1
|
Nam K, Im J, Han GH, Park JY, Kim H, Park S, Yoo S, Haddadnezhad M, Ahn JS, Park KD, Choi S. Photoluminescence of MoS 2 on Plasmonic Gold Nanoparticles Depending on the Aggregate Size. ACS OMEGA 2024; 9:21587-21594. [PMID: 38764616 PMCID: PMC11097376 DOI: 10.1021/acsomega.4c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Transition metal dichalcogenides (TMDs) are promising candidates for ultrathin functional semiconductor devices. In particular, incorporating plasmonic nanoparticles into TMD-based devices enhances the light-matter interaction for increased absorption efficiency and enables control of device performance such as electronic, electrical, and optical properties. In this heterohybrid structure, manipulating the number of TMD layers and the aggregate size of plasmonic nanoparticles is a straightforward approach to tailoring device performance. In this study, we use photoluminescence (PL) spectroscopy, which is a commonly employed technique for monitoring device performance, to analyze the changes in electronic and optical properties depending on the number of MoS2 layers and the size of the gold nanoparticle (AuNP) aggregate under nonresonant and resonant excitation conditions. The PL intensity in monolayer MoS2/AuNPs increases as the size of aggregates increases irrespective of the excitation conditions. The strain induced by AuNPs causes a red shift, but as the aggregates grow larger, the effect of p-doping increases and the blue shift becomes prominent. In multilayer MoS2/AuNPs, quenched PL intensity is observed under nonresonant excitation, while enhancement is noted under resonant excitation, which is mainly contributed by p-doping and LSPR, respectively. Remarkably, the alteration in the spectral shape due to resonant excitation is evident solely in small aggregates of AuNPs across all layers.
Collapse
Affiliation(s)
- Kiin Nam
- Department
of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaeseung Im
- Department
of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Gang Hee Han
- Department
of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Jin Young Park
- Department
of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyuntae Kim
- System
Research & Development System Integration Team, Park Systems Corporation, Suwon 16229, Republic
of Korea
| | - Sungho Park
- Department
of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungjae Yoo
- Biomaterials
Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | | | - Jae Sung Ahn
- Medical &
Bio Photonics Research Center, Korea Photonics
Technology Institute, Gwangju 61007, Republic
of Korea
| | - Kyoung-Duck Park
- Department
of Physics, Pohang University of Science
and Technology, Pohang 37673, Republic of Korea
| | - Soobong Choi
- Department
of Physics, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Wang J, He L, Zhang Y, Nong H, Li S, Wu Q, Tan J, Liu B. Locally Strained 2D Materials: Preparation, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314145. [PMID: 38339886 DOI: 10.1002/adma.202314145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/28/2024] [Indexed: 02/12/2024]
Abstract
2D materials are promising for strain engineering due to their atomic thickness and exceptional mechanical properties. In particular, non-uniform and localized strain can be induced in 2D materials by generating out-of-plane deformations, resulting in novel phenomena and properties, as witnessed in recent years. Therefore, the locally strained 2D materials are of great value for both fundamental studies and practical applications. This review discusses techniques for introducing local strains to 2D materials, and their feasibility, advantages, and challenges. Then, the unique effects and properties that arise from local strain are explored. The representative applications based on locally strained 2D materials are illustrated, including memristor, single photon emitter, and photodetector. Finally, concluding remarks on the challenges and opportunities in the emerging field of locally strained 2D materials are provided.
Collapse
Affiliation(s)
- Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liqiong He
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yunhao Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shengnan Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Chowdhury D, Mohamed SA, Manzato G, Siri B, Chittofrati R, Giordano MC, Hussein M, Hameed MFO, Obayya SSA, Stadler P, Scharber MC, Della Valle G, Buatier de Mongeot F. Broadband Photon Harvesting in Organic Photovoltaic Devices Induced by Large-Area Nanogrooved Templates. ACS APPLIED NANO MATERIALS 2023; 6:6230-6240. [PMID: 37092122 PMCID: PMC10112484 DOI: 10.1021/acsanm.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Thin-film organic photovoltaic (OPV) devices represent an attractive alternative to conventional silicon solar cells due to their lightweight, flexibility, and low cost. However, the relatively low optical absorption of the OPV active layers still represents an open issue in view of efficient devices that cannot be addressed by adopting conventional light coupling strategies derived from thick PV absorbers. The light coupling to thin-film solar cells can be boosted by nanostructuring the device interfaces at the subwavelength scale. Here, we demonstrate broadband and omnidirectional photon harvesting in thin-film OPV devices enabled by highly ordered one-dimensional (1D) arrays of nanogrooves. Laser interference lithography, in combination with reactive ion etching (RIE), provides the controlled tailoring of the height and periodicity of the silica grooves, enabling effective tuning of the anti-reflection properties in the active organic layer (PTB7:PCBM). With this strategy, we demonstrate a strong enhancement of the optical absorption, as high as 19% with respect to a flat device, over a broadband visible and near-infrared spectrum. The OPV device supported on these optimized nanogrooved substrates yields a 14% increase in short-circuit current over the corresponding flat device, highlighting the potential of this large-scale light-harvesting strategy in the broader context of thin-film technologies.
