1
|
Li W, Ding Q, Li M, Zhang T, Li C, Qi M, Dong B, Fang J, Wang L, Kim JS. Stimuli-responsive and targeted nanomaterials: Revolutionizing the treatment of bacterial infections. J Control Release 2025; 377:495-523. [PMID: 39580080 DOI: 10.1016/j.jconrel.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Bacterial infections have emerged as a major threat to global public health. The effectiveness of traditional antibiotic treatments is waning due to the increasing prevalence of antimicrobial resistance, leading to an urgent demand for alternative antibacterial technologies. In this context, antibacterial nanomaterials have proven to be powerful tools for treating antibiotic-resistant and recurring infections. Targeting nanomaterials not only enable the precise delivery of bactericidal agents but also ensure controlled release at the infection site, thereby reducing potential systemic side effects. This review collates and categorizes nanomaterial-based responsive and precision-targeted antibacterial strategies into three key types: exogenous stimuli-responsive (including light, ultrasound, magnetism), bacterial microenvironment-responsive (such as pH, enzymes, hypoxia), and targeted antibacterial action (involving electrostatic interaction, covalent bonding, receptor-ligand mechanisms). Furthermore, we discuss recent advances, potential mechanisms, and future prospects in responsive and targeted antimicrobial nanomaterials, aiming to provide a comprehensive overview of the field's development and inspire the formulation of novel, precision-targeted antimicrobial strategies.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Qihang Ding
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Meiqi Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tianshou Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chunyan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China.
| | - Jiao Fang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Cai W, Song Y, Xie Q, Wang S, Yin D, Wang S, Wang S, Zhang R, Lee M, Duan J, Zhang X. Dual osmotic controlled release platform for antibiotics to overcome antimicrobial-resistant infections and promote wound healing. J Control Release 2024; 375:627-642. [PMID: 39284525 DOI: 10.1016/j.jconrel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Methicillin-Resistant Staphylococcus aureus forming into biofilms can trigger chronic inflammation and disrupt skin wound healing processes. Prolonged and excessive use of antibiotics can expedite the development of resistance, primarily because of their limited ability to penetrate microbial membranes and biofilms, especially antibiotics with intracellular drug targets. Herein, we devise a strategy in which virus-inspired nanoparticles control the release of antibiotics through rapid penetration into both bacterial cells and biofilms, thereby combating antimicrobial-resistant infections and promoting skin wound healing. Lipid-based nanoparticles based on stearamine and cholesterol were designed to mimic viral highly ordered nanostructures. To mimic the arginine-rich fragments in viral protein transduction domains, the primary amines on the surface of the lipid-based nanoparticles were exchanged by guanidine segments. Levofloxacin, an antibiotic that inhibits DNA replication, was chosen as the model drug to be incorporated into nanoparticles. Hyaluronic acid was coated on the surface of nanoparticles acting as a capping agent to achieve bacterial-specific degradation and guanidine explosion in the bacterial microenvironment. Our virus-inspired nanoparticles displayed long-acting antibacterial effects and powerful biofilm elimination to overcome antimicrobial-resistant infections and promote skin wound healing. This work demonstrates the ability of virus-inspired nanoparticles to achieve a dual penetration of microbial cell membranes and biofilm structures to address antimicrobial-resistant infections and trigger skin wound healing.
Collapse
Affiliation(s)
- Wanni Cai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qing Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shiyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Song Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Min Lee
- Division of Oral and Systemic Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jinju Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Xiao Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
3
|
Chen X, Zheng J, You L, Qiu T, Christoforo T, Wei Y. Wormwood-infused porous-CaCO 3 for synthesizing antibacterial natural rubber latex. Int J Biol Macromol 2024; 260:129322. [PMID: 38242404 DOI: 10.1016/j.ijbiomac.2024.129322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Wormwood leaf is a traditional Chinese herbal medicine with a high medicinal value and long application history and its essential oil is a high-purity plant oil extracted from Wormwood leaf. Pharmacological research reveals that Wormwood leaf and Wormwood essential oil are a broad-spectrum antibacterial and antiviral drug, which can inhibit and kill many bacteria and viruses. We loaded wormwood extract on porous calcium carbonate (Porous-CaCO3) and introduced it and Wormwood essential oil into Natural rubber latex (NRL), thus synthesizing NRL composites with excellent vitro and in vivo antibacterial effect, cell compatibility and mechanical properties. This NRL material can delay the light aging and thermal oxidation of some mechanical properties, which provides a broader avenue for its commercialization.
