1
|
Chen X, Kamat PV, Janáky C, Samu GF. Charge Transfer Kinetics in Halide Perovskites: On the Constraints of Time-Resolved Spectroscopy Measurements. ACS ENERGY LETTERS 2024; 9:3187-3203. [PMID: 38911533 PMCID: PMC11190987 DOI: 10.1021/acsenergylett.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Understanding photophysical processes in lead halide perovskites is an important aspect of optimizing the performance of optoelectronic devices. The determination of exact charge carrier extraction rate constants remains elusive, as there is a large and persistent discrepancy in the reported absolute values. In this review, we concentrate on experimental procedures adopted in the literature to obtain kinetic estimates of charge transfer processes and limitations imposed by the spectroscopy technique employed. Time-resolved techniques (e.g., transient absorption-reflection and time-resolved photoluminescence spectroscopy) are commonly employed to probe charge transfer at perovskite/transport layer interfaces. The variation in sample preparation and measurement conditions can produce a wide dispersion of the measured kinetic parameters. The selected time window and the kinetic fitting model employed introduce additional uncertainty. We discuss here evaluation strategies that rely on multiexponential fitting protocols (regular or stretched) and show how the dispersion in the reported values for carrier transfer rate constants can be resolved.
Collapse
Affiliation(s)
- Xiangtian Chen
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Prashant V. Kamat
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Csaba Janáky
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
- ELI-ALPS,
ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
| | - Gergely Ferenc Samu
- ELI-ALPS,
ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
Square 7-8. Szeged H-6721, Hungary
| |
Collapse
|
2
|
Chen X, Pasanen HP, Khan R, Tkachenko NV, Janáky C, Samu GF. Effect of Single-Crystal TiO 2/Perovskite Band Alignment on the Kinetics of Electron Extraction. J Phys Chem Lett 2024; 15:2057-2065. [PMID: 38357864 PMCID: PMC10895670 DOI: 10.1021/acs.jpclett.3c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The kinetics of electron extraction at the electron transfer layer/perovskite interface strongly affects the efficiency of a perovskite solar cell. By combining transient absorption and time-resolved photoluminescence spectroscopy, the electron extraction process between FA0.83Cs0.17Pb(I0.83Br0.17)3 and TiO2 single crystals with different orientations of (100), (110), and (111) were probed from subpicosecond to several hundred nanoseconds. It was revealed that the band alignment between the constituents influenced the relative electron extraction process. TiO2(100) showed the fastest overall and hot electron transfer, owing to the largest conduction band and Fermi level offset compared to FA0.83Cs0.17Pb(I0.83Br0.17)3. It was found that an early electron accumulation in these systems can have an influence on the following electron extraction on the several nanosecond time scale. Furthermore, the existence of a potential barrier at the TiO2/perovskite interface was also revealed by performing excitation fluence-dependent measurements.
Collapse
Affiliation(s)
- Xiangtian Chen
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Hannu P Pasanen
- Photonic Compounds and Nanomaterials, Chemistry and Advanced Material Group, Tampere University, Tampere FI-33720, Finland
| | - Ramsha Khan
- Photonic Compounds and Nanomaterials, Chemistry and Advanced Material Group, Tampere University, Tampere FI-33720, Finland
| | - Nikolai V Tkachenko
- Photonic Compounds and Nanomaterials, Chemistry and Advanced Material Group, Tampere University, Tampere FI-33720, Finland
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
| | - Gergely Ferenc Samu
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm square 7-8, Szeged H-6721, Hungary
| |
Collapse
|
3
|
Li W, Wu C, Han X. Controlling Molecular Orientation of Small Molecular Dopant-Free Hole-Transport Materials: Toward Efficient and Stable Perovskite Solar Cells. Molecules 2023; 28:molecules28073076. [PMID: 37049838 PMCID: PMC10095671 DOI: 10.3390/molecules28073076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Perovskite solar cells (PSCs) have great potential for future application. However, the commercialization of PSCs is limited by the prohibitively expensive and doped hole-transport materials (HTMs). In this regard, small molecular dopant-free HTMs are promising alternatives because of their low cost and high efficiency. However, these HTMs still have a lot of space for making further progress in both efficiency and stability. This review firstly provides outlining analyses about the important roles of molecular orientation when further enhancements in device efficiency and stability are concerned. Then, currently studied strategies to control molecular orientation in small molecular HTMs are presented. Finally, we propose an outlook aiming to obtain optimized molecular orientation in a cost-effective way.