Collapse
Affiliation(s)
- Debasree Chowdhury
- Department
of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Shaimaa A. Mohamed
- Centre
for Photonics and Smart Materials, Zewail
City of Science, Technology and Innovation, October Gardens, 6th of October
City, Giza 12578, Egypt
- Centre
for Nanotechnology, Zewail City of Science,
Technology and Innovation, October Gardens, 6th of October City, Giza 12578, Egypt
- Nanotechnology
and Nanoelectronics Engineering Program, Zewail City of Science, Technology and Innovation, October Gardens, 6th of October
City, Giza 12578, Egypt
- Physical
Chemistry, Linz Institute for Organic Solar
Cell (LIOS), Johannes Kepler University Linz, Altenbergerstr, 69, A-4040 Linz, Austria
| | - Giacomo Manzato
- Department
of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Beatrice Siri
- Department
of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Roberto Chittofrati
- Department
of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | | | - Mohamed Hussein
- Centre
for Photonics and Smart Materials, Zewail
City of Science, Technology and Innovation, October Gardens, 6th of October
City, Giza 12578, Egypt
- Department
of Physics, Faculty of Science, Ain Shams
University, Abbassia, 11566 Cairo, Egypt
- Light
Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Mohamed F. O. Hameed
- Centre
for Photonics and Smart Materials, Zewail
City of Science, Technology and Innovation, October Gardens, 6th of October
City, Giza 12578, Egypt
- Nanotechnology
and Nanoelectronics Engineering Program, Zewail City of Science, Technology and Innovation, October Gardens, 6th of October
City, Giza 12578, Egypt
- Mathematics
and Engineering Physics Department, Faculty of Engineering, University of Mansoura, Mansoura 35516, Egypt
| | - Salah S. A. Obayya
- Centre
for Photonics and Smart Materials, Zewail
City of Science, Technology and Innovation, October Gardens, 6th of October
City, Giza 12578, Egypt
- Department
of Electronics and Communication Engineering, Faculty of Engineering, University of Mansoura, Mansoura 35516, Egypt
| | - Philipp Stadler
- Physical
Chemistry, Linz Institute for Organic Solar
Cell (LIOS), Johannes Kepler University Linz, Altenbergerstr, 69, A-4040 Linz, Austria
| | - Markus C. Scharber
- Physical
Chemistry, Linz Institute for Organic Solar
Cell (LIOS), Johannes Kepler University Linz, Altenbergerstr, 69, A-4040 Linz, Austria
| | - Giuseppe Della Valle
- Dipartimento
di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci, 32-20133 Milano, Italy
| | | |
Collapse
|
4
|
Pi S, Liu C, Zhang J, Li N, Shen J, Guo W, Qin L, Zhao J, Zhang S, Wang Z. Durable Rapid Self-Disinfection, Reusable Protective Clothing Based on the Ag-Pd@MoS 2 Nanozyme with Enhanced Triple-Mode Synergistic Antibacterial Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18032-18044. [PMID: 37000034 DOI: 10.1021/acsami.2c23130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Personal protective clothing plays an important role in isolating microorganisms and harmful ultrafine dust, but it cannot quickly inactivate bacteria intercepted on the surface, making it a potential source of infection. However, spontaneous and durable rapid sterilization is a major challenge for commercial protective clothing. Herein, we exquisitely engineered a visible light-enhanced Ag-Pd@MoS2 nanozyme-based fabric, named PVDF/Ag-Pd@MoS2/PAN fabric (PAPMP fabric), with prominent triple-mode synergistic antibacterial effect through the replacement reaction, electrospinning technique, and vacuum filtration method. The modification of Ag-Pd greatly strengthened the absorption of MoS2 nanosheets to the visible light spectrum (390-780 nm) and its corresponding catalytic performance. Meanwhile, the combination of MoS2 nanosheets significantly enhanced the oxidase-like characteristics of Ag-Pd under sunlight irradiation, increasing the yield of surface-bound 1O2 ∼4.54 times in 5 min. In addition, the obtained Ag-Pd@MoS2 nanozyme showed an excellent photo-to-thermal conversion property (36.12%), which enabled the sharp increase in the surface temperature of the PAPMP fabric to 62.8 °C in 1 min under a solar simulator (1 W/cm2). Correspondingly, the obtained PAPMP fabric exhibited excellent intrinsic antibacterial effect and greatly shortened the sterilization time from 4 h to only 5 min under sunlight stimulation. The rapid antibacterial effect of the fabric was attributable to the enhanced production rate of surface-bound reactive oxygen species and the increased temperature by solar irradiation. Notably, the fabric still maintained the efficient germicidal effect even after 30 washing cycles. In addition to high reusability, the fabric also had outstanding biological compatibility and water resistance. Our work provides a novel strategy to improve the inherent timely sterilization and heat preservation efficiency of protective clothing.
