high-performance membranes is an extremely significant strategy to combat increasing severe oil pollution. However, most of the previously reported superwettable membranes have been inevitably involved with the use of toxic solvents and complicated preparation processes. In addition, most of them lacked the capacity of separating crude oil-in-water emulsions. Herein, a facile and green strategy is employed to fabricate a polytetrafluoroethylene (PTFE) membrane with a mixed suspension of PDA@ZIF-8 and carboxymethyl cellulose (CMC) using water as a solvent via the vacuum filtration method. Combining hydrophilic property with micro-nano-roughness, the CMC-PDA@ZIF-8-coated PTFE membrane (CPZP membrane) exhibits excellent underwater superoleophobicity. More importantly, the separation efficiency of various surfactant-stabilized oil-in-water emulsions including crude oil/water emulsion is higher than 99.2% with a flux up to 1306.5 L m-2 h-1, and the separation performance remains nearly the same after 10 cycles. Moreover, outstanding underwater superoleophobic and self-cleaning properties are maintained after long-distance sandpaper abrasion and multiple bending tests. Meanwhile, its exceptional separation performance is still maintained in harsh environments (3.5 wt % NaCl, 1 M HCl, 60 °C hot water) even after immersing it for 24 h. Therefore, this green-prepared and high-performance membrane has tremendous application prospects in treating oily wastewater.
Collapse
Affiliation(s)
- Qing Sun
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bin Xiang
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Peng Mu
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jian Li
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
22
|
Zhang L, He Y, Luo P, Ma L, Li S, Nie Y, Yu J, Guo X. A robust underwater superoleophobic aminated polyacrylonitrile membrane embedded with CNTs-COOH for durable oil/water and dyes/oil emulsions separation. CHEMOSPHERE 2022; 293:133535. [PMID: 35016958 DOI: 10.1016/j.chemosphere.2022.133535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Considering the emulsified oil and water-soluble dyes in wastewater, the exploitation of easy-manufacturing, energy-saving and high-efficiency separation materials is urgently required. In this work, integrating the positively charged polyethyleneimine (PEI) with negatively charged CNTs-COOH constructed the superhydrophilic Cassie-Baxter structure onto the electrospun polyacrylonitrile (PAN) membrane surface by ultrasonic, electrostatic interaction and thermal treatment. Based on it, the PEN@CNTs membrane achieved efficient separation for surfactant-free, tween 80-stabilized, SDS-stabilized, and CTAB-stabilized emulsions (the fluxes reached 508-3158 L m-2 h-1, the separation efficiency reached 99.42%) by the splendid water-penetration and oil-repellency, electrostatic interaction, and "aperture sieve". Moreover, because of the porosity and strong charged surface of PEN@CNTs membrane, the anionic dyes can be quickly removed by one-step filtrate method (∼403 L m-2 h-1). Meanwhile, the PEN@CNTs membrane also achieved synchronous and efficient remediation for oil/dye mixture emulsions after many cycles. More importantly, facing the complex physical and chemical environments, the combination of the stabilized PEN membrane, inactive CNTs-COOH layer, and the bond of embedding method between CNTs-COOH and PEN nanofibers made the PEN@CNTs membrane demonstrated robust stability and durable separation capability.
Collapse
Affiliation(s)
- Liyun Zhang
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Yi He
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, China.
| | - Pingya Luo
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China.
