1
|
Huang X, Wang H, Kong L, Chen Z, Zhang J, Zuo Y, Chen W. Microwave-assisted hydrothermal synthesis of highly dispersed cerium-zirconium solid solution on Ti 3C 2T x nanosheets as an efficient decontamination towards sulfur mustard simulants. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136203. [PMID: 39471616 DOI: 10.1016/j.jhazmat.2024.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
The microwave-assisted hydrothermal method has facilitated the straightforward and efficient production of nanoscale CexZr1-xO2/Ti3C2Tx composites. This technique has greatly shortened the synthesis time several hours required by conventional hydrothermal method to merely 10 min. Due to the unique mechanism of microwave-hydrothermal synthesis, composites with excellent crystallinity, uniform particle size, and superior degradation capabilities can be obtained without calcination. Our investigation systematically explores the influence of various factors including mineralizer concentration, dispersant types, synthesis duration, cerium-to-zirconium ratio, as well as MXene content on the material properties. Optimal degradation of 2-chloroethyl ethyl sulfide (2-CEES), sulfur mustard simulants, is achieved using PEG1000 as the dispersant, a cerium-to-zirconium ratio of 1:2, along with 15 mL of MXene, resulting in a remarkably short half-life of only 6.5 min. Furthermore, it is confirmed that the incorporation of cerium atoms into ZrO2 lattice, forming a solid solution that is deposited onto the interlayer and surface of Ti3C2Tx nanosheets, with the composite particles measuring approximately 5.01 nm. The reduced size and increased specific surface area, coupled with the synergistic effects of oxygen vacancies and acid-base sites, ultimately contribute to the hydrolysis and elimination reactions occurring on 2-CEES. This research offers fresh perspectives on the development of novel materials for the degradation of chemical warfare agents.
Collapse
Affiliation(s)
- Xingqi Huang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Haibo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingce Kong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Zihao Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yanjun Zuo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| | - Wenming Chen
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| |
Collapse
|
2
|
Hu X, Yang Y, Li N, Huang C, Zhou Y, Zhang L, Zhong Y, Liu Y, Wang Y. Interface-regulated S-type core-shell PCN-224@TiO 2 heterojunction for visible-light-driven generation of singlet oxygen for selective photooxidation of 2-chloroethyl ethyl sulfide. J Colloid Interface Sci 2024; 674:791-804. [PMID: 38955010 DOI: 10.1016/j.jcis.2024.06.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Selective oxidation of sulfur mustard gas (HD) to non-toxic sulfoxide by the visible-light-catalyzed generation of singlet oxygen (1O2) is a promising degradation strategy. Although PCN-224 can absorb visible light, it suffers from rapid electron-hole recombination and low redox capacity, which limits the performance of HD degradation. Titanium dioxide (TiO2) is an excellent photocatalyst but it lacks visible-light-activity in degrading HD. In this study, PCN-224@TiO2 heterojunction with S-type core-shell structure was synthesized by in-situ growth method to prolong the visible light absorption capacity of TiO2 and inhibit the rapid recombination of PCN-224. The interface formation and internal electric field were optimized by adjusting the Zr/Ti ratio to enhance the charge transfer, redox capacity, electron-hole separation, and visible light absorption. In this study, the formation of heterojunction composites based on Zr-O-Ti linkages is demonstrated by a series of characterization methods. It is demonstrated by experiments and theoretical calculations that PCN-224@TiO2 can generate nearly 100 % 1O2 under visible light conditions without a sacrificial agent, resulting in efficient and selective oxidation of 2-chloroethyl ethyl sulfide (CEES), a simulant of HD, to non-toxic sulfoxide form.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China; Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Ying Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Nan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Yanqin Liu
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Yao Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
3
|
Huang X, Chen W, Wang H, Kong L, Zhang J, Zhao C, Zuo Y. Manganese Oxides with Different Morphologies In Situ Anchored onto Ti 3C 2T x Nanosheets: Highly Effective Decontamination toward Sulfur Mustard Simulants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30371-30384. [PMID: 38815133 DOI: 10.1021/acsami.4c03629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Manganese oxides with porous structure and abundant active sites show potential in degrading sulfur mustard (HD). However, there is an interface effect between the oily liquid HD and nano oxides, and the powder is prone to agglomeration, which leads to incomplete contact and limited degradation ability. Here, we demonstrate a simple hydrothermal method for preparing MnO2/Ti3C2 composites to address this problem. The influence of morphology and crystal structure on performance are examined. Herein, flower-like MnO2 is loaded onto the surface or interlayer of Ti3C2-MXene nanosheets during in situ formation, significantly expanding the specific surface area. It also provides abundant acid-base sites and oxygen vacancies for the degradation of simulants 2-chloro-ethyl-ethyl thioether (2-CEES) without external energy, resulting in a reaction half-life as fast as 12.5 min. The relationship between structure and performance is clearly elaborated through temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS) analyses. Based on in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis, gas chromatography-mass spectrometry (GC-MS) analysis, and density functional theory (DFT) calculation, the proposed degradation pathway of the 2-CEES molecule is a synergistic effect of hydrolysis, elimination, and oxidation. Furthermore, the products are nontoxic or low toxic. Metal oxide/MXene composites are first illustrated for their potential use in degrading sulfur mustard, suggesting new insights into these materials as novel decontamination for decomposing chemical warfare agents.