Collapse
Affiliation(s)
- Shuai Pi
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Cui Liu
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianjun Shen
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wei Guo
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Qin
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Zhao
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shudong Zhang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyang Wang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
5
|
Ferrando G, Gardella M, Zambito G, Barelli M, Chowdhury D, Giordano MC, Buatier de Mongeot F. Flat-optics hybrid MoS 2/polymer films for photochemical conversion. NANOSCALE 2023; 15:1953-1961. [PMID: 36625311 DOI: 10.1039/d2nr05004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel light harvesting platforms and strategies are crucial to develop renewable photon to energy conversion technologies that overcome the current global energy and environmental challenges. Two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductor layers are particularly attractive for photoconversion applications but new ultra-compact photon harvesting schemes are urgently required to mitigate their poor photon absorption properties. Here, we propose a flat-optics scheme based on nanogrooved ultra-thin MoS2 layers conformally grown onto large area (cm2 scale) nanopatterned templates. The subwavelength re-shaping of the 2D-TMD layers promotes the excitation of photonic Rayleigh anomaly (RA) modes, uniquely boosting a strong in-plane electromagnetic confinement. By tailoring the illumination conditions, we demonstrate effective tuning of the photonic anomalies over a broadband visible spectrum across the absorption band of relevant polluting dye molecules. Thanks to the strong photonic in-plane confinement, we achieve a resonant enhancement of the photodissociation rate of methylene blue (MB) molecules, well above a factor of 2. These results highlight the potential of flat-optics photon harvesting schemes for boosting photoconversion efficiency in large-scale hybrid 2D-TMD/polymer layers, with a strong impact in various applications ranging from new-generation photonics to waste water remediation and renewable energy storage.
Collapse
Affiliation(s)
- Giulio Ferrando
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Matteo Gardella
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Giorgio Zambito
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Matteo Barelli
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Debasree Chowdhury
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | | | | |
Collapse
|
6
|
Maji TK, Vaibhav K, Delin A, Eriksson O, Karmakar D. 1D/2D Hybrid Te/Graphene and Te/MoS 2: Multifaceted Broadband Photonics and Green-Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51449-51458. [PMID: 36321542 DOI: 10.1021/acsami.2c13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We highlight the enhanced electronic and optical functionalization in the hybrid heterojunction of one-dimensional (1D) tellurene with a two-dimensional (2D) monolayer of graphene and MoS2 in both lateral and vertical geometries. The structural configurations of these assemblies are optimized with a comparative analysis of the energetics for different positional placements of the 1D system with respect to the hexagonal 2D substrate. The 1D/2D coupling of the electronic structure in this unique assembly enables the realization of the three different types of heterojunctions, viz. type I, type II, and Z-scheme. The interaction with 1D tellurene enables the opening of a band gap of the order of hundreds of meV in 2D graphene for both lateral and vertical geometries. With both static and time-dependent first-principles analysis, we indicate their potential applications in broadband photodetection and absorption, covering a wide range of visible to infrared (near-IR to mid-IR) spectrum from 380 to 10 000 nm. We indicate that this 1D/2D assembly also has bright prospects in green-energy harvesting.