| | - Lan Ma
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Shuangshuang Li
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Yiling Nie
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Jing Yu
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Xiao Guo
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
| |
Collapse
|
23
|
Wang Q, Wang D, Cheng W, Huang J, Cao M, Niu Z, Zhao Y, Yue Y, Han G. Spider-web-inspired membrane reinforced with sulfhydryl-functionalized cellulose nanocrystals for oil/water separation. Carbohydr Polym 2022; 282:119049. [DOI: 10.1016/j.carbpol.2021.119049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
|
24
|
Robust antifouling NH2-MIL-88B coated quartz fibrous membrane for efficient gravity-driven oil-water emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Facile preparation of attapulgite nanofiber membrane for efficient separation of high-viscosity oil-in-water emulsions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Air superhydrophilic-superoleophobic SiO 2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability. J Colloid Interface Sci 2021; 600:118-126. [PMID: 34010769 DOI: 10.1016/j.jcis.2021.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Due to the inherent differences in surface tension between water and oil, it is a challenge to fabricate air superhydrophilic-superoleophobic materials despite their promising potential in the field of oil/water separation. Herein, a facile approach is developed to fabricate air superhydrophilic-superoleophobic SiO2 coating by combination of controllable modifying SiO2 nanoparticle surface by both hydrophilic groups (i.e., -OH groups) and oleophobic groups (i.e., fluorinated groups) with constructing porous and hierarchical structures. Hydroxyl-modified SiO2 nanoparticles (NPs) are synthesized using a base-catalysed procedure in the presence of ammonia or NaOH. Chitosan quaternary ammonium salt (HACC) is introduced to bind SiO2 by forming a unique hydrogen bond between HACC and -OH, followed by adding pentadecafluorooctanoic acid (PFOA) to complex with HACC to form fluorinated groups. The SiO2 coatings are fabricated on various substrates (e.g., glass, foam and Cu mesh) by spraying procedure and characterized using SEM, FTIR, XPS, etc. The contact angles of oils (e.g., pump oil, castor oil, corn oil, hexadecane and bean oil) and water on the coatings are over 150° and close to 0°, respectively. By optimization, the representative SiO2-coated Cu mesh displayed high-efficiency of 99.2% in separating water from mixture of water/pump oil, and high penetration flux of 1.41 × 104 L·m-2 ·h-1. Besides, the coating maintains its superhydrophilic-superoleophobic properties even after 110 cycles of sandpaper abrasion or after being immersed in water for 3 h. After 20 cycles of oil/water separation, the coating retains separation efficiency up to 97.93%. This study provides a new and universal protocol to fabricate unique superwetting surfaces with effective oil/water separation performance, long-term durability and outstanding reusability.
Collapse
|
27
|
Li X, Yao H, Lu X, Xin Z. Superhydrophobic Polybenzoxazine/TiO 2 Coatings with Reversible Wettability for High-Flux Oil/Water Separation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiu Li
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongjie Yao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Lu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Xin
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Cui J, Xie A, Yan Z, Yan Y. Fabrication of crosslinking modified PVDF/GO membrane with acid, alkali and salt resistance for efficient oil-water emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118528] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Wu M, Shi G, Liu W, Long Y, Mu P, Li J. A Universal Strategy for the Preparation of Dual Superlyophobic Surfaces in Oil-Water Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14759-14767. [PMID: 33749236 DOI: 10.1021/acsami.1c02187] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There are some methods to prepare superwetting surfaces with underwater superoleophobicity (UWSOB) or underoil superhydrophobicity (UOSHB), but it is still thorny to put forward a universal strategy for constructing dual superlyophobic surfaces in oil-water systems due to a thermodynamic contradiction. Herein, a universal strategy was proposed to prepare the dual superlyophobic surfaces in oil-water systems only via delicately controlling surface chemistry, that is, adjusting the ratios of superhydrophilic and superhydrophobic counterparts in the spray solution. Three types of materials, attapulgite (APT), TiO2, and loess, were chosen to prepare a diverse series of mixed coatings (mass gradient of superhydrophobic counterparts from 0 to 100 wt %). With the proportion of each superhydrophobic counterpart increasing, the underwater oil contact angle (θo/w*) of each mixed coating slightly decreased but still was more than 150°, that is, UWSOB. In contrast, the underoil water contact angle (θw/o*) was significantly improved, realizing the transformation from UOHL (or UOHB) to UOSHB. More importantly, the respective mass ratios of superhydrophobic counterparts in the resulting mixed coatings of APT, TiO2, and loess were finally determined to be 0.3, 0.4, and 0.2, respectively. Taking APT as a model, a train of mixed APT coatings with different superhydrophobic components were systematically characterized and analyzed. Finally, the prepared superlyophobic separation mesh in oil-water systems was applied to the separation of various surfactant-stabilized oil-water emulsions. We envision that this universal strategy we proposed will show a significant application potential in addressing scientific and technological challenges in the field of interfacial chemistry such as oil-water separation, microfluidics, microdroplet manipulation, antifogging/icing, cell engineering, drag reduction, and so forth.
Collapse
Affiliation(s)
- Mingming Wu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Guogui Shi
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Weimin Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yifei Long
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Peng Mu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jian Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, P. R. China
| |
Collapse
|
30
|
Sha D, Zheng R, Wang B, Shi K, Yang X, Liu X, Liu Z, Ji X. Three-dimensional superhydrophilic polyvinyl alcohol–formaldehyde composite sponges with suitable pore sizes for high efficiency emulsion separation. NEW J CHEM 2021. [DOI: 10.1039/d1nj02780h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PVA/PVF and PVA–COOH/PVF composite sponges with excellent emulsion separation performance.
Collapse
Affiliation(s)
- Di Sha
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Run Zheng
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Baolong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Kai Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xue Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xiangling Ji
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|