1
|
Tsai CY, Chang WH, Lu MY, Chen LJ. Advances in the heterostructures for enhanced hydrogen production efficiency: a comprehensive review. NANOSCALE 2024; 16:16376-16403. [PMID: 39171376 DOI: 10.1039/d4nr01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The growing global energy demand and heightened environmental consciousness have contributed to the increasing interest in green energy sources, including hydrogen production. However, the efficacy of this technology is contingent upon the efficient separation of charges, high absorption of sunlight, rapid charge transfer rate, abundant active sites and resistance to photodegradation. The utilization of photocatalytic heterostructures coupling two materials has proved to be effective in tackling the aforementioned challenges and delivering exceptional performance in the production of hydrogen. The present article provides a comprehensive overview of operational principles of photocatalysis and the combination of photocatalytic and piezo-catalytic applications with heterostructures, including the transfer behavior and mechanisms of photoexcited non-equilibrium carriers between the materials. Furthermore, the effects of recent advances and state-of-the-art designs of heterostructures on hydrogen production are discussed, offering practical approaches to form heterostructures for efficient hydrogen production.
Collapse
Affiliation(s)
- Chen-Yo Tsai
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Wei-Hsuan Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ming-Yen Lu
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Lih-Juann Chen
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Yao X, Su X, Wang X, Hu X, Hong X. Encapsulating stable perovskite catalysts in hollow nanoreactors for enhanced pollutants degradation. J Colloid Interface Sci 2024; 669:657-666. [PMID: 38733877 DOI: 10.1016/j.jcis.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Creating a microenvironment for enhanced peroxymonosulfate (PMS) activation is vital in advanced oxidation processes. The objective of this study was to fabricate nanoshells composed of titanium dioxide embedded with cobalt titanate nanoparticles of perovskite to act as nanoreactors for effectively initiating PMS and degrading contaminants. The unique porous structure and confined space of the nanoreactor facilitated reactant absorption and mass transfer to the active sites, resulting in exceptional catalytic performance for pollutant elimination. Experimental findings revealed close to 100% decomposition efficiency of 4-chlorophenol (4-CP) within an hour utilizing the nanoreactors over a wide pH range. The TiO2/CoTiO3 hollow nanoshells catalysts also displayed adaptability in disintegrating organic dyes and antibiotics. The radicals SO4•-, •OH, and non-radicals 1O2 were determined to be accountable for eliminating pollutants, as supported by trapping experiments and electron paramagnetic resonance spectra. The catalyst was confirmed as an electron donor and PMS as an electron acceptor through electrochemical tests and density functional theory calculations. This study underscores the potential of incorporating stable perovskite catalysts in hollow nanoreactors to enhance wastewater treatment.
Collapse
Affiliation(s)
- Xiaxi Yao
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China; Changshu Research Institute, East China University of Science and Technology, Changshu 215500, PR China.
| | - Xuhui Su
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xuhong Wang
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xiuli Hu
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China.
| | - Xuekun Hong
- School of Electronic Information Engineering, Changshu Institute of Technology, Changshu 215500, PR China.
| |
Collapse
|
3
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
4
|
Chen Y, Soler L, Cazorla C, Oliveras J, Bastús NG, Puntes VF, Llorca J. Facet-engineered TiO 2 drives photocatalytic activity and stability of supported noble metal clusters during H 2 evolution. Nat Commun 2023; 14:6165. [PMID: 37789037 PMCID: PMC10547715 DOI: 10.1038/s41467-023-41976-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Metal clusters supported on TiO2 are widely used in many photocatalytic applications, including pollution control and production of solar fuels. Besides high photoactivity, stability during the photoreaction is another essential quality of high-performance photocatalysts, however systematic studies on this attribute are absent for metal clusters supported on TiO2. Here we have studied, both experimentally and with first-principles simulation methods, the stability of Pt, Pd and Au clusters prepared by ball milling on nanoshaped anatase nanoparticles preferentially exposing {001} (plates) and {101} (bipyramids) facets during the photogeneration of hydrogen. It is found that Pt/TiO2 exhibits superior stability than Pd/TiO2 and Au/TiO2, and that {001} facet-based photocatalysts always are more stable than their {101} analogous regardless of the considered metal species. The loss of stability associated with cluster sintering, which is facilitated by the transfer of photoexcited carriers from the metal species to the neighbouring Ti and O atoms, most significantly and detrimentally affects the H2-evolution photoactivity.
