1
|
Poudyal S, Deka M, Adhikary P, D R, Barman PK, Yadav R, Biswal B, Rajarapu R, Mukherjee S, Nanda BRK, Singh A, Misra A. Room Temperature, Twist Angle Independent, Momentum Direct Interlayer Excitons in van der Waals Heterostructures with Wide Spectral Tunability. NANO LETTERS 2024; 24:9575-9582. [PMID: 39051155 DOI: 10.1021/acs.nanolett.4c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Interlayer excitons (IXs) in van der Waals heterostructures with static out of plane dipole moment and long lifetime show promise in the development of exciton based optoelectronic devices and the exploration of many body physics. However, these IXs are not always observed, as the emission is very sensitive to lattice mismatch and twist angle between the constituent materials. Moreover, their emission intensity is very weak compared to that of corresponding intralayer excitons at room temperature. Here we report the room-temperature realization of twist angle independent momentum direct IX in the heterostructures of bulk PbI2 and bilayer WS2. Momentum conserving transitions combined with the large band offsets between the constituent materials enable intense IX emission at room temperature. A long lifetime (∼100 ns), noticeable Stark shift, and tunability of IX emission from 1.70 to 1.45 eV by varying the number of WS2 layers make these heterostructures promising to develop room temperature exciton based optoelectronic devices.
Collapse
Affiliation(s)
- Saroj Poudyal
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Mrinal Deka
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Priyo Adhikary
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ranju D
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Prahalad Kanti Barman
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Renu Yadav
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Bubunu Biswal
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
- Center for Atomistic Modelling and Materials Design, IIT Madras, Chennai 600036, India
| | - Ramesh Rajarapu
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Birabar Ranjit Kumar Nanda
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Atomistic Modelling and Materials Design, IIT Madras, Chennai 600036, India
| | - Akshay Singh
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Abhishek Misra
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| |
Collapse
|
2
|
Liu Y, Li HY, Cao HX, Zheng XY, Yin Shi B, Yin HT. Defect and interface/surface engineering synergistically modulated electron transfer and nonlinear absorption properties in MoX 2 (X = Se, S, Te)@ZnO heterojunction. NANOSCALE 2024; 16:1865-1879. [PMID: 38168696 DOI: 10.1039/d3nr05766f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Systematic interface and defect engineering strategies have been demonstrated to be an effective way to modulate the electron transfer and nonlinear absorption properties in semiconductor heterojunctions. However, the role played by defects and interfacial strain in electron transfer at the interface of the MoX2 (X = Se, S, Te)@ZnO heterojunction remains poorly understood. Herein, using the MoX2@ZnO heterojunction, we reveal that vacancies play a critical role in the interfacial electron transfer of heterojunctions. Specifically, we present the defect and interface engineering of the MoX2@ZnO heterojunction for controlled charge transfer and electron excitation-relaxation. The experimental characterization combined with first-principles calculations showed that the presence of defects promoted the transport of photogenerated carriers at the heterojunction interface, thereby inhibiting their rapid recombination. The DFT calculation confirmed that the electron band structure, density of states and charge density distribution in the system changed after the formation of Mo-O bonds. On the basis of defects and interfacial stress and the effective charge transfer, the MoX2@ZnO heterojunction exhibited excellent excitation and emission behaviors. The nonlinear optical regulation behavior of TMDs is expected to be realized with the help of the defects and interface/surface synergistically modulated effect of ZnO nanoparticles. The local strain generation on the MoX2@ZnO heterojunction boundary provides a new method for the design of new heterogeneous materials and will be of great significance to investigate the contact physical behavior and application of metals and two-dimensional (2D) semiconductors. This work provides some inspiration for the construction of heterojunctions with rich defects and surface/interface charge transfer channels to promote tunable electron transfer dynamics, thereby achieving a good nonlinear optical conversion efficiency and efficient charge separation in optoelectronic functional materials.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Hong-Yu Li
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Hong-Xu Cao
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Xin-Yu Zheng
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Bing- Yin Shi
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Hai-Tao Yin
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| |
Collapse
|
3
|
Yan J, Wang K, Liu H, Wang L, Li Y, Zhang G, Deng L. Construction of electrochemical biosensors based on MoSe 2@1T-MoS 2 heterojunction for the sensitive and rapid detection of miRNA-155 biomarker in breast cancer. Bioelectrochemistry 2023; 154:108541. [PMID: 37579553 DOI: 10.1016/j.bioelechem.2023.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
MiRNA-155 is a typical biomarker for breast cancer. Since its low concentration in the physiological environment and the limitations of conventional miRNA detection methods like Northern imprinting and RT-qPCR, convenient, real-time, and rapid detection methods are urgently needed. In this work, an electrochemical biosensor was constructed based on the flower-like MoSe2@1T-MoS2 heterojunction electrode material and specific RNA recognition probes, which can realize the rapid determination of miRNA-155 content with a wide detection range from 1 fM to 1 nM and a limit of detection (LOD) as low as 0.34 fM. Furthermore, the contents of miRNA-155 in blood samples of tumor-bearing mice and normal mice were measured as 724.93 pM and 21.42 pM, respectively by this biosensor, demonstrating its strong identification ability and miRNA-155 can be regarded as an ideal diagnostic marker. On this basis, a portable sensor platform was designed for on-site detection simulation and showed good recovery efficiency from 95.80% to 98.69%. Meanwhile, compared with the standard detection method RT-qPCR, the accuracy and reliability of the biosensor were verified, indicating that the biosensor has the potential to provide point-of-care testing (POCT) for the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Kaidi Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liwei Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Guoqing Zhang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Li Deng
- Department of Obstetrics, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530003, China
| |
Collapse
|
4
|
Kim JH, Jung BK, Kim SK, Yun KR, Ahn J, Oh S, Jeon MG, Lee TJ, Kim S, Oh N, Oh SJ, Seong TY. Ultrasensitive Near-Infrared InAs Colloidal Quantum Dot-ZnON Hybrid Phototransistor Based on a Gradated Band Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207526. [PMID: 37088787 DOI: 10.1002/advs.202207526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Amorphous metal oxide semiconductor phototransistors (MOTPs) integrated with colloidal quantum dots (QDs) (QD-MOTPs) are promising infrared photodetectors owing to their high photoconductive gain, low off-current level, and high compatibility with pixel circuits. However, to date, the poor mobility of conventional MOTPs, such as indium gallium zinc oxide (IGZO), and the toxicity of lead (Pb)-based QDs, such as lead sulfide and lead selenide, has limited the commercial applications of QD-MOTPs. Herein, an ultrasensitive QD-MOTP fabricated by integrating a high-mobility zinc oxynitride (ZnON)-based MOTP and lead-free indium arsenide (InAs) QDs is demonstrated. A new gradated bandgap structure is introduced in the InAs QD layer that absorbs infrared light, which prevents carriers from moving backward and effectively reduces electron-hole recombination. Chemical, optical, and structural analyses confirm the movement of the photoexcited carriers in the graded band structure. The novel QD-MOTP exhibits an outstanding performance with a responsivity of 1.15 × 105 A W-1 and detectivity of 5.32 × 1016 Jones at a light power density of 2 µW cm-2 under illumination at 905 nm.