Collapse
Affiliation(s)
- Xingqi Huang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Wenming Chen
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Haibo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingce Kong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Chonglin Zhao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yanjun Zuo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| |
Collapse
|
4
|
Seo JY, Song Y, Lee JH, Na J, Baek KY. Robust and highly reactive membranes for continuous disposal of chemical warfare agents: Effects of nanostructure and functionality in MOF and nanochitin aerogel composites. Carbohydr Polym 2024; 324:121489. [PMID: 37985045 DOI: 10.1016/j.carbpol.2023.121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Developing appropriate disposal of stockpiles of chemical warfare agents (CWAs) has gained significant attention as their lethal toxicity seriously harms humanity. In this study, a novel green-fabrication method with UiO-66 catalysts and amine-functionalized chitin nanofibers (ChNFs) was suggested to prepare durable and highly reactive membranes for decomposing chemical warfare agents (CWAs) in the continuous flow system. The strong interaction between ChNFs and the UiO-66 led to stable loading of the UiO-66 on the continuous nano-porous channel of the ChNF reactive membrane even with high loading of UiO-66 (70 wt% of UiO-66 in the ChNF substrate). In addition, the Brønsted base functionalities (-NH2 and -NHCOCH3) of the ChNF enhanced the catalytic activity and recyclability of the UiO-66. The resulting 70-ChNF composites can effectively decompose a nerve agent simulant (methyl paraoxon) even after 7 repeatable cycles, which has been not obtained in the previous UiO-66 catalyst. The ChNF/UiO-66 reactive membranes with 1 m2 of the area decomposed 130 g of CWAs within an hour in a continuous flow system. We believe these robust and highly reactive membranes can provide a sustainable and efficient solution for the massive CWA disposal and also contribute to the advancement of functional membrane material science.
Collapse
Affiliation(s)
- Jin Young Seo
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 02481, Republic of Korea
| | - Younghan Song
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 02481, Republic of Korea
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea
| | - Kyung-Youl Baek
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea; Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
5
|
Zhou C, Li L, Qin H, Wu Q, Wang L, Lin C, Yang B, Tao CA, Zhang S. Humidity Enhances the Solid-Phase Catalytic Ability of a Bulk MOF-808 Metal-Organic Gel toward a Chemical Warfare Agent Simulant. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54582-54589. [PMID: 37974445 DOI: 10.1021/acsami.3c14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Zirconium-based metal-organic frameworks have emerged as promising materials for detoxifying chemical warfare agents (CWAs) due to their remarkable stability and porosity. However, their practical application is hindered by issues with their powder form and poor catalytic performance in solid-phase degradation. To address these challenges, herein, a granular MOF-808 metal-organic gel (G808) is prepared under optimized conditions for catalytic degradation of the simulant 2-chloroethyl ethyl sulfide (2-CEES), a sulfide blister agent, in a neat state under different humidity conditions. The detoxification performance of G808 toward 2-CEES is significantly enhanced as the content of water present increases. The half-life of 2-CEES decontaminated by G808 can be shortened to 816 s, surpassing those of many other benchmark materials. To confirm the mechanism of catalytic degradation, we used gas chromatography, gas chromatography-mass spectrometry, and theoretical calculations. The findings revealed that hydrolysis was the predominant route. Additionally, granular G808 was reusable and adaptable to high-moisture environments, making it an excellent protective material with practical potential.