Collapse
|
4
|
Youn SSO, Kim J, Na J, Jo W, Kim GY. Understanding the Space-Charge Layer in SnO 2 for Enhanced Electron Extraction in Hybrid Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48229-48239. [PMID: 36223089 DOI: 10.1021/acsami.2c12461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tin oxide (SnO2) has been widely used as an n-type metal oxide electron transport layer in perovskite solar cells (PSCs) owing to its superior electrical and optical properties and low-temperature synthesis process. In particular, the interfacial effect between indium tin oxide (ITO) and SnO2 is an important parameter that controls the charge transport properties and device performance of the PSCs. Therefore, understanding the interfacial effect of ITO/SnO2 and its role in PSCs is crucial, but it is not studied intensively. Herein, we investigated the space-charge effect at the interface of ITO/SnO2 using transfer length measurement and conductive atomic force microscopy as a function of SnO2 thickness. Moreover, optical, morphologic, and device measurements were performed to determine the optimal SnO2 thickness for PSCs. The space-charge effect was identified in ITO/SnO2 when the SnO2 layer was very thin due to electron depletion near the interface. Interestingly, a critical kink point was observed at approximately 10 nm SnO2 thickness, indicating the electron depletion and weak charge transfer behavior of the device. Thus, a thickness around 20 nm was favorable for the best PSC performance because charge transport behavior in the thin SnO2 layer was depressed by electron depletion. However, when the thickness of SnO2 exceeded 50 nm, the device performance deteriorated due to increased series resistance. This study provides a strategy to tune the electron transport layer and boost the charge transport behavior in PSCs, making important contributions to optimizing SnO2-based PSCs.
Collapse
Affiliation(s)
- Sarah Su-O Youn
- Department of Physics, Ewha Womans University, Seoul03760, Republic of Korea
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
| | - Jihyun Kim
- Department of Physics, Ewha Womans University, Seoul03760, Republic of Korea
| | - Junhong Na
- Department of Electrical Engineering, Kyungnam University, Changwon51767, Republic of Korea
| | - William Jo
- Department of Physics, Ewha Womans University, Seoul03760, Republic of Korea
| | - Gee Yeong Kim
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
| |
Collapse
|
5
|
Hoang MT, Pannu AS, Yang Y, Madani S, Shaw P, Sonar P, Tesfamichael T, Wang H. Surface Treatment of Inorganic CsPbI 3 Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light-Emitting Diodes with High Brightness. NANO-MICRO LETTERS 2022; 14:69. [PMID: 35237871 PMCID: PMC8891416 DOI: 10.1007/s40820-022-00813-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material. In particular, nanocrystals (NCs) of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications. However, the presence of surface defects on the NCs negatively impacts their performance in devices. Herein, we report a compatible facial post-treatment of CsPbI3 nanocrystals using guanidinium iodide (GuI). It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation. As a consequence, the film of treated CsPbI3 nanocrystals exhibited significantly enhanced luminescence and charge transport properties, leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8% with high brightness (peak luminance of 7039 cd m-2 and a peak current density of 10.8 cd A-1). The EQE is over threefold higher than performance of untreated device (EQE: 3.8%). The operational half-lifetime of the treated devices also was significantly improved with T50 of 20 min (at current density of 25 mA cm-2), outperforming the untreated devices (T50 ~ 6 min).
Collapse
Affiliation(s)
- Minh Tam Hoang
- Faculty of Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Amandeep Singh Pannu
- Faculty of Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Yang Yang
- Faculty of Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Sepideh Madani
- Faculty of Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Paul Shaw
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Prashant Sonar
- Faculty of Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Tuquabo Tesfamichael
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Hongxia Wang
- Faculty of Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|