1
|
Chen J, Hao M, Xin Y, Zhu R, Gu Z, Zhang L, Guo X. A novel phosphotriesterase hybrid nanoflower-hydrogel sensor equipped with a smartphone detector for real-time on-site monitoring of organophosphorus pesticides. Int J Biol Macromol 2024; 276:133979. [PMID: 39029845 DOI: 10.1016/j.ijbiomac.2024.133979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Designing efficient and rapid methods for the detection of organophosphorus pesticides (OPs) residue is a prerequisite to mitigate their negative health impacts. In this study, we propose the concept of an enzyme catalysis system-based hydrogel kit integrated with a smartphone detector for in-field screening of OPs. Here, we rapidly prepared phosphotriesterase hybrid nanoflowers (PTE-HNFs) using a self-assembly strategy by adding external energy and embedded the nanocomposite in sodium alginate (SA) hydrogel to construct a target-responsive hydrogel kit. The color response of the kit is induced by catalyzing methyl parathion (MP) to produce p-nitrophenol. For on-site quantification, the color variations of the portable kit are converted into digital information through a smartphone, which exhibits an applicable linear range towards OPs. The hydrogel sensing platform demonstrates a wide linear range (1-150 μM) and low detection limit (0.15 μM) for MP while maintaining high reliability, excellent long-term stability, and ease of operation. Overall, the PTE-HNFs-based SA hydrogel kit provides a useful strategy for simple and sensitive detection of MP and holds great potential for applications in detecting OPs in food and environmental water.
Collapse
Affiliation(s)
- Jianxiong Chen
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China; JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, PR China
| | - Mengyao Hao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China; JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, PR China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China; JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, PR China
| | - Rui Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China; JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, PR China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China; JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, PR China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China; JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, PR China.
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, PR China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Joseph N, Mirzamani M, Abudiyah T, Al-Antaki AHM, Jellicoe M, Harvey DP, Crawley E, Chuah C, Whitten AE, Gilbert EP, Qian S, He L, Michael MZ, Kumari H, Raston CL. Vortex fluidic regulated phospholipid equilibria involving liposomes down to sub-micelle size assemblies. NANOSCALE ADVANCES 2024; 6:1202-1212. [PMID: 38356632 PMCID: PMC10863723 DOI: 10.1039/d3na01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Conventional channel-based microfluidic platforms have gained prominence in controlling the bottom-up formation of phospholipid based nanostructures including liposomes. However, there are challenges in the production of liposomes from rapidly scalable processes. These have been overcome using a vortex fluidic device (VFD), which is a thin film microfluidic platform rather than channel-based, affording ∼110 nm diameter liposomes. The high yielding and high throughput continuous flow process has a 45° tilted rapidly rotating glass tube with an inner hydrophobic surface. Processing is also possible in the confined mode of operation which is effective for labelling pre-VFD-prepared liposomes with fluorophore tags for subsequent mechanistic studies on the fate of liposomes under shear stress in the VFD. In situ small-angle neutron scattering (SANS) established the co-existence of liposomes ∼110 nm with small rafts, micelles, distorted micelles, or sub-micelle size assemblies of phospholipid, for increasing rotation speeds. The equilibria between these smaller entities and ∼110 nm liposomes for a specific rotational speed of the tube is consistent with the spatial arrangement and dimensionality of topological fluid flow regimes in the VFD. The prevalence for the formation of ∼110 nm diameter liposomes establishes that this is typically the most stable structure from the bottom-up self-assembly of the phospholipid and is in accord with dimensions of exosomes.