Collapse
Affiliation(s)
- Tuhin Kumar Maji
- Department of Physics, Indian Institute of Science Bangalore, Bangalore560012, India
| | - Kumar Vaibhav
- Computer Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Anna Delin
- Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, SE-10044Stockholm, Sweden
| | - Olle Eriksson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120Uppsala, Sweden
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE-70281Örebro, Sweden
| | - Debjani Karmakar
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120Uppsala, Sweden
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| |
Collapse
|
7
|
Bhatnagar M, Woźniak T, Kipczak Ł, Zawadzka N, Olkowska-Pucko K, Grzeszczyk M, Pawłowski J, Watanabe K, Taniguchi T, Babiński A, Molas MR. Temperature induced modulation of resonant Raman scattering in bilayer 2H-MoS 2. Sci Rep 2022; 12:14169. [PMID: 35986062 PMCID: PMC9391345 DOI: 10.1038/s41598-022-18439-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
The temperature evolution of the resonant Raman scattering from high-quality bilayer 2H-MoS[Formula: see text] encapsulated in hexagonal BN flakes is presented. The observed resonant Raman scattering spectrum as initiated by the laser energy of 1.96 eV, close to the A excitonic resonance, shows rich and distinct vibrational features that are otherwise not observed in non-resonant scattering. The appearance of 1st and 2nd order phonon modes is unambiguously observed in a broad range of temperatures from 5 to 320 K. The spectrum includes the Raman-active modes, i.e. E[Formula: see text]([Formula: see text]) and A[Formula: see text]([Formula: see text]) along with their Davydov-split counterparts, i.e. E[Formula: see text]([Formula: see text]) and B[Formula: see text]([Formula: see text]). The temperature evolution of the Raman scattering spectrum brings forward key observations, as the integrated intensity profiles of different phonon modes show diverse trends. The Raman-active A[Formula: see text]([Formula: see text]) mode, which dominates the Raman scattering spectrum at T = 5 K quenches with increasing temperature. Surprisingly, at room temperature the B[Formula: see text]([Formula: see text]) mode, which is infrared-active in the bilayer, is substantially stronger than its nominally Raman-active A[Formula: see text]([Formula: see text]) counterpart.
Collapse
Affiliation(s)
- Mukul Bhatnagar
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland.
| | - Tomasz Woźniak
- Department of Semiconductor Materials Engineering, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łucja Kipczak
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland
| | - Natalia Zawadzka
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland
| | - Katarzyna Olkowska-Pucko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland
| | - Magdalena Grzeszczyk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland
| | - Jan Pawłowski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland.
| |
Collapse
|
8
|
Zhang Y, Zhou M, Yang M, Yu J, Li W, Li X, Feng S. Experimental Realization and Computational Investigations of B 2S 2 as a New 2D Material with Potential Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32330-32340. [PMID: 35796513 DOI: 10.1021/acsami.2c03762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new two-dimensional material B2S2 has been successfully synthesized for the first time and validated using first-principles calculations, with fundamental properties analyzed in detail. B2S2 has a similar structure as transition-metal dichalcogenides (TMDs) such as MoS2, and the experimentally prepared free-standing B2S2 nanosheets show a uniform height profile lower than 1 nm. A thickness-modulated and unique oxidation-level dependent band gap of B2S2 is revealed by theoretical calculations, and vibration signatures are determined to offer a practical scheme for the characterization of B2S2. It is shown that the functionalized B2S2 is able to provide favorable sites for lithium adsorption with low diffusion barriers, and the prepared B2S2 shows a wide band photoluminescence response. These findings offer a feasible new and lighter member for the TMD-like 2D material family with potential for various aspects of applications, such as an anode material for Li-ion batteries and electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Yibo Zhang
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ming Zhou
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Mingyang Yang
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianwen Yu
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenming Li
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuyin Li
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Shijia Feng
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
10
|