Collapse
Affiliation(s)
- Xi Chen
- College of Chemistry and Material science, Longyan University, Longyan, Fujian 364000, PR China; Fujian Provincial Colleges and Unversity Engineering Research Center of Soild Waste Resource Utilization, Longyan University, Longyan, Fujian 364000, PR China.
| | - JiaQi Zheng
- College of Chemistry and Material science, Longyan University, Longyan, Fujian 364000, PR China
| | - LinXin You
- College of Chemistry and Material science, Longyan University, Longyan, Fujian 364000, PR China
| | - Tian Qiu
- College of Chemistry and Material science, Longyan University, Longyan, Fujian 364000, PR China
| | - Tyler Christoforo
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
4
|
Yang N, Sun M, Wang H, Hu D, Zhang A, Khan S, Chen Z, Chen D, Xie S. Progress of stimulus responsive nanosystems for targeting treatment of bacterial infectious diseases. Adv Colloid Interface Sci 2024; 324:103078. [PMID: 38215562 DOI: 10.1016/j.cis.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
In recent decades, due to insufficient concentration at the lesion site, low bioavailability and increasingly serious resistance, antibiotics have become less and less dominant in the treatment of bacterial infectious diseases. It promotes the development of efficient drug delivery systems, and is expected to achieve high absorption, targeted drug release and satisfactory therapy effects. A variety of endogenous stimulation-responsive nanosystems have been constructed by using special infection microenvironments (pH, enzymes, temperature, etc.). In this review, we firstly provide an extensive review of the current research progress in antibiotic treatment dilemmas and drug delivery systems. Then, the mechanism of microenvironment characteristics of bacterial infected lesions was elucidated to provide a strong theoretical basis for bacteria-targeting nanosystems design. In particular, the discussion focuses on the design principles of single-stimulus and dual-stimulus responsive nanosystems, as well as the use of endogenous stimulus-responsive nanosystems to deliver antimicrobial agents to target locations for combating bacterial infectious diseases. Finally, the challenges and prospects of endogenous stimulus-responsive nanosystems were summarized.
Collapse
Affiliation(s)
- Niuniu Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyuan Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Huixin Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Danlei Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Aoxue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Suliman Khan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Bakirdogen G, Selcuk E, Sahkulubey Kahveci EL, Ozbek T, Derman S, Kahveci MU. Fabrication of poly(β-amino ester) and hyaluronic acid based pH responsive nanocomplex as an antibiotic release system. Int J Biol Macromol 2024; 258:129060. [PMID: 38159698 DOI: 10.1016/j.ijbiomac.2023.129060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
World Health Organization (WHO) warns about antimicrobial resistance (AMR) considered as the most serious threats to global health, food security, and development. There are various efforts for elimination of this serious issue. These efforts include education of individuals, new policies, development of new antimicrobials and new materials for effective delivery. Novel drug delivery systems with ability of local and on-demand delivery are one of the promising approaches for prevention of AMR. In this regard, a pH-responsive antibiotic delivery system based on pH-responsive poly(β-amino ester) (PBAE) and enzyme responsive hyaluronic acid (HA). The polymeric nanocomplexes were obtained via electrostatic complexation of PBAE and HA in the presence of a model antibiotics, colistin and vancomycin. The particle sizes at pH 7.4 were determined in the range of 131-730 nm and 120-400 nm by DLS and STEM, respectively. When pH was switched from 7.4 to 5.5, the hydrodynamic diameter increased 2.5-32 fold. The drug release performances were tested using FITC-labeled antibiotics via fluorescence spectroscopy. The nanocomplexes released the drugs more at pH 5.5 compared to pH 7.4. Antibacterial activity of the system was evaluated on various bacteria. The nanocomplex loaded with the antibiotics exhibited significantly greater efficacy against E. coli and S. aureus.