Collapse
Affiliation(s)
- Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati OH 45267-0004 USA
| | - Tarfah Abudiyah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Ahmed Hussein Mohammed Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Department of Chemistry, Faculty of Science, University of Kufa Najaf 54001 Iraq
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - David P Harvey
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Emily Crawley
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Clarence Chuah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation (ANSTO) Lucas Heights NSW 2234 Australia
| | - Elliot Paul Gilbert
- Australian Nuclear Science and Technology Organisation (ANSTO) Lucas Heights NSW 2234 Australia
| | - Shuo Qian
- The Second Target Station Project of SNS, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer (FCIC), Flinders Medical Centre (FMC) Bedford Park SA 5042 Australia
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati OH 45267-0004 USA
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
3
|
He S, Wu Y, Zhang Y, Luo X, Gibson CT, Gao J, Jellicoe M, Wang H, Young DJ, Raston CL. Enhanced mechanical strength of vortex fluidic mediated biomass-based biodegradable films composed from agar, alginate and kombucha cellulose hydrolysates. Int J Biol Macromol 2023; 253:127076. [PMID: 37769780 DOI: 10.1016/j.ijbiomac.2023.127076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Biodegradable, biomass derived kombucha cellulose films with increased mechanical strength from 9.98 MPa to 18.18 MPa were prepared by vortex fluidic device (VFD) processing. VFD processing not only reduced the particle size of kombucha cellulose from approximate 2 μm to 1 μm, but also reshaped its structure from irregular to round. The increased mechanical strength of these polysaccharide-derived films is the result of intensive micromixing and high shear stress of a liquid thin film in a VFD. This arises from the incorporation at the micro-structural level of uniform, unidirectional strings of kombucha cellulose hydrolysates, which resulted from the topological fluid flow in the VFD. The biodegradability of the VFD generated polymer films was not compromised relative to traditionally generated films. Both films were biodegraded within 5 days.
Collapse
Affiliation(s)
- Shan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan City, China; College of Engineering, IT & Environment, Charles Darwin University, Casuarina, NT, Australia; Flinders Institute for Nanoscale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Yixiao Wu
- College of Engineering, IT & Environment, Charles Darwin University, Casuarina, NT, Australia
| | - Yang Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan City, China
| | - Xuan Luo
- Flinders Institute for Nanoscale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Christopher T Gibson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Jingrong Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan City, China; Flinders Institute for Nanoscale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Matt Jellicoe
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Hao Wang
- College of Engineering, IT & Environment, Charles Darwin University, Casuarina, NT, Australia.
| | - David J Young
- College of Engineering, IT & Environment, Charles Darwin University, Casuarina, NT, Australia.
| | - Colin L Raston
- Flinders Institute for Nanoscale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.
| |
Collapse
|
4
|
Luo X, Xing W, Delcheva I, Abdullah Alrashaidi F, Heydari A, Palms D, Truong VK, Vasilev K, Jia Z, Zhang W, Su P, Vimalanathan K, Igder A, Weiss GA, Tang Y, MacGregor M, Raston CL. Printable Hydrogel Arrays for Portable and High-Throughput Shear-Mediated Assays. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37339239 DOI: 10.1021/acsami.3c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Hydrogels have been widely used to entrap biomolecules for various biocatalytic reactions. However, solute diffusion in these matrices to initiate such reactions can be a very slow process. Conventional mixing remains a challenge as it can cause irreversible distortion or fragmentation of the hydrogel itself. To overcome the diffusion-limit, a shear-stress-mediated platform named the portable vortex-fluidic device (P-VFD) is developed. P-VFD is a portable platform which consists of two main components, (i) a plasma oxazoline-coated polyvinyl chloride (POx-PVC) film with polyacrylamide and alginate (PAAm/Alg-Ca2+) tough hydrogel covalently bound to its surface and (ii) a reactor tube (L × D: 90 mm × 20 mm) where the aforementioned POx-PVC film could be readily inserted for reactions. Through a spotting machine, the PAAm/Alg-Ca2+ hydrogel can be readily printed on a POx-PVC film in an array pattern and up to 25.4 J/m2 adhesion energy can be achieved. The hydrogel arrays on the film not only offer a strong matrix for entrapping biomolecules such as streptavidin-horseradish peroxidase but are also shear stress-tolerant in the reactor tube, enabling a >6-fold increase in its reaction rate after adding tetramethylbenzidine, relative to incubation. Through using the tough hydrogel and its stably bonded substrate, this portable platform effectively overcomes the diffusion-limit and achieves fast assay detection without causing appreciable hydrogel array deformation or dislocation on the substrate film.