Devassy AM, Kamalakshan A, Jamuna NA, Ansilda R, Mandal S. Enhanced Catalytic Activity of a New Nanobiocatalytic System Formed by the Adsorption of Cytochrome c on Pluronic Triblock Copolymer Stabilized MoS 2 Nanosheets. ACS OMEGA 2022; 7:16593-16604. [PMID: 35601299 PMCID: PMC9118411 DOI: 10.1021/acsomega.2c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
The formation of nanobiohybrids through the immobilization of enzymes on functional nanomaterials has opened up exciting research opportunities at the nanobiointerfaces. These systems hold great promise for a wide range of applications in biosensing, biocatalytic, and biomedical fields. Here, we report the formation of a hybrid nanobiocatalytic system through the adsorption of cytochrome c (Cyt c) on pluronic triblock copolymer, P123 (PEO-b-PPO-b-PEO), stabilized MoS2 nanosheets. The use of pluronic polymer has helped not only to greatly stabilize the exfoliated MoS2 nanosheets but also to allow easy adsorption of Cyt c on the nanosheets without major structural changes due to its excellent biocompatibility and soft protein-binding property. By comparing the catalytic activity of the Cyt c-MoS2 nanobiohybrid with that of the free Cyt c and as-prepared MoS2 nanosheets, we have demonstrated the active role of the nanobiointeractions in enhancing the catalytic activity of the hybrid. Slight structural perturbation at the active site of the Cyt c upon adsorption on MoS2 has primarily facilitated the peroxidase activity of the Cyt c. As the MoS2 nanosheets and the native Cyt c individually exhibit weaker intrinsic peroxidase activities, their mutual modulation at the nanobiointerface has made the Cyt c-MoS2 a novel nanobiocatalyst with superior activity.
Collapse
Affiliation(s)
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Nidhi Anilkumar Jamuna
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Roselin Ansilda
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
11
|
Manzato G, Giordano MC, Barelli M, Chowdhury D, Centini M, de Mongeot FB. Free-standing plasmonic nanoarrays for leaky optical waveguiding and sensing. OPTICS EXPRESS 2022; 30:17371-17382. [PMID: 36221562 DOI: 10.1364/oe.453135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 06/16/2023]
Abstract
Flat optics nanogratings supported on thin free-standing membranes offer the opportunity to combine narrowband waveguided modes and Rayleigh anomalies for sensitive and tunable biosensing. At the surface of high-refractive index Si3N4 membranes we engineered lithographic nanogratings based on plasmonic nanostripes, demonstrating the excitation of sharp waveguided modes and lattice resonances. We achieved fine tuning of these optical modes over a broadband Visible and Near-Infrared spectrum, in full agreement with numerical calculations. This possibility allowed us to select sharp waveguided modes supporting strong near-field amplification, extending for hundreds of nanometres out of the grating and enabling versatile biosensing applications. We demonstrate the potential of this flat-optics platform by devising a proof-of-concept nanofluidic refractive index sensor exploiting the long-range waveguided mode operating at the sub-picoliter scale. This free-standing device configuration, that could be further engineered at the nanoscale, highlights the strong potential of flat-optics nanoarrays in optofluidics and nanofluidic biosensing.
Collapse
|
12
|
Chowdhury D, Mondal S, Secchi M, Giordano MC, Vanzetti L, Barozzi M, Bersani M, Giubertoni D, Buatier de Mongeot F. Omnidirectional and broadband photon harvesting in self-organized Ge columnar nanovoids. NANOTECHNOLOGY 2022; 33:305304. [PMID: 35385839 DOI: 10.1088/1361-6528/ac64ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Highly porous Germanium surfaces with uniformly distributed columnar nanovoid structures are fabricated over a large area (wafer scale) by large fluence Sn+irradiation through a thin silicon nitride layer. The latter represents a one-step highly reproducible approach with no material loss to strongly increase photon harvesting into a semiconductor active layer by exploiting the moth-eye antireflection effect. The ion implantation through the nitride cap layer allows fabricating porous nanostructures with high aspect ratio, which can be tailored by varying ion fluence. By comparing the reflectivity of nanoporous Ge films with a flat reference we demonstrate a strong and omnidirectional reduction in the optical reflectivity by a factor of 96% in the selected spectral regions around 960 nm and by a factor of 67.1% averaged over the broad spectral range from 350 to 1800 nm. Such highly anti-reflective nanostructured Ge films prepared over large-areas with a self-organized maskless approach have the potential to impact real world applications aiming at energy harvesting.