Collapse
Affiliation(s)
- Gulsah Bakirdogen
- Yildiz Technical University, Davutpasa Campus, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Esenler, 34220, Istanbul, Turkey
| | - Emine Selcuk
- Yildiz Technical University, Davutpasa Campus, Department of Molecular Biology and Genetics, General Biology, Esenler, 34220, Istanbul, Turkey
| | - Elif L Sahkulubey Kahveci
- Yildiz Technical University, Davutpasa Campus, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Esenler, 34220, Istanbul, Turkey
| | - Tulin Ozbek
- Yildiz Technical University, Davutpasa Campus, Department of Molecular Biology and Genetics, General Biology, Esenler, 34220, Istanbul, Turkey
| | - Serap Derman
- Yildiz Technical University, Davutpasa Campus, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Esenler, 34220, Istanbul, Turkey.
| | - Muhammet U Kahveci
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, Sariyer, 34467, Istanbul, Turkey.
| |
Collapse
|
6
|
Luo W, Jiang Y, Liu J, Ju M, Algharib SA, Dawood AS. On-demand release of enrofloxacin-loaded chitosan oligosaccharide-oxidized hyaluronic acid composite nanogels for infected wound healing. Int J Biol Macromol 2023; 253:127248. [PMID: 37802431 DOI: 10.1016/j.ijbiomac.2023.127248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
In this study, enrofloxacin (ENR) was encapsulated by oxidized hyaluronic acid (OHA) containing aldehyde groups and chitosan oligosaccharide (COS) containing amino groups through Schiff's base reaction to achieve on-demand release in the micro-environment (pH 5.5 and HAase) of bacterial-infected wounds (Escherichia coli and Staphylococcus aureus). The formation mechanism, physicochemical characterization, responsive release performance, in vitro and in vivo antimicrobial activities, and in vivo regeneration in full-thickness wounds in a bacterial-infected mouse model of the ENR nanogels were systematically studied. According to the single-factor experiment and Design-Expert software, the optimized formula was 3.8 mg/ml COS, 0.5 mg/ml OHA, and 0.3 mg/ml ENR, respectively. The mean particle diameter, polydispersity index, zeta potential, loading capacity, and encapsulation efficiency were 35.6 ± 1.7 nm, -6.7 ± 0.5 mV, 0.25 ± 0.02, 30.4 % ± 1.3 %, and 76.3 % ± 2.6 %, respectively. The appearance, optical microscopy images, SEM, TEM, PXRD, and FTIR showed that the ENR nanogels were successfully prepared. The ENR nanogels exhibited obvious pH and HAase-responsiveness by swelling ratios and in vitro release and had stronger antibacterial activity with time-dependent and concentration-dependent effects, as well as accelerating infected wound healing. In vitro and in vivo biosafety studies suggested the great promise of ENR nanogels as biocompatible wound dressings for infected wounds.
Collapse
Affiliation(s)
- Wanhe Luo
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China.
| | - Yongtao Jiang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Jinhuan Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Mujie Ju
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt; National Reference Laboratory of Veterinary Drug Residues (HZAU), MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ali Sobhy Dawood
- Medicine and Infectious Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt; National Reference Laboratory of Veterinary Drug Residues (HZAU), MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023; 360:888-912. [PMID: 37482344 DOI: 10.1016/j.jconrel.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) consists of a complex combination of proteins, proteoglycans, and other biomolecules. ECM-based materials have been demonstrated to have high biocompatibility and bioactivity, which may be harnessed for drug delivery and tissue engineering applications. Herein, nanoparticles incorporating ECM-based materials and their applications in drug delivery and tissue engineering are reviewed. Proteins such as gelatin, collagen, and fibrin as well as glycosaminoglycans including hyaluronic acid, chondroitin sulfate, and heparin have been employed for cancer therapeutic delivery, gene delivery, and wound healing and regenerative medicine. Strategies for modifying and functionalizing these materials with synthetic and natural polymers or to enable stimuli-responsive degradation and drug release have increased the efficacy of these materials and nano-systems. The incorporation and modification of ECM-based materials may be used to drive drug targeting and increase tissue-specific cell differentiation more effectively.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marissa R Perez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
8
|
Cao J, Poon CT, Chan MHY, Hong EYH, Cheng YH, Hau FKW, Wu L, Yam VWW. Lamellar assembly and nanostructures of amphiphilic boron( iii) diketonates through suitable non-covalent interactions. Org Chem Front 2023. [DOI: 10.1039/d3qo00031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Cooperative assemblies of amphiphilic boron(iii) diketonate compounds, which are found to be driven by the formation of non-covalent π–π and hydrophobic interactions in THF–water solution, result in the construction of nanosheet of lamellar packing.