Collapse
Affiliation(s)
- Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Wenjin Xing
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Iliana Delcheva
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Fayed Abdullah Alrashaidi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Amir Heydari
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Chemical Engineering Department, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Dennis Palms
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Zhongfan Jia
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia 5042, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia 5042, Australia
| | - Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Aghil Igder
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Gregory A Weiss
- Departments of Chemistry, Pharmaceutical Sciences, and Molecular Biology & Biochemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Youhong Tang
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
5
|
Hu Q, Luo X, Tohl D, Pham ATT, Raston C, Tang Y. Hydrogel-Film-Fabricated Fluorescent Biosensors with Aggregation-Induced Emission for Albumin Detection through the Real-Time Modulation of a Vortex Fluidic Device. Molecules 2023; 28:molecules28073244. [PMID: 37050007 PMCID: PMC10096627 DOI: 10.3390/molecules28073244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Hydrogels have various promising prospects as a successful platform for detecting biomarkers, and human serum albumin (HSA) is an important biomarker in the diagnosis of kidney diseases. However, the difficult-to-control passive diffusion kinetics of hydrogels is a major factor affecting detection performance. This study focuses on using hydrogels embedded with aggregation-induced emission (AIE) fluorescent probe TC426 to detect HSA in real time. The vortex fluidic device (VFD) technology is used as a rotation strategy to control the reaction kinetics and micromixing during measurement. The results show that the introduction of VFD could significantly accelerate its fluorescence response and effectively improve the diffusion coefficient, while VFD processing could regulate passive diffusion into active diffusion, offering a new method for future sensing research.
Collapse
Affiliation(s)
- Qi Hu
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Xuan Luo
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Damian Tohl
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
| | - Anh Tran Tam Pham
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
| | - Colin Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Youhong Tang
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
6
|
AIE nanocrystals: Emerging nanolights with ultra-high brightness for biological application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future. Adv Colloid Interface Sci 2022; 309:102780. [DOI: 10.1016/j.cis.2022.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023]
|
8
|
The immobilization protocol greatly alters the effects of metal phosphate modification on the activity/stability of immobilized lipases. Int J Biol Macromol 2022; 222:2452-2466. [DOI: 10.1016/j.ijbiomac.2022.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
9
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Lin G, Qiu H. Diverse Supports for Immobilization of Catalysts in Continuous Flow Reactors. Chemistry 2022; 28:e202200069. [DOI: 10.1002/chem.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Geyu Lin
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
11
|
Guimarães JR, Carballares D, Rocha-Martin J, Tardioli PW, Fernandez-Lafuente R. Stabilization of immobilized lipases by treatment with metallic phosphate salts. Int J Biol Macromol 2022; 213:43-54. [DOI: 10.1016/j.ijbiomac.2022.05.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
|
12
|
Sanders EC, Sen SR, Gelston AA, Santos AM, Luo X, Bhuvan K, Tang DY, Raston CL, Weiss GA. Under-5-Minute Immunoblot Assays by Vortex Fluidic Device Acceleration. Angew Chem Int Ed Engl 2022; 61:e202202021. [PMID: 35333430 PMCID: PMC9156566 DOI: 10.1002/anie.202202021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 11/09/2022]
Abstract
Unlocking the potential of personalized medicine in point-of-care settings requires a new generation of biomarker and proteomic assays. Ideally, assays could inexpensively perform hundreds of quantitative protein measurements in parallel at the bedsides of patients. This goal greatly exceeds current capabilities. Furthermore, biomarker assays are often challenging to translate from benchtop to clinic due to difficulties achieving and assessing the necessary selectivity, sensitivity, and reproducibility. To address these challenges, we developed an efficient (<5 min), robust (comparatively lower CVs), and inexpensive (decreasing reagent use and cost by >70 %) immunoassay method. Specifically, the immunoblot membrane is dotted with the sample and then developed in a vortex fluidic device (VFD) reactor. All assay steps-blocking, binding, and washing-leverage the unique thin-film microfluidics of the VFD. The approach can accelerate direct, indirect, and sandwich immunoblot assays. The applications demonstrated include assays relevant to both the laboratory and the clinic.