Collapse
Affiliation(s)
- Debasree Chowdhury
- Dipartimento di Fisica, Università degli Studi di Genova, via Dodecaneso 33, I-16146, Genova, Italy
| | - Shyamal Mondal
- Sensors and Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123, Trento, Italy
| | - Maria Secchi
- Sensors and Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123, Trento, Italy
| | - Maria Caterina Giordano
- Dipartimento di Fisica, Università degli Studi di Genova, via Dodecaneso 33, I-16146, Genova, Italy
| | - Lia Vanzetti
- Sensors and Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123, Trento, Italy
| | - Mario Barozzi
- Sensors and Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123, Trento, Italy
| | - Massimo Bersani
- Sensors and Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123, Trento, Italy
| | - Damiano Giubertoni
- Sensors and Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123, Trento, Italy
| | | |
Collapse
|
13
|
Ambient Pressure Chemical Vapor Deposition of Flat and Vertically Aligned MoS2 Nanosheets. NANOMATERIALS 2022; 12:nano12060973. [PMID: 35335786 PMCID: PMC8949030 DOI: 10.3390/nano12060973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Molybdenum disulfide (MoS2) got tremendous attention due to its atomically thin body, rich physics, and high carrier mobility. The controlled synthesis of large area and high crystalline monolayer MoS2 nanosheets on diverse substrates remains a challenge for potential practical applications. Synthesizing different structured MoS2 nanosheets with horizontal and vertical orientations with respect to the substrate surface would bring a configurational versatility with benefit for numerous applications, including nanoelectronics, optoelectronics, and energy technologies. Among the proposed methods, ambient pressure chemical vapor deposition (AP-CVD) is a promising way for developing large-scale MoS2 nanosheets because of its high flexibility and facile approach. Here, we show an effective way for synthesizing large-scale horizontally and vertically aligned MoS2 on different substrates such as flat SiO2/Si, pre-patterned SiO2 and conductive substrates (TaN) benefit various direct TMDs production. In particular, we show precise control of CVD optimization for yielding high-quality MoS2 layers by changing growth zone configuration and the process steps. We demonstrated that the influence of configuration variability by local changes of the S to MoO3 precursor positions in the growth zones inside the CVD reactor is a key factor that results in differently oriented MoS2 formation. Finally, we show the layer quality and physical properties of as-grown MoS2 by means of different characterizations: Raman spectroscopy, scanning electron microscopy (SEM), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These experimental findings provide a strong pathway for conformally recasting AP-CVD grown MoS2 in many different configurations (i.e., substrate variability) or motifs (i.e., vertical or planar alignment) with potential for flexible electronics, optoelectronics, memories to energy storage devices.
Collapse
|
14
|
Cao YM, Zheng M, Li YF, Zhai WY, Yuan GT, Zheng M, Zhuo MP, Wang ZS, Liao LS. Smart Textiles Based on MoS 2 Hollow Nanospheres for Personal Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48988-48996. [PMID: 34623128 DOI: 10.1021/acsami.1c13269] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional transition metal dichalcogenides are of particular interest in high-performance photothermal conversion, yet there remains a huge challenge in their practical application in smart textiles for healthcare, energy, and personal protection. Herein, we controllably prepared MoS2 hollow nanospheres with a high photothermal conversion efficiency of 36% via a microemulsion-hydrothermal method, which was further applied to construct photothermal fibers for personal thermal management after a hot-blast dip-drying process. Because of the prominent photothermal effect, the temperature of the photothermal fibers sharply increases from the room temperature value of 25.0 to 55.5 °C in 60 s under near-infrared illumination with a power density of 500 W/cm2. Furthermore, the photothermal fiber pad demonstrated an obvious temperature enhancement of 38.0 °C from a skin temperature of 22.0 °C after it was irradiated by natural sunlight for 60 s. Significantly, the antibacterial elimination rates of the photothermal fibers for Escherichia coli and Staphylococcus aureus are ∼99.9 and ∼99.8%, respectively. This strategy affords an avenue toward the practical application of photothermal materials in smart fibers for personal thermoregulation.
Collapse
Affiliation(s)
- Yuan-Ming Cao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Mi Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yi-Fei Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wang-Yi Zhai
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guo-Tao Yuan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Min Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ming-Peng Zhuo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zuo-Shan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|