Collapse
Affiliation(s)
- Jingjie Cao
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Chun-Ting Poon
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Eugene Yau-Hin Hong
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yat-Hin Cheng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Franky Ka-Wah Hau
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Vivian Wing-Wah Yam
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
9
|
Zhang J, Wu M, Peng P, Liu J, Lu J, Qian S, Feng J. "Self-Defensive" Antifouling Zwitterionic Hydrogel Coatings on Polymeric Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56097-56109. [PMID: 36484598 DOI: 10.1021/acsami.2c17272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In biomedicine fields, biofouling can easily occur on devices such as sensors and catheters, causing some iatrogenic infections, which menace the lives and health of patients greatly. Therefore, it is of great significance to solve the problems of bacterial infection on the surfaces of medical devices. In this paper, "self-defensive" and antifouling zwitterionic hydrogel coatings were prepared by network interpenetration of the hydrogel and the polymeric substrates. The zwitterionic polysulfobetaine methacrylate (PSBMA) hydrogel coatings resisted most of the bacteria to adhere on the substrates. When a few bacteria were lucky to escape the antifouling defense and adhered to the coatings, gentamicin sulfate (GS) would be released under the trigger of a weakly acidic environment caused by bacterial metabolism to kill these bacteria. Simultaneously, the coatings of the bacteria-adhering sites would be degraded by hyaluronidase secreted by these bacteria and peeled off to remove the bacteria and renew the antifouling surfaces. The antifouling properties and mechanism of the self-defensive behavior of the hydrogel coatings on polymeric substrates were investigated. Furthermore, the in vitro and in vivo antibacterial performances, as well as the biocompatibility of the coatings, were demonstrated. The results suggested that the self-defensive antifouling zwitterionic hydrogel coatings hold great potential to be used on the surfaces of polymeric medical devices.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang310014, P. R. China
| | - Minmin Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang310014, P. R. China
| | - Pai Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang310014, P. R. China
| | - Jiaqi Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang310014, P. R. China
| | - Jie Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang310014, P. R. China
| | - Sunxiang Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang310014, P. R. China
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang310014, P. R. China
| |
Collapse
|
10
|
Antifungal CoAl layered double hydroxide ultrathin nanosheets loaded with oregano essential oil for cereal preservation. Food Chem 2022; 397:133809. [DOI: 10.1016/j.foodchem.2022.133809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
|
11
|
Liang Z, Chen D. Targeting therapy effects of composite hyaluronic acid/chitosan nanosystems containing inclusion complexes. Drug Deliv 2022; 29:2734-2741. [PMID: 35983590 PMCID: PMC9397479 DOI: 10.1080/10717544.2022.2112995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In order to solve the difficulties in the treatment of Staphylococcus aureus infections, a novel enrofloxacin-cyclodextrin (β-CD) inclusion complexes (IC) containing hyaluronic acid/chitosan (HA/CS) self-assemble composite nanosystems covered by poloxamer 188 was designed in our previous study. In this study, the sustained release peforemance, targeting delivery, and therapy effects of the enrofloxacin-composite nanosystems were evaluated in vivo. The enrofloxacin-composite nanosystems had uniform size and smooth surface with drug loading capacity (LC) of 9.92 ± 0.3%. Thermogravimetric analysis (TGA) showed that the material used for the preparation of the enrofloxacin-composite nanosystems did not affect the thermal stability of enrofloxacin. Compared with enrofloxacin injection and enrofloxacin polymeric nanoparticles, the enrofloxacin-composite nanosystems had excellent sustained-release performance in vivo. The enrofloxacin-composite nanosystems have specific targeting to the infection site of Staphylococcus aureus. The excellent sustained release and targeting delivery properties ensure that the anti-infective treatment effect of the enrofloxacin-composite nanosystems in vivo was higher than that of enrofloxacin injection and enrofloxacin polymeric nanoparticles. It can more effectively promote the wound healing. These results suggest that our previous designed enrofloxacin-composite nanosystems will be a promising formulation for effective targeting therapy of Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Zhiwei Liang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Saravanakumar K, Park S, Santosh SS, Ganeshalingam A, Thiripuranathar G, Sathiyaseelan A, Vijayasarathy S, Swaminathan A, Priya VV, Wang MH. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. Int J Biol Macromol 2022; 222:2744-2760. [DOI: 10.1016/j.ijbiomac.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
13
|
Yuan Q, Bao B, Li M, Tang Y. Bioactive Composite Nanoparticles for Effective Microenvironment Regulation, Neuroprotection, and Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15623-15631. [PMID: 35322659 DOI: 10.1021/acsami.2c00579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brain injuries typically result in neural tissue damage and trigger a permanent neurologic deficit. Current methods exhibit limited effects due to the harsh microenvironment of injury regions rich in reactive oxygen species (ROS). Herein, a microenvironment regulation combined with cellular differentiation strategy is designed for repairing injured nerves. We prepare PMNT/F@D-NP nanoparticles comprising a bioactive polythiophene derivative (PMNT) and fullerenol as a multifunctional theranostic nanoplatform. PMNT/F@D-NPs can significantly reduce the accumulation of ROS in the simulated ischemic brain injury trial and inhibit cell apoptosis due to the effective free radical scavenging ability of fullerenol. Interestingly, the bioactive PMNT/F@D-NPs can promote the proliferation and differentiation of neurons, confirmed by immunofluorescence and western blotting studies. This newly developed strategy exhibits a combinatorial therapeutic effect by promoting nerve cell survival and differentiation while improving the microenvironment in the damaged area, which paves the way for the rational design of multifunctional agents for brain injury therapy.
Collapse
Affiliation(s)
- Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
14
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
15
|
Zhang S, Liang R, Xu K, Zheng S, Mukherjee S, Liu P, Wang C, Chen Y. Construction of multifunctional micro-patterned PALNMA/PDADMAC/PEGDA hydrogel and intelligently responsive antibacterial coating HA/BBR on Mg alloy surface for orthopedic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112636. [DOI: 10.1016/j.msec.2021.112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
|
16
|
Responsive nanoplatform for persistent luminescence "turn-on" imaging and "on-demand" synergistic therapy of bacterial infection. J Colloid Interface Sci 2021; 610:687-697. [PMID: 34863538 DOI: 10.1016/j.jcis.2021.11.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
Multifunctional nanotheranostic platforms are emerging for the treatment of bacterial infections. Uncontrollable drug release and poor response in target location leads to inefficient therapy and failure to offer timely antibacterial monitoring. Here, we report a multifunctional nanoplatform that can be triggered by the bacterial microenvironment for effective bacterial killing and high-sensitive persistent luminescence (PL) "turn-on" imaging. Hyaluronic acid (HA) is grafted on the surface of mesoporous silica-coated persistent luminescence nanoparticles (PLNPs@MSN) loaded with cinnamaldehyde (CA). Further in situ growth of MnO2 shells gives PLNPs@MSN@CA-HA-MnO2 (PMC-HA-MnO2). MnO2 shell of PMC-HA-MnO2 can be reduced to Mn2+ by the H2O2 in the bacterial microenvironment to trigger persistent luminescence (PL) "turn-on" imaging along with chemodynamic therapy (CDT). Meanwhile, HA can response to bacterially secreted hyaluronidase to make the packaged CA release controllable and "on-demand". Consequently, PMC-HA-MnO2 enables effective response to bacterial-infected region, ensuring high-sensitive "turn-on" imaging, synergistic CDT, accurate targeting and "on-demand" CA release to give great antibacterial effect. This nanoplatform has great potential for the diagnosis and treatment of multidrug-resistant bacterial infection with high specificity and efficiency.