Collapse
Affiliation(s)
- Emily C. Sanders
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Sanjana R. Sen
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Aidan A. Gelston
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Alicia M. Santos
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Xuan Luo
- Flinders Institute for Nanoscale Sciences and Technology, Flinders University, Adelaide, SA 5042 (AU)
| | - Keertna Bhuvan
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Derek Y. Tang
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Colin L. Raston
- Flinders Institute for Nanoscale Sciences and Technology, Flinders University, Adelaide, SA 5042 (AU)
| | - Gregory A. Weiss
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| |
Collapse
|
13
|
Instantaneous synthesis and full characterization of organic-inorganic laccase-cobalt phosphate hybrid nanoflowers. Sci Rep 2022; 12:9297. [PMID: 35662266 PMCID: PMC9165545 DOI: 10.1038/s41598-022-13490-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/25/2022] [Indexed: 01/10/2023] Open
Abstract
A novel approach termed the "concentrated method" was developed for the instant fabrication of laccase@Co3(PO4)2•hybrid nanoflowers (HNFs). The constructed HNFs were obtained by optimizing the concentration of cobalt chloride and phosphate buffer to reach the highest activity recovery. The incorporation of 30 mM CoCl2 and 160 mM phosphate buffer (pH 7.4) resulted in a fast anisotropic growth of the nanomaterials. The purposed method did not involve harsh conditions and prolonged incubation of precursors, as the most reported approaches for the synthesis of HNFs. The catalytic efficiency of the immobilized and free laccase was 460 and 400 M−1S−1, respectively. Also, the enzymatic activity of the prepared biocatalyst was 113% of the free enzyme (0.5 U mL−1). The stability of the synthesized HNFs was enhanced by 400% at pH 6.5–9.5 and the elevated temperatures. The activity of laccase@Co3(PO4)2•HNFs declined to 50% of the initial value after 10 reusability cycles, indicating successful immobilization of the enzyme. Structural studies revealed a 32% increase in the α-helix content after hybridization with cobalt phosphate, which improved the activity and stability of the immobilized laccase. Furthermore, the fabricated HNFs exhibited a considerable ability to remove moxifloxacin as an emerging pollutant. The antibiotic (10 mg L−1) was removed by 24% and 75% after 24 h through adsorption and biodegradation, respectively. This study introduces a new method for synthesizing HNFs, which could be used for the fabrication of efficient biocatalysts, biosensors, and adsorbents for industrial, biomedical, and environmental applications.
Collapse
|
14
|
Weiss GA, Sanders EC, Sen SR, Gelston AA, Santos AM, Luo X, Bhuvan K, Tang DY, Raston CL. Under‐5‐Minute Immunoblot Assays by Vortex Fluidic Device Acceleration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gregory Alan Weiss
- University of California, Irvine Department of Chemistry 1102 Natural Sciences 2 92697-2025 Irvine UNITED STATES
| | | | - Sanjana R. Sen
- University of California Irvine Molecular Biology and Biochemistry UNITED STATES
| | | | | | - Xuan Luo
- Flinders University aFlinders Institute for Nanoscale Science and Technology AUSTRALIA
| | | | - Derek Y. Tang
- University of California Irvine Chemistry UNITED STATES
| | - Colin L. Raston
- Flinders University aFlinders Institute for Nanoscale Science and Technology UNITED STATES
| |
Collapse
|
15
|
Fast anisotropic growth of the biomineralized zinc phosphate nanocrystals for a facile and instant construction of laccase@Zn 3(PO 4) 2 hybrid nanoflowers. Int J Biol Macromol 2022; 204:520-531. [PMID: 35167870 DOI: 10.1016/j.ijbiomac.2022.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/26/2022]
Abstract
Organic-inorganic hybrid nanoflowers (HNFs) of laccase@Zn3(PO4)2 were fabricated through a facile, simple, and rapid one-step strategy. In this process, laccase was involved in nucleation and fast anisotropic growth reactions with Zn (II) and phosphate ions. The average pore size of the prepared HNFs was 54.5 nm, and its BET-specific surface area was 59.5 m2 g-1. In comparison with the free laccase, the entrapped enzyme activity in the constructed HNFs was 86.4%. In addition, the hybrid biocatalyst displayed a maximum rate of reaction (Vmax) of 1640.2 ± 3.6 μmol min-1 with respect to the native enzyme. The constructed HNFs maintained 45.1% and 60% of the original laccase activity after 12 successive reusability cycles and 30 days of storage at 4 °C, respectively. The as-obtained HNFs demonstrated a high bioremoval percentage of Direct blue-71 (94.1%) within a 10-h-treatment at 40 °C and 15 mg l-1 of the dye concentration. The pseudo-first order and second order were the best-fitted kinetic models for the dye removal using Zn3(PO4)2 nanoflakes and the fabricated HNFs, respectively. Besides, liquid chromatography-mass spectrometry (LC-MS) revealed biotransformation of the dye into less toxic metabolites as verified by testing on some bacterial strains.