Collapse
Affiliation(s)
- Jong-Ho Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Su-Kyung Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwang-Ro Yun
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Junhyuk Ahn
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seongkeun Oh
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min-Gyu Jeon
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Ju Lee
- Department of Nanophotonics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seongchan Kim
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04673, Republic of Korea
| | - Nuri Oh
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04673, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Yeon Seong
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Nanophotonics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
5
|
Wang PJ, Chang CJ, Lin SY, Sheu JK, Sun CK. Temporally probing the thermal phonon and charge transfer induced out-of-plane acoustical displacement of monolayer and bi-layer MoS 2/GaN heterojunction. PHOTOACOUSTICS 2023; 30:100477. [PMID: 37063309 PMCID: PMC10091029 DOI: 10.1016/j.pacs.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Acoustical behavior of semiconducting transition metal dichalcogenides determines the heat transfer pathway, and thus plays a crucial role in the electronics and optoelectronics design. In this research, van der Waals heterojunctions (vdWHs) consisting of transferred monolayer and bi-layer MoS2 on GaN substrate were studied. We observed an asymmetric bipolar acoustic strain wave with ∼5 ps duration, which describes the surface of substrate undergoing strong compressive deformation after weak tensile deformation in the out-of-plane direction. We developed a theory to explain the mechanisms responsible for the observed strain waveform in the vdWHs elastic system, and obtained the critical parameters of the carrier dynamics by temporal fitting. Our results not only report a coherent acoustic phonon generated in the vdWHs, which will complement our understanding of the thermal transfer at the 2D/substrate interface, but also provide information about the intrinsic properties in the vdWHs, which would benefit the design of the 2D-based devices in the future.
Collapse
Affiliation(s)
- Peng-Jui Wang
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Che-Jia Chang
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Yen Lin
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
6
|
Wang P, He D, Wang Y, Zhang X, He X, He J, Zhao H. Ultrafast Interlayer Charge Transfer between Bilayer PtSe 2 and Monolayer WS 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57822-57830. [PMID: 34797636 DOI: 10.1021/acsami.1c18189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interlayer charge transfer (CT) between PtSe2 and WS2 is studied experimentally. Layer-selective pump-probe and photoluminescence quenching measurements reveal ultrafast interlayer CT in the heterostructure formed by bilayer PtSe2 and monolayer WS2, confirming its type-II band alignment. The CT facilitates the formation of the interlayer excitons with a lifetime of several hundred ps to 1 ns, a diffusion coefficient of 0.9 cm2 s-1, and a diffusion length reaching 200 nm. These results demonstrate the integration of PtSe2 with other materials in van der Waals heterostructures with novel charge-transfer properties and help develop fundamental understanding on the performance of various optoelectronic devices based on heterostructures involving PtSe2.
Collapse
Affiliation(s)
- Pengzhi Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaoyue He
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jiaqi He
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Zhao
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Zheng SW, Wang HY, Wang L, Luo Y, Gao BR, Sun HB. Observation of robust charge transfer under strain engineering in two-dimensional MoS 2-WSe 2 heterostructures. NANOSCALE 2021; 13:14081-14088. [PMID: 34477689 DOI: 10.1039/d1nr02014e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strain is one of the effective ways to modulate the band structure of monolayer transition metal dichalcogenides (TMDCs), which has been reported in theoretical and steady-state spectroscopic studies. However, the strain effects on the charge transfer processes in TMDC heterostructures have not been experimentally addressed thus far. Here, we systematically investigate the strain-mediated transient spectral evolutions corresponding to excitons at band-edge and higher energy states for monolayer MoS2 and monolayer WSe2. It is demonstrated that Γ and K valleys in monolayer WSe2 and monolayer MoS2 present different strain responses, according to the broadband femtosecond pump-probe experimental results. It is further observed that the resulting band offset changes tuned by applied tensile strains in MoS2-WSe2 heterostructures would not affect the band-edge electron transfer profiles, where only monolayer WSe2 is excited. From a flexible optoelectronic applications perspective, the robust charge transfer under strain engineering in TMDC heterostructures is very advantageous.
Collapse
Affiliation(s)
- Shu-Wen Zheng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | | | | | | | | | | |
Collapse
|