Collapse
|
17
|
Dunshee LC, Sullivan MO, Kiick KL. Therapeutic nanocarriers comprising extracellular matrix-inspired peptides and polysaccharides. Expert Opin Drug Deliv 2021; 18:1723-1740. [PMID: 34696691 PMCID: PMC8601199 DOI: 10.1080/17425247.2021.1988925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The extracellular matrix (ECM) is vital for cell and tissue development. Given its importance, extensive work has been conducted to develop biomaterials and drug delivery vehicles that capture features of ECM structure and function. AREAS COVERED This review highlights recent developments of ECM-inspired nanocarriers and their exploration for drug and gene delivery applications. Nanocarriers that are inspired by or created from primary components of the ECM (e.g. elastin, collagen, hyaluronic acid (HA), or combinations of these) are explicitly covered. An update on current clinical trials employing elastin-like proteins is also included. EXPERT OPINION Novel ECM-inspired nanoscale structures and conjugates continue to be of great interest in the materials science and bioengineering communities. Hyaluronic acid nanocarrier systems in particular are widely employed due to the functional activity of HA in mediating a large number of disease states. In contrast, collagen-like peptide nanocarriers are an emerging drug delivery platform with potential relevance to a myriad of ECM-related diseases, making their continued study most pertinent. Elastin-like peptide nanocarriers have a well-established tolerability and efficacy track record in preclinical analyses that has motivated their recent advancement into the clinical arena.
Collapse
Affiliation(s)
- Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kristi L Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
18
|
Yang M, Zhao H, Zhang Z, Yuan Q, Feng Q, Duan X, Wang S, Tang Y. CO/light dual-activatable Ru(ii)-conjugated oligomer agent for lysosome-targeted multimodal cancer therapeutics. Chem Sci 2021; 12:11515-11524. [PMID: 34667555 PMCID: PMC8447874 DOI: 10.1039/d1sc01317c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023] Open
Abstract
Stimuli-activatable and subcellular organelle-targeted agents with multimodal therapeutics are urgently desired for highly precise and effective cancer treatment. Herein, a CO/light dual-activatable Ru(ii)-oligo-(thiophene ethynylene) (Ru-OTE) for lysosome-targeted cancer therapy is reported. Ru-OTE is prepared via the coordination-driven self-assembly of a cationic conjugated oligomer (OTE-BN) ligand and a Ru(ii) center. Upon the dual-triggering of internal gaseous signaling molecular CO and external light, Ru-OTE undergoes ligand substitution and releases OTE-BN followed by dramatic fluorescence recovery, which could be used for monitoring drug delivery and imaging guided anticancer treatments. The released OTE-BN selectively accumulates in lysosomes, physically breaking their integrity. Then, the generated cytotoxic singlet oxygen (1O2) causes severe lysosome damage, thus leading to cancer cell death via photodynamic therapy (PDT). Meanwhile, the release of the Ru(ii) core also suppresses cancer cell growth as an anticancer metal drug. Its significant anticancer effect is realized via the multimodal therapeutics of physical disruption/PDT/chemotherapy. Importantly, Ru-OTE can be directly photo-activated using a two-photon laser (800 nm) for efficient drug release and near-infrared PDT. Furthermore, Ru-OTE with light irradiation inhibits tumor growth in an MDA-MB-231 breast tumor model with negligible side effects. This study demonstrates that the development of an activatable Ru(ii)-conjugated oligomer potential drug provides a new strategy for effective subcellular organelle-targeted multimodal cancer therapeutics. The anticancer therapeutics of lysosome disruption/PDT/chemotherapy based on Ru-OTE complex was achieved, which provides a new strategy for developing multimodal and effective stimuli-activatable subcellular organelle-targeted cancer therapeutics.![]()
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi Province 710119 P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences P. R. China
| | - Ziqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi Province 710119 P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi Province 710119 P. R. China
| | - Qian Feng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi Province 710119 P. R. China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi Province 710119 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi Province 710119 P. R. China
| |
Collapse
|
19
|
Liao W, Shi X, Zhuo LG, Yang X, Zhao P, Kan W, Wang G, Wei H, Yang Y, Zhou Z, Wang J. Comparison and Mechanism Study of Antibacterial Activity of Cationic and Neutral Oligo-Thiophene-Ethynylene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41012-41020. [PMID: 34410119 DOI: 10.1021/acsami.1c02474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photodynamic therapy (PDT) is a potential approach to resolve antibiotic resistance, and phenylene/thiophene-ethynylene oligomers have been widely studied as effective antibacterial reagents. Oligomers with thiophene moieties usually exhibit good antibacterial activity under light irradiation and dark conditions. In the previous study, we verified that neutral oligo-p-phenylene-ethynylenes (OPEs) exhibit better antibacterial activity than the corresponding cationic ones; however, whether this regular pattern also operates in other kinds of oligomers such as oligo-thiophene-ethynylene (OTE) is unknown. Also, the antibacterial activity comparison of OTEs bearing cyclic and acyclic amino groups will offer useful information to further understand the role of amino groups in the antibacterial process and guide the antibacterial reagent design as amino groups affect the antibacterial activity a lot. We synthesized four OTEs bearing neutral or cationic, cyclic, or acyclic amino groups and studied their antibacterial activity in detail. The experimental results indicated that the OTEs exhibited better antibacterial activity than the OPEs, the neutral OTEs exhibited better antibacterial activity in most cases, and OTEs bearing cyclic amino groups exhibited better antibacterial activity than those bearing acyclic ones in most cases. This study provides useful guidelines for further antibacterial reagent design and investigations.