Collapse
|
16
|
Tavakoli J, Shrestha J, Bazaz SR, Rad MA, Warkiani ME, Raston CL, Tipper JL, Tang Y. Developing Novel Fabrication and Optimisation Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications. Molecules 2022; 27:1002. [PMID: 35164268 PMCID: PMC8840180 DOI: 10.3390/molecules27031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The current study describes a new technology, effective for readily preparing a fluorescent (FL) nanoprobe-based on hyperbranched polymer (HB) and aggregation-induced emission (AIE) fluorogen with high brightness to ultimately develop FL hydrogels. We prepared the AIE nanoprobe using a microfluidic platform to mix hyperbranched polymers (HB, generations 2, 3, and 4) with AIE (TPE-2BA) under shear stress and different rotation speeds (0-5 K RPM) and explored the FL properties of the AIE nanoprobe. Our results reveal that the use of HB generation 4 exhibits 30-times higher FL intensity compared to the AIE alone and is significantly brighter and more stable compared to those that are prepared using HB generations 3 and 2. In contrast to traditional methods, which are expensive and time-consuming and involve polymerization and post-functionalization to develop FL hyperbranched molecules, our proposed method offers a one-step method to prepare an AIE-HB nanoprobe with excellent FL characteristics. We employed the nanoprobe to fabricate fluorescent injectable bioadhesive gel and a hydrogel microchip based on polyvinyl alcohol (PVA). The addition of borax (50 mM) to the PVA + AIE nanoprobe results in the development of an injectable bioadhesive fluorescent gel with the ability to control AIEgen release for 300 min. When borax concentration increases two times (100 mM), the adhesion stress is more than two times bigger (7.1 mN/mm2) compared to that of gel alone (3.4 mN/mm2). Excellent dimensional stability and cell viability of the fluorescent microchip, along with its enhanced mechanical properties, proposes its potential applications in mechanobiology and understanding the impact of microstructure in cell studies.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Jesus Shrestha
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Sajad R. Bazaz
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Maryam A. Rad
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Majid E. Warkiani
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Colin L. Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Joanne L. Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
17
|
Liang X, Liu Y, Wen K, Jiang W, Li Q. Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications. J Mater Chem B 2021; 9:7597-7607. [PMID: 34596205 DOI: 10.1039/d1tb01476e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzyme immobilization has been accepted as a powerful technique to solve the drawbacks of free enzymes such as limited activity, stability and recyclability under harsh conditions. Different from the conventional immobilization methods, enzyme immobilization in inorganic hybrid nanoflowers was executed in a biomimetic mineralization manner with the advantages of mild reaction conditions, and thus it was beneficial to obtain ideal biocatalysts with superior characteristics. The key factors influencing the formation of enzyme-based inorganic hybrid nanoflowers were elucidated to obtain a deeper insight into the mechanism for achieving unique morphology and improved properties of immobilized enzymes. To date, immobilized enzymes in inorganic hybrid nanoflowers have been successfully applied in biocatalysis for preparing medical intermediates, biodiesel and biomedical polymers, and solving the environmental or food industrial issues such as the degradation of toxic dyes, pollutants and allergenic proteins. Moreover, they could be used in the development of various biosensors, which provide a promising platform to detect toxic substances in the environment or biomarkers associated with various diseases. We hope that this review will promote the fundamental research and wide applications of immobilized enzymes in inorganic hybrid nanoflowers for expanding biocatalysis and biosensing.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
18
|