Collapse
Affiliation(s)
- Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Li Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Haojie Qin
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qiong Wu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Liying Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Changxu Lin
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bo Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Shouxin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| |
Collapse
|
6
|
Jiang N, Liu H, Zhao G, Li H, Yang S, Xu X, Zhuang X, Cheng B. Aramid nanofibers supported metal-organic framework aerogel for protection of chemical warfare agent. J Colloid Interface Sci 2023; 640:192-198. [PMID: 36863176 DOI: 10.1016/j.jcis.2023.02.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Protective fabrics containing Zr-Based Metal-Organic Frameworks (Zr-MOFs) show great potential in the detoxification of chemical warfare agents (CWAs). However, the current studies still face the challenges of complicated fabrication processes, limited MOF loading mass, and insufficient protection. Herein, we developed a lightweight, flexible and mechanical robust aerogel by in situ growth of UiO-66-NH2 onto aramid nanofibers (ANFs) and assembly of UiO-66-NH2 loaded ANFs (UiO-66-NH2@ANFs) into 3D hierarchically porous architecture. The UiO-66-NH2@ANF aerogels feature high MOF loading of 261 %, high surface area of 589.349 m2 g-1, open and interconnected cellular structure, which provide efficient transfer channels and promote catalytic degradation of CWAs. As a result, the UiO-66-NH2@ANF aerogels demonstrate high 2-chloroethyl ethyl thioether (CEES) removal rate at 98.9 % and a short half-life of 8.15 min. Moreover, the aerogels present good mechanical stability (recovery rate of 93.3 % after 100 cycles under 30 % strain), low thermal conductivity (λ of 25.66 mW m-1 K-1), high flame resistance (LOI of 32 %) and good wearing comfortableness, indicating promising potential in multifunctional protection against CWAs.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Hongyan Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Guodong Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Heyi Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Shuo Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xianlin Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Bowen Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Seo JY, Choi MH, Lee BW, Lee JH, Shin S, Cho S, Cho KY, Baek KY. Feasible Detoxification Coating Material for Chemical Warfare Agents Using Poly(methyl methacrylate)-Branched Poly(ethyleneimine) Copolymer and Metal-Organic Framework Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50246-50255. [PMID: 36288400 DOI: 10.1021/acsami.2c15961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Defense against chemical warfare agents (CWAs) is regarded as a top priority for the protection of humanity, but it still depends on physical protection with severe limitations such as residual toxicity and post-treatment requirement. In this study, a strategically designed functional polymeric substrate was composited with a metal-organic framework catalyst to remove toxicity immediately. A series of PMMA-BPEI copolymers exhibited high processability as a coating and accelerated the catalytic activity of Zr(IV)-based metal-organic framework catalysts (UiO-66). Among them, PMB12_40 composite coating on a cotton fabric, containing a PMMA-BPEI copolymer (PMMA/BPEI = 1/2) and 40% of UiO-66 catalyst, can efficiently decompose nerve agent simulants (methyl-paraoxon) under both liquid phase (t1/2 = 0.14 h) and humidified (t1/2 = 4.8 h) conditions. Moreover, a real agent, GD, was decomposed 100% by PMB12_40 in 4 h at 25 °C and 65% relative humidity. On the basis of superior catalytic activity, the PMB composites are anticipated to be a potential material for active chemical protection coating.
Collapse
Affiliation(s)
- Jin Young Seo
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea
| | - Min Hyuk Choi
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bo Woo Lee
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea
| | - Seunghan Shin
- Green Chemistry and Materials Group, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Sangho Cho
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kie Yong Cho
- Department of Industrial Chemistry, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Kyung-Youl Baek
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Theoretical studies of metal-organic frameworks: Calculation methods and applications in catalysis, gas separation, and energy storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Lou M, Bayles A, Everitt HO, Halas NJ. Selective Photodetoxification of a Sulfur Mustard Simulant Using Plasmonic Aluminum Nanoparticles. NANO LETTERS 2022; 22:7699-7705. [PMID: 36073653 DOI: 10.1021/acs.nanolett.2c03188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmonic nanostructures have attracted increasing interest in the fields of photochemistry and photocatalysis for their ability to enhance reactivity and tune reaction selectivity, a benefit of their strong interactions with light and their multiple energy decay mechanisms. Here we introduce the use of earth-abundant plasmonic aluminum nanoparticles as a promising renewable detoxifier of the sulfur mustard simulant 2-chloroethylethylsulfide through gas phase photodecomposition. Analysis of the decomposition products indicates that C-S bond breaking is facilitated under illumination, while C-Cl breaking and HCl elimination are favored under thermocatalytic (dark) conditions. This difference in reaction pathways illuminates the potential of plasmonic nanoparticles to tailor reaction selectivity toward less hazardous products in the detoxification of chemical warfare agents. Moreover, the photocatalytic activity of the Al nanoparticles can be regenerated almost completely after the reaction concludes through a simple surface treatment.