Collapse
Affiliation(s)
- Yufen Chen
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain
| | - Lluís Soler
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
| | - Claudio Cazorla
- Department of Physics, Universitat Politècnica de Catalunya, Campus Nord, B4-B5, Barcelona, E-08034, Spain
| | - Jana Oliveras
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
| | - Neus G Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
| | - Víctor F Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 129, Barcelona, 08035, Spain
| | - Jordi Llorca
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
| |
Collapse
|
5
|
Feng C, Bi Y, Chen C, Li S, Wang Z, Xin H, Pan Y, Liu F, Lu Y, Liu Y, Zhang R, Li X. Urea-H 2O 2 defect engineering of δ-MnO 2 for propane photothermal oxidation: Structure-activity relationship and synergetic mechanism determination. J Colloid Interface Sci 2023; 641:48-58. [PMID: 36924545 DOI: 10.1016/j.jcis.2023.03.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Photothermal catalysis has an advantage in effective and economical elimination technology of volatile organic compounds (VOCs) in the ascendant. Herein, various surface defect engineering routes were adopted to enhance the low-temperature propane oxidation of δ-MnO2. Compared to reducing etchants urea and vitamin C, δ-MnO2 treated with urea - H2O2 exhibited an excellent thermal (T90 = 240 ℃) and photothermal (T90 = 196 ℃) activities of propane oxidation. Urea - H2O2 treatment provided high concentration of Mn4+ and surface-active oxygen (Mn4+-Osur) species as surface-active sites, and produced numerous oxygen vacancies to improve charge separation and superoxide species generation capacity. Thus, the photothermal conversion efficiency and low-temperature reducibility were remarkably enhanced. Furthermore, the photothermal synergistic catalytic mechanism was proposed based on in-situ diffuse reflectance infrared Fourier transform spectroscopy and control experiments. The strategy here offered insight into the rational design of efficient transition catalysts, and in-depth understanding of the photothermal catalytic VOCs removal mechanism.
Collapse
Affiliation(s)
- Chao Feng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yuxi Bi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Chong Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Shuangju Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zhong Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hongchuan Xin
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Fang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yukun Lu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuebing Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|
6
|
Feng K, Sun T, Hu X, Fan J, Yang D, Liu E. 0D/2D Co 0.85Se/TiO 2 p–n heterojunction for enhanced photocatalytic H 2 evolution. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00858k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The H2 rate of 15%-Co0.85Se/TiO2 is 2312.5 μmol g−1 h−1, which is 10.3 times and 10.8 times higher than TiO2 and Co0.85Se. The enhanced activity is attributed to the higher electrochemically active surface area and the formation of p–n heterostructure.
Collapse
Affiliation(s)
- Keting Feng
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Tao Sun
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaoyun Hu
- School of Physics, Northwest University, Xi'an, 710069, P. R. China
| | - Jun Fan
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Dongyuan Yang
- Shaanxi Yanchang Petroleum Group Co., Ltd., Xi'an, 710000, P. R. China
| | - Enzhou Liu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
7
|
Meng A, Zhou S, Wen D, Han P, Su Y. g-C3N4/CoTiO3 S-scheme heterojunction for enhanced visible light hydrogen production through photocatalytic pure water splitting. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Wang C, Liu N, Wang N, Ma Z, Tian Y, Wang L, Chen X, Hou B. Co-sensitization of TiO2 nanotube arrays with polymerized aromatic amines and its application in photoelectrochemical cathodic protection. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Photodehydrogenation of Ethanol over Cu 2O/TiO 2 Heterostructures. NANOMATERIALS 2021; 11:nano11061399. [PMID: 34070566 PMCID: PMC8230259 DOI: 10.3390/nano11061399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
The photodehydrogenation of ethanol is a sustainable and potentially cost-effective strategy to produce hydrogen and acetaldehyde from renewable resources. The optimization of this process requires the use of highly active, stable and selective photocatalytic materials based on abundant elements and the proper adjustment of the reaction conditions, including temperature. In this work, Cu2O-TiO2 type-II heterojunctions with different Cu2O amounts are obtained by a one-pot hydrothermal method. The structural and chemical properties of the produced materials and their activity toward ethanol photodehydrogenation under UV and visible light illumination are evaluated. The Cu2O-TiO2 photocatalysts exhibit a high selectivity toward acetaldehyde production and up to tenfold higher hydrogen evolution rates compared to bare TiO2. We further discern here the influence of temperature and visible light absorption on the photocatalytic performance. Our results point toward the combination of energy sources in thermo-photocatalytic reactors as an efficient strategy for solar energy conversion.
Collapse
|
10
|
Chen Y, Hu Q, Yu M, Gong X, Li S, Wang S, Yu H, Li Z. In situ construction of a direct Z-scheme CdIn 2S 4/TiO 2 heterojunction for improving photocatalytic properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00338k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct Z-scheme photocatalytic systems driven by visible light to eliminate organic pollutants in wastewater have become important scientific tools in the field of photocatalysis.
Collapse
Affiliation(s)
- Yanyan Chen
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Qi Hu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Minghui Yu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Xiaoyu Gong
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Shenjie Li
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Shuang Wang
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Hao Yu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Zhiqiang Li
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| |
Collapse
|