Zhai X, Ruan C, Shen J, Zheng C, Zhao X, Pan H, Lu WW. Clay-based nanocomposite hydrogel with attractive mechanical properties and sustained bioactive ion release for bone defect repair. J Mater Chem B 2021; 9:2394-2406. [PMID: 33625433 DOI: 10.1039/d1tb00184a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although clay-based nanocomposite hydrogels have been widely explored, their instability in hot water and saline solution inhibits their applications in biomedical engineering, and the exploration of clay-based nanocomposite hydrogels in bone defect repair is even less. In this work, we developed a stable clay-based nanocomposite hydrogel using 4-acryloylmorpholine as the monomer. After UV light illumination, the obtained poly(4-acryloylmorpholine) clay-based nanocomposite hydrogel (poly(4-acry)-clay nanocomposite hydrogel) exhibits excellent mechanical properties due to the hydrogen bond interactions between the poly(4-acryloylmorpholine) chains and the physical crosslinking effect of the nanoclay. Besides good biocompatibility, the sustainable release of intrinsic Mg2+ and Si4+ from the poly(4-acry)-clay nanocomposite hydrogel endows the system with excellent ability to promote the osteogenic differentiation of primary rat osteoblasts (ROBs) and can promote new bone formation effectively after implantation. We anticipate that these kinds of clay-based nanocomposite hydrogels with sustained release of bioactive ions will open a new avenue for the development of novel biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Xinyun Zhai
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jie Shen
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chuping Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacological Group, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiaoli Zhao
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - William Weijia Lu
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. and Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
19
|
Demirbas A. Comparison Study of Synthesized Red (or Blood) Orange Peels and Juice Extract-Nanoflowers and Their Antimicrobial Properties on Fish Pathogen ( Yersinia ruckeri). Indian J Microbiol 2021; 61:324-330. [PMID: 34294998 DOI: 10.1007/s12088-021-00945-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Abstract In this work, we synthesized blood orange peel extract-copper (II) (Cu2+) ions nanoflower (NFs) and blood orange juice extract-copper (II) (Cu2+) ions nanoflower examine their antimicrobial properties on the fish pathogen (Yersinia ruckeri). The main compounds of the blood orange peel extract and the blood orange juice extract were organic components, and the copper (II) (Cu2 +) ions were inorganic components. BOPE-Cu2 + nanoflowers are quite compact, porous, and uniform as compared to BOJE-Cu2+ nanoflowers. Scanning Electron Microscopy, Fourier Transform Infrared spectrometry, and Energy-Dispersive X-ray spectroscopy were used to observe the structures of the NFs. The findings of FT-IR show Cu-O and Cu-N bonds in NF, which may be an indicator of the development of NFs. Although the antimicrobial actions of BOPE-hNFs and BOJE-hNFs against Yersinia ruckeri (NCTC 12,268) have been confirmed. Graphic Abstract
Collapse
Affiliation(s)
- Ayse Demirbas
- Faculty of Fisheries, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| |
Collapse
|
20
|
Igder A, Al-Antaki AHM, Pye SJ, Keshavarz A, Nosrati A, Raston CL. High shear vortex fluidic morphologically controlled polysulfone formed under anhydrous conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj00834j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polysulfone (PSF) was prepared under anhydrous conditions in DMSO, under high shear in a vortex fluidic device (VFD) operating under confined mode thereby avoiding the use of chlorinated solvents, unlike in conventional batch processing.
Collapse
Affiliation(s)
- Aghil Igder
- School of Engineering
- Edith Cowan University
- Perth
- Australia
- Flinders Institute for Nanoscale Science and Technology
| | | | - Scott J. Pye
- Flinders Institute for Nanoscale Science and Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| | | | - Ata Nosrati
- School of Engineering
- Edith Cowan University
- Perth
- Australia
| | - Colin L. Raston
- Flinders Institute for Nanoscale Science and Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| |
Collapse
|