Collapse
Affiliation(s)
- Minghe Lou
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory of Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Aaron Bayles
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory of Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Henry O Everitt
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory of Nanophotonics, Rice University, Houston, Texas 77005, United States
- U.S. Army DEVCOM Army Research Laboratory, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory of Nanophotonics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Zhou C, Yuan B, Zhang S, Yang G, Lu L, Li H, Tao CA. Ultrafast Degradation and High Adsorption Capability of a Sulfur Mustard Simulant under Ambient Conditions Using Granular UiO-66-NH 2 Metal-Organic Gels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23383-23391. [PMID: 35549001 DOI: 10.1021/acsami.2c02401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have been considered as prospective materials for the degradation of nerve chemical warfare agents (CWAs) but show poor catalytic performance toward blister agents. Moreover, the powder issues and the poor adsorption capability also remain as the major challenges for the application of Zr-MOFs in practical CWA detoxification. Herein, a series of defected granular UiO-66-NH2 metal-organic gels are synthesized via adjusting the amount of added concentrated hydrochloric acid for the decontamination of 2-chloroethyl ethyl sulfide (2-CEES), a sulfur mustard simulant. The half-life of 2-CEES decontaminated by defected granular UiO-66-NH2 metal-organic gels can be shortened to 7.6 min, which is the highest reported value for MOFs under ambient conditions. The mechanism of decontamination is that the amino group on the linkers in UiO-66-NH2 MOGs undergoes a substitution reaction with 2-CEES to yield 2-(2-(ethylthio)ethylamino)terephthalic acid, which is less toxic and fixed in the frameworks. The recycling test corroborates that the granular UiO-66-NH2 xerogels possess good stability and reusability. Static adsorption and desorption tests show that UiO-66-NH2 xerogels possess a high 2-CEES vapor adsorption capacity of 802 mg/g after exposure for 1 d and only 28 wt % desorption capacity after air exposure for 7 d. The dual function of ultrafast degradation and high adsorption capability provide a firm foundation for using UiO-66-NH2 xerogels as a future protection media.
Collapse
Affiliation(s)
- Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Bo Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Shouxin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Guang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Lin Lu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Cheng-An Tao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
11
|
Hao Y, Papazyan EK, Ba Y, Liu Y. Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yajiao Hao
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Edgar K. Papazyan
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Yong Ba
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| |
Collapse
|
12
|
Polyoxometalates and Metal–Organic Frameworks Based Dual-Functional Catalysts for Detoxification of Bis(2-Chloroethyl) Sulfide and Organophosphorus Agents. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Seo JY, Song Y, Lee JH, Kim H, Cho S, Baek KY. Robust Nanocellulose/Metal-Organic Framework Aerogel Composites: Superior Performance for Static and Continuous Disposal of Chemical Warfare Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33516-33523. [PMID: 34236161 DOI: 10.1021/acsami.1c08138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environment-friendly and robust nanocellulose/metal-organic framework aerogel composites were prepared for effective detoxification of chemical warfare agent simulants both in static and dynamic continuous flow systems. For this, we fabricated a durable porous composite of the UiO-66 catalyst and TEMPO-oxidized cellulose nanofibers (TOCN) to examine as a detoxification filter. Even with over 50 wt % UiO-66, the obtained cellulose aerogel composites exhibited high stability without leaking of UiO-66 for 4 weeks under an aqueous state. The cellulose aerogel composite with 54 wt % UiO-66 showed a quite high surface area (483 m2 g-1) despite the presence of TOCN, which caused fast degradation of methyl paraoxon (MPO), a nerve agent simulant, with a 0.7 min half-life in an aqueous solution with N-ethylmorpholine buffer. This aerogel composite was then examined as the detoxification filter in the continuous flow system under a 7.2 mL h-1 flow rate, which surprisingly decomposed 53.7 g of MPO within 1 h with 1 m2 of the effective area.
Collapse
Affiliation(s)
- Jin Young Seo
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Younghan Song
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Hyungsup Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sangho Cho
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyung-Youl Baek
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|