Collapse
Affiliation(s)
- Wei Liao
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Xiaoyi Shi
- West China Hospital of Sichuan University Cleaning and Disinfection Supply Center, Chengdu, Sichuan 610041, P. R. China
| | - Lian-Gang Zhuo
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Xia Yang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Peng Zhao
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Wentao Kan
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Guanquan Wang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Hongyuan Wei
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Zhijun Zhou
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Jing Wang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| |
Collapse
|
20
|
Suo H, Hussain M, Wang H, Zhou N, Tao J, Jiang H, Zhu J. Injectable and pH-Sensitive Hyaluronic Acid-Based Hydrogels with On-Demand Release of Antimicrobial Peptides for Infected Wound Healing. Biomacromolecules 2021; 22:3049-3059. [PMID: 34128646 DOI: 10.1021/acs.biomac.1c00502] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antibiotics' abuse in bacteria-infected wounds has threatened patients' lives and burdened medical systems. Hence, antibiotic-free hydrogel-based biomaterials, which exhibit biostability, on-demand release of antibacterial agents, and long-lasting antimicrobial activity, are highly desired for the treatment of chronic bacteria-infected wounds. Herein, we developed a hyaluronic acid (HA)-based composite hydrogel, with an antimicrobial peptide [AMP, KK(SLKL)3KK] as a cross-linking agent through Schiff's base formation, which exhibited an acidity-triggered release of AMP (pathological environment in bacteria-infected wounds, pH ∼ 5.5-5.6). During the self-assembly process, AMP adopted an antiparallel β-sheet secondary structure due to the alternate arrangement of hydrophobic and hydrophilic residues of amino acids. Owing to Schiff's base formation between the primary amines derived from lysine residues and the aldehydes in oxidized HA, the AMP-HA composite hydrogel exhibited injectability, high biostability, and enhanced mechanical strength. Importantly, both AMP and the AMP-HA composite showed excellent broad-spectrum antibacterial activity in vitro and in vivo. Specifically, the AMP-HA composite hydrogel exhibited on-demand full thickness wound healing in an infected mice model. Therefore, this work provides an efficient strategy to fabricate antibiotic-free hydrogel-based biomaterials for the management of chronic bacteria-infected wounds.
Collapse
Affiliation(s)
- Huinan Suo
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Mubashir Hussain
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Hua Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Nuoya Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| |
Collapse
|
21
|
Wang J, Yang X, Zhao P, Deng H, Zhuo LG, Wang G, Yang Y, Wei H, Zhou Z, Liao W. Investigating Antibacterial Efficiency and Mechanism of Oligo-thiophenes under White Light and Specific Biocidal Activity against E. coli in Dark. ACS APPLIED BIO MATERIALS 2021; 4:3561-3570. [DOI: 10.1021/acsabm.1c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jing Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Xia Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Peng Zhao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
| | - Hao Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People’s Republic of China
| | - Lian-Gang Zhuo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Guanquan Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Hongyuan Wei
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Zhijun Zhou
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
| | - Wei Liao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| |
Collapse
|